Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
book
提交
af0ec473
B
book
项目概览
PaddlePaddle
/
book
通知
16
Star
4
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
40
列表
看板
标记
里程碑
合并请求
37
Wiki
5
Wiki
分析
仓库
DevOps
项目成员
Pages
B
book
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
40
Issue
40
列表
看板
标记
里程碑
合并请求
37
合并请求
37
Pages
分析
分析
仓库分析
DevOps
Wiki
5
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
af0ec473
编写于
6月 22, 2018
作者:
N
Nicky Chan
提交者:
daminglu
6月 22, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Rewrite book chapter8 machine translation documentation and train.py (#552)
上级
42d37ac3
变更
3
展开全部
隐藏空白更改
内联
并排
Showing
3 changed file
with
809 addition
and
889 deletion
+809
-889
08.machine_translation/README.md
08.machine_translation/README.md
+270
-329
08.machine_translation/index.html
08.machine_translation/index.html
+270
-329
08.machine_translation/train.py
08.machine_translation/train.py
+269
-231
未找到文件。
08.machine_translation/README.md
浏览文件 @
af0ec473
此差异已折叠。
点击以展开。
08.machine_translation/index.html
浏览文件 @
af0ec473
此差异已折叠。
点击以展开。
08.machine_translation/train.py
浏览文件 @
af0ec473
import
sys
,
os
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
contextlib
import
numpy
as
np
import
paddle.v2
as
paddle
with_gpu
=
os
.
getenv
(
'WITH_GPU'
,
'0'
)
!=
'0'
def
save_model
(
trainer
,
parameters
,
save_path
):
with
open
(
save_path
,
'w'
)
as
f
:
trainer
.
save_parameter_to_tar
(
f
)
def
seq_to_seq_net
(
source_dict_dim
,
target_dict_dim
,
is_generating
,
beam_size
=
3
,
max_length
=
250
):
### Network Architecture
word_vector_dim
=
512
# dimension of word vector
decoder_size
=
512
# dimension of hidden unit of GRU decoder
encoder_size
=
512
# dimension of hidden unit of GRU encoder
#### Encoder
src_word_id
=
paddle
.
layer
.
data
(
name
=
'source_language_word'
,
type
=
paddle
.
data_type
.
integer_value_sequence
(
source_dict_dim
))
src_embedding
=
paddle
.
layer
.
embedding
(
input
=
src_word_id
,
size
=
word_vector_dim
)
src_forward
=
paddle
.
networks
.
simple_gru
(
input
=
src_embedding
,
size
=
encoder_size
)
src_backward
=
paddle
.
networks
.
simple_gru
(
input
=
src_embedding
,
size
=
encoder_size
,
reverse
=
True
)
encoded_vector
=
paddle
.
layer
.
concat
(
input
=
[
src_forward
,
src_backward
])
#### Decoder
encoded_proj
=
paddle
.
layer
.
fc
(
act
=
paddle
.
activation
.
Linear
(),
size
=
decoder_size
,
bias_attr
=
False
,
input
=
encoded_vector
)
backward_first
=
paddle
.
layer
.
first_seq
(
input
=
src_backward
)
decoder_boot
=
paddle
.
layer
.
fc
(
size
=
decoder_size
,
act
=
paddle
.
activation
.
Tanh
(),
bias_attr
=
False
,
input
=
backward_first
)
def
gru_decoder_with_attention
(
enc_vec
,
enc_proj
,
current_word
):
decoder_mem
=
paddle
.
layer
.
memory
(
name
=
'gru_decoder'
,
size
=
decoder_size
,
boot_layer
=
decoder_boot
)
context
=
paddle
.
networks
.
simple_attention
(
encoded_sequence
=
enc_vec
,
encoded_proj
=
enc_proj
,
decoder_state
=
decoder_mem
)
decoder_inputs
=
paddle
.
layer
.
fc
(
act
=
paddle
.
activation
.
Linear
(),
size
=
decoder_size
*
3
,
bias_attr
=
False
,
input
=
[
context
,
current_word
],
layer_attr
=
paddle
.
attr
.
ExtraLayerAttribute
(
error_clipping_threshold
=
100.0
))
gru_step
=
paddle
.
layer
.
gru_step
(
name
=
'gru_decoder'
,
input
=
decoder_inputs
,
output_mem
=
decoder_mem
,
size
=
decoder_size
)
out
=
paddle
.
layer
.
fc
(
size
=
target_dict_dim
,
bias_attr
=
True
,
act
=
paddle
.
activation
.
Softmax
(),
input
=
gru_step
)
return
out
decoder_group_name
=
'decoder_group'
group_input1
=
paddle
.
layer
.
StaticInput
(
input
=
encoded_vector
)
group_input2
=
paddle
.
layer
.
StaticInput
(
input
=
encoded_proj
)
group_inputs
=
[
group_input1
,
group_input2
]
if
not
is_generating
:
trg_embedding
=
paddle
.
layer
.
embedding
(
input
=
paddle
.
layer
.
data
(
name
=
'target_language_word'
,
type
=
paddle
.
data_type
.
integer_value_sequence
(
target_dict_dim
)),
size
=
word_vector_dim
,
param_attr
=
paddle
.
attr
.
ParamAttr
(
name
=
'_target_language_embedding'
))
group_inputs
.
append
(
trg_embedding
)
# For decoder equipped with attention mechanism, in training,
# target embeding (the groudtruth) is the data input,
# while encoded source sequence is accessed to as an unbounded memory.
# Here, the StaticInput defines a read-only memory
# for the recurrent_group.
decoder
=
paddle
.
layer
.
recurrent_group
(
name
=
decoder_group_name
,
step
=
gru_decoder_with_attention
,
input
=
group_inputs
)
lbl
=
paddle
.
layer
.
data
(
name
=
'target_language_next_word'
,
type
=
paddle
.
data_type
.
integer_value_sequence
(
target_dict_dim
))
cost
=
paddle
.
layer
.
classification_cost
(
input
=
decoder
,
label
=
lbl
)
return
cost
else
:
# In generation, the decoder predicts a next target word based on
# the encoded source sequence and the previous generated target word.
# The encoded source sequence (encoder's output) must be specified by
# StaticInput, which is a read-only memory.
# Embedding of the previous generated word is automatically retrieved
# by GeneratedInputs initialized by a start mark <s>.
trg_embedding
=
paddle
.
layer
.
GeneratedInput
(
size
=
target_dict_dim
,
embedding_name
=
'_target_language_embedding'
,
embedding_size
=
word_vector_dim
)
group_inputs
.
append
(
trg_embedding
)
beam_gen
=
paddle
.
layer
.
beam_search
(
name
=
decoder_group_name
,
step
=
gru_decoder_with_attention
,
input
=
group_inputs
,
bos_id
=
0
,
eos_id
=
1
,
beam_size
=
beam_size
,
max_length
=
max_length
)
return
beam_gen
def
main
():
paddle
.
init
(
use_gpu
=
with_gpu
,
trainer_count
=
1
)
is_generating
=
False
# source and target dict dim.
dict_size
=
30000
source_dict_dim
=
target_dict_dim
=
dict_size
# train the network
if
not
is_generating
:
# define optimize method and trainer
optimizer
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
5e-5
,
regularization
=
paddle
.
optimizer
.
L2Regularization
(
rate
=
8e-4
))
cost
=
seq_to_seq_net
(
source_dict_dim
,
target_dict_dim
,
is_generating
)
parameters
=
paddle
.
parameters
.
create
(
cost
)
trainer
=
paddle
.
trainer
.
SGD
(
cost
=
cost
,
parameters
=
parameters
,
update_equation
=
optimizer
)
# define data reader
wmt14_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
wmt14
.
train
(
dict_size
),
buf_size
=
8192
),
batch_size
=
4
)
# define event_handler callback
def
event_handler
(
event
):
if
isinstance
(
event
,
paddle
.
event
.
EndIteration
):
if
event
.
batch_id
%
10
==
0
:
print
(
"
\n
Pass %d, Batch %d, Cost %f, %s"
%
(
event
.
pass_id
,
event
.
batch_id
,
event
.
cost
,
event
.
metrics
))
else
:
sys
.
stdout
.
write
(
'.'
)
sys
.
stdout
.
flush
()
if
not
event
.
batch_id
%
10
:
save_path
=
'params_pass_%05d_batch_%05d.tar'
%
(
event
.
pass_id
,
event
.
batch_id
)
save_model
(
trainer
,
parameters
,
save_path
)
if
isinstance
(
event
,
paddle
.
event
.
EndPass
):
# save parameters
save_path
=
'params_pass_%05d.tar'
%
(
event
.
pass_id
)
save_model
(
trainer
,
parameters
,
save_path
)
# start to train
trainer
.
train
(
reader
=
wmt14_reader
,
event_handler
=
event_handler
,
num_passes
=
2
)
# generate a english sequence to french
else
:
# use the first 3 samples for generation
gen_data
=
[]
gen_num
=
3
for
item
in
paddle
.
dataset
.
wmt14
.
gen
(
dict_size
)():
gen_data
.
append
([
item
[
0
]])
if
len
(
gen_data
)
==
gen_num
:
break
beam_size
=
3
beam_gen
=
seq_to_seq_net
(
source_dict_dim
,
target_dict_dim
,
is_generating
,
beam_size
)
# get the trained model, whose bleu = 26.92
parameters
=
paddle
.
dataset
.
wmt14
.
model
()
# prob is the prediction probabilities, and id is the prediction word.
beam_result
=
paddle
.
infer
(
output_layer
=
beam_gen
,
parameters
=
parameters
,
input
=
gen_data
,
field
=
[
'prob'
,
'id'
])
# load the dictionary
src_dict
,
trg_dict
=
paddle
.
dataset
.
wmt14
.
get_dict
(
dict_size
)
gen_sen_idx
=
np
.
where
(
beam_result
[
1
]
==
-
1
)[
0
]
assert
len
(
gen_sen_idx
)
==
len
(
gen_data
)
*
beam_size
# -1 is the delimiter of generated sequences.
# the first element of each generated sequence its length.
start_pos
,
end_pos
=
1
,
0
for
i
,
sample
in
enumerate
(
gen_data
):
print
(
" "
.
join
([
src_dict
[
w
]
for
w
in
sample
[
0
][
1
:
-
1
]])
)
# skip the start and ending mark when printing the source sentence
for
j
in
xrange
(
beam_size
):
end_pos
=
gen_sen_idx
[
i
*
beam_size
+
j
]
print
(
"%.4f
\t
%s"
%
(
beam_result
[
0
][
i
][
j
],
" "
.
join
(
trg_dict
[
w
]
for
w
in
beam_result
[
1
][
start_pos
:
end_pos
])))
start_pos
=
end_pos
+
2
print
(
"
\n
"
)
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.framework
as
framework
import
paddle.fluid.layers
as
pd
from
paddle.fluid.executor
import
Executor
from
functools
import
partial
import
os
dict_size
=
30000
source_dict_dim
=
target_dict_dim
=
dict_size
hidden_dim
=
32
word_dim
=
16
batch_size
=
2
max_length
=
8
topk_size
=
50
beam_size
=
2
decoder_size
=
hidden_dim
def
encoder
(
is_sparse
):
# encoder
src_word_id
=
pd
.
data
(
name
=
"src_word_id"
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
src_embedding
=
pd
.
embedding
(
input
=
src_word_id
,
size
=
[
dict_size
,
word_dim
],
dtype
=
'float32'
,
is_sparse
=
is_sparse
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'vemb'
))
fc1
=
pd
.
fc
(
input
=
src_embedding
,
size
=
hidden_dim
*
4
,
act
=
'tanh'
)
lstm_hidden0
,
lstm_0
=
pd
.
dynamic_lstm
(
input
=
fc1
,
size
=
hidden_dim
*
4
)
encoder_out
=
pd
.
sequence_last_step
(
input
=
lstm_hidden0
)
return
encoder_out
def
train_decoder
(
context
,
is_sparse
):
# decoder
trg_language_word
=
pd
.
data
(
name
=
"target_language_word"
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
trg_embedding
=
pd
.
embedding
(
input
=
trg_language_word
,
size
=
[
dict_size
,
word_dim
],
dtype
=
'float32'
,
is_sparse
=
is_sparse
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'vemb'
))
rnn
=
pd
.
DynamicRNN
()
with
rnn
.
block
():
current_word
=
rnn
.
step_input
(
trg_embedding
)
pre_state
=
rnn
.
memory
(
init
=
context
)
current_state
=
pd
.
fc
(
input
=
[
current_word
,
pre_state
],
size
=
decoder_size
,
act
=
'tanh'
)
current_score
=
pd
.
fc
(
input
=
current_state
,
size
=
target_dict_dim
,
act
=
'softmax'
)
rnn
.
update_memory
(
pre_state
,
current_state
)
rnn
.
output
(
current_score
)
return
rnn
()
def
decode
(
context
,
is_sparse
):
init_state
=
context
array_len
=
pd
.
fill_constant
(
shape
=
[
1
],
dtype
=
'int64'
,
value
=
max_length
)
counter
=
pd
.
zeros
(
shape
=
[
1
],
dtype
=
'int64'
,
force_cpu
=
True
)
# fill the first element with init_state
state_array
=
pd
.
create_array
(
'float32'
)
pd
.
array_write
(
init_state
,
array
=
state_array
,
i
=
counter
)
# ids, scores as memory
ids_array
=
pd
.
create_array
(
'int64'
)
scores_array
=
pd
.
create_array
(
'float32'
)
init_ids
=
pd
.
data
(
name
=
"init_ids"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
2
)
init_scores
=
pd
.
data
(
name
=
"init_scores"
,
shape
=
[
1
],
dtype
=
"float32"
,
lod_level
=
2
)
pd
.
array_write
(
init_ids
,
array
=
ids_array
,
i
=
counter
)
pd
.
array_write
(
init_scores
,
array
=
scores_array
,
i
=
counter
)
cond
=
pd
.
less_than
(
x
=
counter
,
y
=
array_len
)
while_op
=
pd
.
While
(
cond
=
cond
)
with
while_op
.
block
():
pre_ids
=
pd
.
array_read
(
array
=
ids_array
,
i
=
counter
)
pre_state
=
pd
.
array_read
(
array
=
state_array
,
i
=
counter
)
pre_score
=
pd
.
array_read
(
array
=
scores_array
,
i
=
counter
)
# expand the lod of pre_state to be the same with pre_score
pre_state_expanded
=
pd
.
sequence_expand
(
pre_state
,
pre_score
)
pre_ids_emb
=
pd
.
embedding
(
input
=
pre_ids
,
size
=
[
dict_size
,
word_dim
],
dtype
=
'float32'
,
is_sparse
=
is_sparse
)
# use rnn unit to update rnn
current_state
=
pd
.
fc
(
input
=
[
pre_state_expanded
,
pre_ids_emb
],
size
=
decoder_size
,
act
=
'tanh'
)
current_state_with_lod
=
pd
.
lod_reset
(
x
=
current_state
,
y
=
pre_score
)
# use score to do beam search
current_score
=
pd
.
fc
(
input
=
current_state_with_lod
,
size
=
target_dict_dim
,
act
=
'softmax'
)
topk_scores
,
topk_indices
=
pd
.
topk
(
current_score
,
k
=
topk_size
)
selected_ids
,
selected_scores
=
pd
.
beam_search
(
pre_ids
,
topk_indices
,
topk_scores
,
beam_size
,
end_id
=
10
,
level
=
0
)
pd
.
increment
(
x
=
counter
,
value
=
1
,
in_place
=
True
)
# update the memories
pd
.
array_write
(
current_state
,
array
=
state_array
,
i
=
counter
)
pd
.
array_write
(
selected_ids
,
array
=
ids_array
,
i
=
counter
)
pd
.
array_write
(
selected_scores
,
array
=
scores_array
,
i
=
counter
)
pd
.
less_than
(
x
=
counter
,
y
=
array_len
,
cond
=
cond
)
translation_ids
,
translation_scores
=
pd
.
beam_search_decode
(
ids
=
ids_array
,
scores
=
scores_array
)
return
translation_ids
,
translation_scores
def
train_program
(
is_sparse
):
context
=
encoder
(
is_sparse
)
rnn_out
=
train_decoder
(
context
,
is_sparse
)
label
=
pd
.
data
(
name
=
"target_language_next_word"
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
cost
=
pd
.
cross_entropy
(
input
=
rnn_out
,
label
=
label
)
avg_cost
=
pd
.
mean
(
cost
)
return
avg_cost
def
optimizer_func
():
return
fluid
.
optimizer
.
Adagrad
(
learning_rate
=
1e-4
,
regularization
=
fluid
.
regularizer
.
L2DecayRegularizer
(
regularization_coeff
=
0.1
))
def
train
(
use_cuda
,
is_sparse
,
is_local
=
True
):
EPOCH_NUM
=
1
if
use_cuda
and
not
fluid
.
core
.
is_compiled_with_cuda
():
return
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
wmt14
.
train
(
dict_size
),
buf_size
=
1000
),
batch_size
=
batch_size
)
feed_order
=
[
'src_word_id'
,
'target_language_word'
,
'target_language_next_word'
]
def
event_handler
(
event
):
if
isinstance
(
event
,
fluid
.
EndStepEvent
):
if
event
.
step
%
10
==
0
:
print
(
'pass_id='
+
str
(
event
.
epoch
)
+
' batch='
+
str
(
event
.
step
))
if
event
.
step
==
20
:
trainer
.
stop
()
trainer
=
fluid
.
Trainer
(
train_func
=
partial
(
train_program
,
is_sparse
),
place
=
place
,
optimizer_func
=
optimizer_func
)
trainer
.
train
(
reader
=
train_reader
,
num_epochs
=
EPOCH_NUM
,
event_handler
=
event_handler
,
feed_order
=
feed_order
)
def
decode_main
(
use_cuda
,
is_sparse
):
if
use_cuda
and
not
fluid
.
core
.
is_compiled_with_cuda
():
return
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
context
=
encoder
(
is_sparse
)
translation_ids
,
translation_scores
=
decode
(
context
,
is_sparse
)
exe
=
Executor
(
place
)
exe
.
run
(
framework
.
default_startup_program
())
init_ids_data
=
np
.
array
([
1
for
_
in
range
(
batch_size
)],
dtype
=
'int64'
)
init_scores_data
=
np
.
array
(
[
1.
for
_
in
range
(
batch_size
)],
dtype
=
'float32'
)
init_ids_data
=
init_ids_data
.
reshape
((
batch_size
,
1
))
init_scores_data
=
init_scores_data
.
reshape
((
batch_size
,
1
))
init_lod
=
[
1
]
*
batch_size
init_lod
=
[
init_lod
,
init_lod
]
init_ids
=
fluid
.
create_lod_tensor
(
init_ids_data
,
init_lod
,
place
)
init_scores
=
fluid
.
create_lod_tensor
(
init_scores_data
,
init_lod
,
place
)
test_data
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
wmt14
.
test
(
dict_size
),
buf_size
=
1000
),
batch_size
=
batch_size
)
feed_order
=
[
'src_word_id'
]
feed_list
=
[
framework
.
default_main_program
().
global_block
().
var
(
var_name
)
for
var_name
in
feed_order
]
feeder
=
fluid
.
DataFeeder
(
feed_list
,
place
)
src_dict
,
trg_dict
=
paddle
.
dataset
.
wmt14
.
get_dict
(
dict_size
)
for
data
in
test_data
():
feed_data
=
map
(
lambda
x
:
[
x
[
0
]],
data
)
feed_dict
=
feeder
.
feed
(
feed_data
)
feed_dict
[
'init_ids'
]
=
init_ids
feed_dict
[
'init_scores'
]
=
init_scores
results
=
exe
.
run
(
framework
.
default_main_program
(),
feed
=
feed_dict
,
fetch_list
=
[
translation_ids
,
translation_scores
],
return_numpy
=
False
)
result_ids
=
np
.
array
(
results
[
0
])
result_scores
=
np
.
array
(
results
[
1
])
print
(
"Original sentence:"
)
print
(
" "
.
join
([
src_dict
[
w
]
for
w
in
feed_data
[
0
][
0
]]))
print
(
"Translated sentence:"
)
print
(
" "
.
join
([
trg_dict
[
w
]
for
w
in
result_ids
]))
print
(
"Corresponding score: "
,
result_scores
)
break
def
inference_program
():
is_sparse
=
False
context
=
encoder
(
is_sparse
)
translation_ids
,
translation_scores
=
decode
(
context
,
is_sparse
)
return
translation_ids
,
translation_scores
def
main
(
use_cuda
):
train
(
use_cuda
,
False
)
decode_main
(
False
,
False
)
# Beam Search does not support CUDA
if
__name__
==
'__main__'
:
main
()
use_cuda
=
os
.
getenv
(
'WITH_GPU'
,
'0'
)
!=
'0'
main
(
use_cuda
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录