@@ -508,7 +508,7 @@ You can use trained model to classify handwriting pictures of digits. The progra
### Generate input data to be inferred
`infer_3.png` is an example picture of number 3. Transform it into a numpy to match feed data format
[infer_3.png](https://github.com/PaddlePaddle/book/blob/develop/02.recognize_digits/image/infer_3.png) is an example picture of number 3. Transform it into a numpy to match feed data format
```python
...
...
@@ -547,7 +547,7 @@ with fluid.scope_guard(inference_scope):
lab=numpy.argsort(results)
# Print prediction result of infer_3.png
img=Image.open('image/infer_3.png')
img=Image.open(cur_dir+'image/infer_3.png')
plt.imshow(img)
print("Inference result of image/infer_3.png is: %d"%lab[0][0][-1])
@@ -550,7 +550,7 @@ You can use trained model to classify handwriting pictures of digits. The progra
### Generate input data to be inferred
`infer_3.png` is an example picture of number 3. Transform it into a numpy to match feed data format
[infer_3.png](https://github.com/PaddlePaddle/book/blob/develop/02.recognize_digits/image/infer_3.png) is an example picture of number 3. Transform it into a numpy to match feed data format
```python
...
...
@@ -589,7 +589,7 @@ with fluid.scope_guard(inference_scope):
lab = numpy.argsort(results)
# Print prediction result of infer_3.png
img=Image.open('image/infer_3.png')
img=Image.open(cur_dir + 'image/infer_3.png')
plt.imshow(img)
print("Inference result of image/infer_3.png is: %d" % lab[0][0][-1])