Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
book
提交
b4a8f0dc
B
book
项目概览
PaddlePaddle
/
book
通知
16
Star
4
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
40
列表
看板
标记
里程碑
合并请求
37
Wiki
5
Wiki
分析
仓库
DevOps
项目成员
Pages
B
book
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
40
Issue
40
列表
看板
标记
里程碑
合并请求
37
合并请求
37
Pages
分析
分析
仓库分析
DevOps
Wiki
5
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b4a8f0dc
编写于
7月 07, 2017
作者:
C
caoying03
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine NMT.
上级
35d9ab1b
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
80 addition
and
60 deletion
+80
-60
08.machine_translation/train.py
08.machine_translation/train.py
+80
-60
未找到文件。
08.machine_translation/train.py
浏览文件 @
b4a8f0dc
import
sys
import
gzip
import
numpy
as
np
import
paddle.v2
as
paddle
def
seqToseq_net
(
source_dict_dim
,
target_dict_dim
,
is_generating
=
False
):
def
save_model
(
parameters
,
save_path
):
with
gzip
.
open
(
save_path
,
'w'
)
as
f
:
parameters
.
to_tar
(
f
)
def
seq_to_seq_net
(
source_dict_dim
,
target_dict_dim
,
is_generating
,
beam_size
=
3
,
max_length
=
250
):
### Network Architecture
word_vector_dim
=
512
# dimension of word vector
decoder_size
=
512
# dimension of hidden unit in GRU Decoder network
encoder_size
=
512
# dimension of hidden unit in GRU Encoder network
beam_size
=
3
max_length
=
250
decoder_size
=
512
# dimension of hidden unit of GRU decoder
encoder_size
=
512
# dimension of hidden unit of GRU encoder
#### Encoder
src_word_id
=
paddle
.
layer
.
data
(
name
=
'source_language_word'
,
type
=
paddle
.
data_type
.
integer_value_sequence
(
source_dict_dim
))
src_embedding
=
paddle
.
layer
.
embedding
(
input
=
src_word_id
,
size
=
word_vector_dim
,
param_attr
=
paddle
.
attr
.
ParamAttr
(
name
=
'_source_language_embedding'
))
input
=
src_word_id
,
size
=
word_vector_dim
)
src_forward
=
paddle
.
networks
.
simple_gru
(
input
=
src_embedding
,
size
=
encoder_size
)
src_backward
=
paddle
.
networks
.
simple_gru
(
...
...
@@ -27,16 +33,19 @@ def seqToseq_net(source_dict_dim, target_dict_dim, is_generating=False):
encoded_vector
=
paddle
.
layer
.
concat
(
input
=
[
src_forward
,
src_backward
])
#### Decoder
encoded_proj
=
paddle
.
layer
.
mixed
(
encoded_proj
=
paddle
.
layer
.
fc
(
act
=
paddle
.
activation
.
Linear
(),
size
=
decoder_size
,
input
=
paddle
.
layer
.
full_matrix_projection
(
encoded_vector
))
bias_attr
=
False
,
input
=
encoded_vector
)
backward_first
=
paddle
.
layer
.
first_seq
(
input
=
src_backward
)
decoder_boot
=
paddle
.
layer
.
mixed
(
decoder_boot
=
paddle
.
layer
.
fc
(
size
=
decoder_size
,
act
=
paddle
.
activation
.
Tanh
(),
input
=
paddle
.
layer
.
full_matrix_projection
(
backward_first
))
bias_attr
=
False
,
input
=
backward_first
)
def
gru_decoder_with_attention
(
enc_vec
,
enc_proj
,
current_word
):
...
...
@@ -48,12 +57,13 @@ def seqToseq_net(source_dict_dim, target_dict_dim, is_generating=False):
encoded_proj
=
enc_proj
,
decoder_state
=
decoder_mem
)
decoder_inputs
=
paddle
.
layer
.
mixed
(
decoder_inputs
=
paddle
.
layer
.
fc
(
act
=
paddle
.
activation
.
Linear
(),
size
=
decoder_size
*
3
,
input
=
[
paddle
.
layer
.
full_matrix_projection
(
input
=
context
)
,
paddle
.
layer
.
full_matrix_projection
(
input
=
current_word
)
]
)
bias_attr
=
False
,
input
=
[
context
,
current_word
]
,
layer_attr
=
paddle
.
attr
.
ExtraLayerAttribute
(
error_clipping_threshold
=
100.0
)
)
gru_step
=
paddle
.
layer
.
gru_step
(
name
=
'gru_decoder'
,
...
...
@@ -61,16 +71,16 @@ def seqToseq_net(source_dict_dim, target_dict_dim, is_generating=False):
output_mem
=
decoder_mem
,
size
=
decoder_size
)
out
=
paddle
.
layer
.
mixed
(
out
=
paddle
.
layer
.
fc
(
size
=
target_dict_dim
,
bias_attr
=
True
,
act
=
paddle
.
activation
.
Softmax
(),
input
=
paddle
.
layer
.
full_matrix_projection
(
input
=
gru_step
)
)
input
=
gru_step
)
return
out
decoder_group_name
=
"decoder_group"
group_input1
=
paddle
.
layer
.
StaticInput
(
input
=
encoded_vector
,
is_seq
=
True
)
group_input2
=
paddle
.
layer
.
StaticInput
(
input
=
encoded_proj
,
is_seq
=
True
)
decoder_group_name
=
'decoder_group'
group_input1
=
paddle
.
layer
.
StaticInput
(
input
=
encoded_vector
)
group_input2
=
paddle
.
layer
.
StaticInput
(
input
=
encoded_proj
)
group_inputs
=
[
group_input1
,
group_input2
]
if
not
is_generating
:
...
...
@@ -100,13 +110,12 @@ def seqToseq_net(source_dict_dim, target_dict_dim, is_generating=False):
return
cost
else
:
# In generation, the decoder predicts a next target word based on
# the encoded source sequence and the
last
generated target word.
# the encoded source sequence and the
previous
generated target word.
# The encoded source sequence (encoder's output) must be specified by
# StaticInput, which is a read-only memory.
# Embedding of the last generated word is automatically gotten by
# GeneratedInputs, which is initialized by a start mark, such as <s>,
# and must be included in generation.
# Embedding of the previous generated word is automatically retrieved
# by GeneratedInputs initialized by a start mark <s>.
trg_embedding
=
paddle
.
layer
.
GeneratedInput
(
size
=
target_dict_dim
,
...
...
@@ -127,8 +136,8 @@ def seqToseq_net(source_dict_dim, target_dict_dim, is_generating=False):
def
main
():
paddle
.
init
(
use_gpu
=
Fals
e
,
trainer_count
=
1
)
is_generating
=
Fals
e
paddle
.
init
(
use_gpu
=
Tru
e
,
trainer_count
=
1
)
is_generating
=
Tru
e
# source and target dict dim.
dict_size
=
30000
...
...
@@ -136,32 +145,43 @@ def main():
# train the network
if
not
is_generating
:
cost
=
seqToseq_net
(
source_dict_dim
,
target_dict_dim
)
parameters
=
paddle
.
parameters
.
create
(
cost
)
# define optimize method and trainer
optimizer
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
5e-5
,
regularization
=
paddle
.
optimizer
.
L2Regularization
(
rate
=
8e-4
))
cost
=
seq_to_seq_net
(
source_dict_dim
,
target_dict_dim
,
is_generating
)
parameters
=
paddle
.
parameters
.
create
(
cost
)
trainer
=
paddle
.
trainer
.
SGD
(
cost
=
cost
,
parameters
=
parameters
,
update_equation
=
optimizer
)
# define data reader
wmt14_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
wmt14
.
train
(
dict_size
),
buf_size
=
8192
),
batch_size
=
5
)
batch_size
=
4
)
# define event_handler callback
def
event_handler
(
event
):
if
isinstance
(
event
,
paddle
.
event
.
EndIteration
):
if
event
.
batch_id
%
10
==
0
:
print
"
\n
Pass %d, Batch %d, Cost %f, %s"
%
(
event
.
pass_id
,
event
.
batch_id
,
event
.
cost
,
event
.
metrics
)
print
(
"
\n
Pass %d, Batch %d, Cost %f, %s"
%
(
event
.
pass_id
,
event
.
batch_id
,
event
.
cost
,
event
.
metrics
)
)
else
:
sys
.
stdout
.
write
(
'.'
)
sys
.
stdout
.
flush
()
if
not
event
.
batch_id
%
10
:
save_path
=
'params_pass_%05d_batch_%05d.tar.gz'
%
(
event
.
pass_id
,
event
.
batch_id
)
save_model
(
parameters
,
save_path
)
if
isinstance
(
event
,
paddle
.
event
.
EndPass
):
# save parameters
save_path
=
'params_pass_%05d.tar.gz'
%
(
event
.
pass_id
)
save_model
(
parameters
,
save_path
)
# start to train
trainer
.
train
(
reader
=
wmt14_reader
,
event_handler
=
event_handler
,
num_passes
=
2
)
...
...
@@ -169,17 +189,20 @@ def main():
# generate a english sequence to french
else
:
# use the first 3 samples for generation
gen_creator
=
paddle
.
dataset
.
wmt14
.
gen
(
dict_size
)
gen_data
=
[]
gen_num
=
3
for
item
in
gen_creator
():
gen_data
.
append
(
(
item
[
0
],
)
)
for
item
in
paddle
.
dataset
.
wmt14
.
gen
(
dict_size
)
():
gen_data
.
append
(
[
item
[
0
]]
)
if
len
(
gen_data
)
==
gen_num
:
break
beam_gen
=
seqToseq_net
(
source_dict_dim
,
target_dict_dim
,
is_generating
)
# get the pretrained model, whose bleu = 26.92
beam_size
=
3
beam_gen
=
seq_to_seq_net
(
source_dict_dim
,
target_dict_dim
,
is_generating
,
beam_size
)
# get the trained model, whose bleu = 26.92
parameters
=
paddle
.
dataset
.
wmt14
.
model
()
# prob is the prediction probabilities, and id is the prediction word.
beam_result
=
paddle
.
infer
(
output_layer
=
beam_gen
,
...
...
@@ -187,28 +210,25 @@ def main():
input
=
gen_data
,
field
=
[
'prob'
,
'id'
])
#
get
the dictionary
#
load
the dictionary
src_dict
,
trg_dict
=
paddle
.
dataset
.
wmt14
.
get_dict
(
dict_size
)
# the delimited element of generated sequences is -1,
# the first element of each generated sequence is the sequence length
seq_list
=
[]
seq
=
[]
for
w
in
beam_result
[
1
]:
if
w
!=
-
1
:
seq
.
append
(
w
)
else
:
seq_list
.
append
(
' '
.
join
([
trg_dict
.
get
(
w
)
for
w
in
seq
[
1
:]]))
seq
=
[]
prob
=
beam_result
[
0
]
beam_size
=
3
for
i
in
xrange
(
gen_num
):
print
"
\n
*******************************************************
\n
"
print
"src:"
,
' '
.
join
(
[
src_dict
.
get
(
w
)
for
w
in
gen_data
[
i
][
0
]]),
"
\n
"
gen_sen_idx
=
np
.
where
(
beam_result
[
1
]
==
-
1
)[
0
]
assert
len
(
gen_sen_idx
)
==
len
(
gen_data
)
*
beam_size
# -1 is the delimiter of generated sequences.
# the first element of each generated sequence its length.
start_pos
,
end_pos
=
1
,
0
for
i
,
sample
in
enumerate
(
gen_data
):
print
(
" "
.
join
([
src_dict
[
w
]
for
w
in
sample
[
0
][
1
:
-
1
]])
)
# skip the start and ending mark when printing the source sentence
for
j
in
xrange
(
beam_size
):
print
"prob = %f:"
%
(
prob
[
i
][
j
]),
seq_list
[
i
*
beam_size
+
j
]
end_pos
=
gen_sen_idx
[
i
*
beam_size
+
j
]
print
(
"%.4f
\t
%s"
%
(
beam_result
[
0
][
i
][
j
],
" "
.
join
(
trg_dict
[
w
]
for
w
in
beam_result
[
1
][
start_pos
:
end_pos
])))
start_pos
=
end_pos
+
2
print
(
"
\n
"
)
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录