Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
book
提交
6c30c1ed
B
book
项目概览
PaddlePaddle
/
book
通知
17
Star
4
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
40
列表
看板
标记
里程碑
合并请求
37
Wiki
5
Wiki
分析
仓库
DevOps
项目成员
Pages
B
book
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
40
Issue
40
列表
看板
标记
里程碑
合并请求
37
合并请求
37
Pages
分析
分析
仓库分析
DevOps
Wiki
5
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6c30c1ed
编写于
6月 04, 2018
作者:
W
Wang,Jeff
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update the train.py as the base.
上级
fdcd800c
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
112 addition
and
114 deletion
+112
-114
03.image_classification/resnet.py
03.image_classification/resnet.py
+22
-24
03.image_classification/train.py
03.image_classification/train.py
+76
-75
03.image_classification/vgg.py
03.image_classification/vgg.py
+14
-15
未找到文件。
03.image_classification/resnet.py
浏览文件 @
6c30c1ed
...
...
@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle.
v2
as
paddle
import
paddle.
fluid
as
fluid
__all__
=
[
'resnet_cifar10'
]
...
...
@@ -22,37 +22,35 @@ def conv_bn_layer(input,
filter_size
,
stride
,
padding
,
act
ive_type
=
paddle
.
activation
.
Relu
()
,
ch_in
=
Non
e
):
tmp
=
paddle
.
layer
.
img_conv
(
act
=
'relu'
,
bias_attr
=
Fals
e
):
tmp
=
fluid
.
layers
.
conv2d
(
input
=
input
,
filter_size
=
filter_size
,
num_channels
=
ch_in
,
num_filters
=
ch_out
,
stride
=
stride
,
padding
=
padding
,
act
=
paddle
.
activation
.
Linear
()
,
bias_attr
=
False
)
return
paddle
.
layer
.
batch_norm
(
input
=
tmp
,
act
=
active_type
)
act
=
None
,
bias_attr
=
bias_attr
)
return
fluid
.
layers
.
batch_norm
(
input
=
tmp
,
act
=
act
)
def
shortcut
(
i
p
t
,
ch_in
,
ch_out
,
stride
):
def
shortcut
(
i
npu
t
,
ch_in
,
ch_out
,
stride
):
if
ch_in
!=
ch_out
:
return
conv_bn_layer
(
ipt
,
ch_out
,
1
,
stride
,
0
,
paddle
.
activation
.
Linear
())
return
conv_bn_layer
(
input
,
ch_out
,
1
,
stride
,
0
,
None
)
else
:
return
i
p
t
return
i
npu
t
def
basicblock
(
i
p
t
,
ch_in
,
ch_out
,
stride
):
tmp
=
conv_bn_layer
(
i
p
t
,
ch_out
,
3
,
stride
,
1
)
tmp
=
conv_bn_layer
(
tmp
,
ch_out
,
3
,
1
,
1
,
paddle
.
activation
.
Linear
()
)
short
=
shortcut
(
i
p
t
,
ch_in
,
ch_out
,
stride
)
return
paddle
.
layer
.
addto
(
input
=
[
tmp
,
short
],
act
=
paddle
.
activation
.
Relu
()
)
def
basicblock
(
i
npu
t
,
ch_in
,
ch_out
,
stride
):
tmp
=
conv_bn_layer
(
i
npu
t
,
ch_out
,
3
,
stride
,
1
)
tmp
=
conv_bn_layer
(
tmp
,
ch_out
,
3
,
1
,
1
,
act
=
None
,
bias_attr
=
True
)
short
=
shortcut
(
i
npu
t
,
ch_in
,
ch_out
,
stride
)
return
fluid
.
layers
.
elementwise_add
(
x
=
tmp
,
y
=
short
,
act
=
'relu'
)
def
layer_warp
(
block_func
,
i
p
t
,
ch_in
,
ch_out
,
count
,
stride
):
tmp
=
block_func
(
i
p
t
,
ch_in
,
ch_out
,
stride
)
def
layer_warp
(
block_func
,
i
npu
t
,
ch_in
,
ch_out
,
count
,
stride
):
tmp
=
block_func
(
i
npu
t
,
ch_in
,
ch_out
,
stride
)
for
i
in
range
(
1
,
count
):
tmp
=
block_func
(
tmp
,
ch_out
,
ch_out
,
1
)
return
tmp
...
...
@@ -63,11 +61,11 @@ def resnet_cifar10(ipt, depth=32):
assert
(
depth
-
2
)
%
6
==
0
n
=
(
depth
-
2
)
/
6
nStages
=
{
16
,
64
,
128
}
conv1
=
conv_bn_layer
(
ipt
,
ch_in
=
3
,
ch_out
=
16
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
)
conv1
=
conv_bn_layer
(
ipt
,
ch_out
=
16
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
)
res1
=
layer_warp
(
basicblock
,
conv1
,
16
,
16
,
n
,
1
)
res2
=
layer_warp
(
basicblock
,
res1
,
16
,
32
,
n
,
2
)
res3
=
layer_warp
(
basicblock
,
res2
,
32
,
64
,
n
,
2
)
pool
=
paddle
.
layer
.
img_pool
(
input
=
res3
,
pool_size
=
8
,
stride
=
1
,
pool_type
=
paddle
.
pooling
.
Avg
())
return
pool
pool
=
fluid
.
layers
.
pool2d
(
input
=
res3
,
pool_size
=
8
,
pool_type
=
'avg'
,
pool_stride
=
1
)
predict
=
fluid
.
layers
.
fc
(
input
=
pool
,
size
=
10
,
act
=
'softmax'
)
return
predict
03.image_classification/train.py
浏览文件 @
6c30c1ed
...
...
@@ -12,90 +12,80 @@
# See the License for the specific language governing permissions and
# limitations under the License
import
sys
,
os
from
__future__
import
print_function
import
paddle.v2
as
paddle
import
paddle
import
paddle.fluid
as
fluid
import
numpy
import
sys
from
vgg
import
vgg_bn_drop
from
resnet
import
resnet_cifar10
with_gpu
=
os
.
getenv
(
'WITH_GPU'
,
'0'
)
!=
'0'
def
inference_network
():
data_shape
=
[
3
,
32
,
32
]
images
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
data_shape
,
dtype
=
'float32'
)
predict
=
resnet_cifar10
(
images
,
32
)
# predict = vgg_bn_drop(images)
return
predict
def
main
():
datadim
=
3
*
32
*
32
classdim
=
10
# PaddlePaddle init
paddle
.
init
(
use_gpu
=
with_gpu
,
trainer_count
=
1
)
def
train_network
():
predict
=
inference_network
()
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
accuracy
=
fluid
.
layers
.
accuracy
(
input
=
predict
,
label
=
label
)
return
[
avg_cost
,
accuracy
]
image
=
paddle
.
layer
.
data
(
name
=
"image"
,
type
=
paddle
.
data_type
.
dense_vector
(
datadim
))
# Add neural network config
# option 1. resnet
# net = resnet_cifar10(image, depth=32)
# option 2. vgg
net
=
vgg_bn_drop
(
image
)
def
train
(
use_cuda
,
train_program
,
params_dirname
):
BATCH_SIZE
=
128
EPOCH_NUM
=
2
out
=
paddle
.
layer
.
fc
(
input
=
net
,
size
=
classdim
,
act
=
paddle
.
activation
.
Softmax
())
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
cifar
.
train10
(),
buf_size
=
50000
),
batch_size
=
BATCH_SIZE
)
lbl
=
paddle
.
layer
.
data
(
name
=
"label"
,
type
=
paddle
.
data_type
.
integer_value
(
classdim
))
cost
=
paddle
.
layer
.
classification_cost
(
input
=
out
,
label
=
lbl
)
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
cifar
.
test10
(),
batch_size
=
BATCH_SIZE
)
# Create parameters
parameters
=
paddle
.
parameters
.
create
(
cost
)
# Create optimizer
momentum_optimizer
=
paddle
.
optimizer
.
Momentum
(
momentum
=
0.9
,
regularization
=
paddle
.
optimizer
.
L2Regularization
(
rate
=
0.0002
*
128
),
learning_rate
=
0.1
/
128.0
,
learning_rate_decay_a
=
0.1
,
learning_rate_decay_b
=
50000
*
100
,
learning_rate_schedule
=
'discexp'
)
# Create trainer
trainer
=
paddle
.
trainer
.
SGD
(
cost
=
cost
,
parameters
=
parameters
,
update_equation
=
momentum_optimizer
)
# End batch and end pass event handler
def
event_handler
(
event
):
if
isinstance
(
event
,
paddle
.
event
.
EndIteration
):
if
event
.
batch_id
%
100
==
0
:
print
"
\n
Pass %d, Batch %d, Cost %f, %s"
%
(
event
.
pass_id
,
event
.
batch_id
,
event
.
cost
,
event
.
metrics
)
if
isinstance
(
event
,
fluid
.
EndStepEvent
):
if
event
.
step
%
100
==
0
:
print
(
"Pass %d, Batch %d, Cost %f, Acc %f"
%
(
event
.
step
,
event
.
epoch
,
event
.
metrics
[
0
],
event
.
metrics
[
1
]))
else
:
sys
.
stdout
.
write
(
'.'
)
sys
.
stdout
.
flush
()
if
isinstance
(
event
,
paddle
.
event
.
EndPass
):
# save parameters
with
open
(
'params_pass_%d.tar'
%
event
.
pass_id
,
'w'
)
as
f
:
trainer
.
save_parameter_to_tar
(
f
)
result
=
trainer
.
test
(
reader
=
paddle
.
batch
(
paddle
.
dataset
.
cifar
.
test10
(),
batch_size
=
128
),
feeding
=
{
'image'
:
0
,
'label'
:
1
})
print
"
\n
Test with Pass %d, %s"
%
(
event
.
pass_id
,
result
.
metrics
)
# Save the inference topology to protobuf.
inference_topology
=
paddle
.
topology
.
Topology
(
layers
=
out
)
with
open
(
"inference_topology.pkl"
,
'wb'
)
as
f
:
inference_topology
.
serialize_for_inference
(
f
)
if
isinstance
(
event
,
fluid
.
EndEpochEvent
):
avg_cost
,
accuracy
=
trainer
.
test
(
reader
=
test_reader
,
feed_order
=
[
'pixel'
,
'label'
])
print
(
'Loss {0:2.2}, Acc {1:2.2}'
.
format
(
avg_cost
,
accuracy
))
if
params_dirname
is
not
None
:
trainer
.
save_params
(
params_dirname
)
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
trainer
=
fluid
.
Trainer
(
train_func
=
train_program
,
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
),
place
=
place
)
trainer
.
train
(
reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
cifar
.
train10
(),
buf_size
=
50000
),
batch_size
=
128
),
num_passes
=
200
,
reader
=
train_reader
,
num_epochs
=
EPOCH_NUM
,
event_handler
=
event_handler
,
feeding
=
{
'image'
:
0
,
'label'
:
1
})
feed_order
=
[
'pixel'
,
'label'
])
def
infer
(
use_cuda
,
inference_program
,
params_dirname
=
None
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
inferencer
=
fluid
.
Inferencer
(
infer_func
=
inference_program
,
param_path
=
params_dirname
,
place
=
place
)
# inference
from
PIL
import
Image
...
...
@@ -105,6 +95,7 @@ def main():
def
load_image
(
file
):
im
=
Image
.
open
(
file
)
im
=
im
.
resize
((
32
,
32
),
Image
.
ANTIALIAS
)
im
=
np
.
array
(
im
).
astype
(
np
.
float32
)
# The storage order of the loaded image is W(widht),
# H(height), C(channel). PaddlePaddle requires
...
...
@@ -114,23 +105,33 @@ def main():
# image is B(Blue), G(green), R(Red). But PIL open
# image in RGB mode. It must swap the channel order.
im
=
im
[(
2
,
1
,
0
),
:,
:]
# BGR
im
=
im
.
flatten
()
#
im = im.flatten()
im
=
im
/
255.0
im
=
numpy
.
expand_dims
(
im
,
axis
=
0
)
return
im
test_data
=
[]
cur_dir
=
os
.
path
.
dirname
(
os
.
path
.
realpath
(
__file__
))
test_data
.
append
((
load_image
(
cur_dir
+
'/image/dog.png'
),
))
img
=
load_image
(
cur_dir
+
'/image/dog.png'
)
results
=
inferencer
.
infer
({
'pixel'
:
img
})
print
(
"infer results: "
,
results
)
def
main
(
use_cuda
):
if
use_cuda
and
not
fluid
.
core
.
is_compiled_with_cuda
():
return
save_path
=
"image_classification_resnet.inference.model"
# users can remove the comments and change the model name
# with open('params_pass_50.tar', 'r') as f:
# parameters = paddle.parameters.Parameters.from_tar(f)
train
(
use_cuda
=
use_cuda
,
train_program
=
train_network
,
params_dirname
=
save_path
)
probs
=
paddle
.
infer
(
output_layer
=
out
,
parameters
=
parameters
,
input
=
test_data
)
lab
=
np
.
argsort
(
-
probs
)
# probs and lab are the results of one batch data
print
"Label of image/dog.png is: %d"
%
lab
[
0
][
0
]
infer
(
use_cuda
=
use_cuda
,
inference_program
=
inference_network
,
params_dirname
=
save_path
)
if
__name__
==
'__main__'
:
main
()
main
(
use_cuda
=
False
)
03.image_classification/vgg.py
浏览文件 @
6c30c1ed
...
...
@@ -12,36 +12,35 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle.v2
as
paddle
import
paddle
import
paddle.fluid
as
fluid
__all__
=
[
'vgg_bn_drop'
]
def
vgg_bn_drop
(
input
):
def
conv_block
(
ipt
,
num_filter
,
groups
,
dropouts
,
num_channels
=
None
):
return
paddle
.
network
s
.
img_conv_group
(
def
conv_block
(
ipt
,
num_filter
,
groups
,
dropouts
):
return
fluid
.
net
s
.
img_conv_group
(
input
=
ipt
,
num_channels
=
num_channels
,
pool_size
=
2
,
pool_stride
=
2
,
conv_num_filter
=
[
num_filter
]
*
groups
,
conv_filter_size
=
3
,
conv_act
=
paddle
.
activation
.
Relu
()
,
conv_act
=
'relu'
,
conv_with_batchnorm
=
True
,
conv_batchnorm_drop_rate
=
dropouts
,
pool_type
=
paddle
.
pooling
.
Max
()
)
pool_type
=
'max'
)
conv1
=
conv_block
(
input
,
64
,
2
,
[
0.3
,
0
]
,
3
)
conv1
=
conv_block
(
input
,
64
,
2
,
[
0.3
,
0
])
conv2
=
conv_block
(
conv1
,
128
,
2
,
[
0.4
,
0
])
conv3
=
conv_block
(
conv2
,
256
,
3
,
[
0.4
,
0.4
,
0
])
conv4
=
conv_block
(
conv3
,
512
,
3
,
[
0.4
,
0.4
,
0
])
conv5
=
conv_block
(
conv4
,
512
,
3
,
[
0.4
,
0.4
,
0
])
drop
=
paddle
.
layer
.
dropout
(
input
=
conv5
,
dropout_rate
=
0.5
)
fc1
=
paddle
.
layer
.
fc
(
input
=
drop
,
size
=
512
,
act
=
paddle
.
activation
.
Linear
())
bn
=
paddle
.
layer
.
batch_norm
(
input
=
fc1
,
act
=
paddle
.
activation
.
Relu
(),
layer_attr
=
paddle
.
attr
.
Extra
(
drop_rate
=
0.5
))
fc2
=
paddle
.
layer
.
fc
(
input
=
bn
,
size
=
512
,
act
=
paddle
.
activation
.
Linear
())
return
fc2
drop
=
fluid
.
layers
.
dropout
(
x
=
conv5
,
dropout_prob
=
0.5
)
fc1
=
fluid
.
layers
.
fc
(
input
=
drop
,
size
=
512
,
act
=
None
)
bn
=
fluid
.
layers
.
batch_norm
(
input
=
fc1
,
act
=
'relu'
)
drop2
=
fluid
.
layers
.
dropout
(
x
=
bn
,
dropout_prob
=
0.5
)
fc2
=
fluid
.
layers
.
fc
(
input
=
drop2
,
size
=
512
,
act
=
None
)
predict
=
fluid
.
layers
.
fc
(
input
=
fc2
,
size
=
10
,
act
=
'softmax'
)
return
predict
\ No newline at end of file
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录