未验证 提交 b170a71e 编写于 作者: W wopeizl 提交者: GitHub

Merge pull request #667 from wopeizl/fixbug

fix on python3 test=develop
......@@ -188,11 +188,11 @@ def infer(use_cuda, params_dirname=None):
# meaning there is only one level of detail and there is only one sequence of
# one word on this level.
# Note that recursive_sequence_lengths should be a list of lists.
data1 = [[211L]] # 'among'
data2 = [[6L]] # 'a'
data3 = [[96L]] # 'group'
data4 = [[4L]] # 'of'
lod = [[1L]]
data1 = [[numpy.int64(211)]] # 'among'
data2 = [[numpy.int64(6)]] # 'a'
data3 = [[numpy.int64(96)]] # 'group'
data4 = [[numpy.int64(4)]] # 'of'
lod = [[numpy.int64(1)]]
first_word = fluid.create_lod_tensor(data1, lod, place)
second_word = fluid.create_lod_tensor(data2, lod, place)
......
......@@ -271,26 +271,28 @@ def infer(use_cuda, params_dirname):
# Correspondingly, recursive_sequence_lengths = [[3, 2]] contains one
# level of detail info, indicating that `data` consists of two sequences
# of length 3 and 2, respectively.
user_id = fluid.create_lod_tensor([[1L]], [[1]], place)
user_id = fluid.create_lod_tensor([[np.int64(1)]], [[1]], place)
assert feed_target_names[1] == "gender_id"
gender_id = fluid.create_lod_tensor([[1L]], [[1]], place)
gender_id = fluid.create_lod_tensor([[np.int64(1)]], [[1]], place)
assert feed_target_names[2] == "age_id"
age_id = fluid.create_lod_tensor([[0L]], [[1]], place)
age_id = fluid.create_lod_tensor([[np.int64(0)]], [[1]], place)
assert feed_target_names[3] == "job_id"
job_id = fluid.create_lod_tensor([[10L]], [[1]], place)
job_id = fluid.create_lod_tensor([[np.int64(10)]], [[1]], place)
assert feed_target_names[4] == "movie_id"
movie_id = fluid.create_lod_tensor([[783L]], [[1]], place)
movie_id = fluid.create_lod_tensor([[np.int64(783)]], [[1]], place)
assert feed_target_names[5] == "category_id"
category_id = fluid.create_lod_tensor([[10L, 8L, 9L]], [[3]], place)
category_id = fluid.create_lod_tensor(
[np.array([10, 8, 9], dtype='int64')], [[3]], place)
assert feed_target_names[6] == "movie_title"
movie_title = fluid.create_lod_tensor(
[[1069L, 4140L, 2923L, 710L, 988L]], [[5]], place)
[np.array([1069, 4140, 2923, 710, 988], dtype='int64')], [[5]],
place)
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册