Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
book
提交
644ce599
B
book
项目概览
PaddlePaddle
/
book
通知
16
Star
4
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
40
列表
看板
标记
里程碑
合并请求
37
Wiki
5
Wiki
分析
仓库
DevOps
项目成员
Pages
B
book
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
40
Issue
40
列表
看板
标记
里程碑
合并请求
37
合并请求
37
Pages
分析
分析
仓库分析
DevOps
Wiki
5
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
644ce599
编写于
3月 09, 2017
作者:
H
hedaoyuan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
clean up understand_sentiment code
上级
2f6da124
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
0 addition
and
839 deletion
+0
-839
understand_sentiment/data/get_imdb.sh
understand_sentiment/data/get_imdb.sh
+0
-51
understand_sentiment/dataprovider.py
understand_sentiment/dataprovider.py
+0
-36
understand_sentiment/predict.py
understand_sentiment/predict.py
+0
-150
understand_sentiment/predict.sh
understand_sentiment/predict.sh
+0
-27
understand_sentiment/preprocess.py
understand_sentiment/preprocess.py
+0
-359
understand_sentiment/test.sh
understand_sentiment/test.sh
+0
-39
understand_sentiment/train.sh
understand_sentiment/train.sh
+0
-27
understand_sentiment/trainer_config.py
understand_sentiment/trainer_config.py
+0
-150
未找到文件。
understand_sentiment/data/get_imdb.sh
已删除
100755 → 0
浏览文件 @
2f6da124
#!/bin/bash
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set
-e
set
-x
DIR
=
"
$(
cd
"
$(
dirname
"
$0
"
)
"
;
pwd
-P
)
"
cd
$DIR
#download the dataset
echo
"Downloading aclImdb..."
#http://ai.stanford.edu/%7Eamaas/data/sentiment/
wget http://ai.stanford.edu/%7Eamaas/data/sentiment/aclImdb_v1.tar.gz
echo
"Downloading mosesdecoder..."
#https://github.com/moses-smt/mosesdecoder
wget https://github.com/moses-smt/mosesdecoder/archive/master.zip
#extract package
echo
"Unzipping..."
tar
-zxvf
aclImdb_v1.tar.gz
unzip master.zip
#move train and test set to imdb_data directory
#in order to process when traing
mkdir
-p
imdb/train
mkdir
-p
imdb/test
cp
-r
aclImdb/train/pos/ imdb/train/pos
cp
-r
aclImdb/train/neg/ imdb/train/neg
cp
-r
aclImdb/test/pos/ imdb/test/pos
cp
-r
aclImdb/test/neg/ imdb/test/neg
#remove compressed package
rm
aclImdb_v1.tar.gz
rm
master.zip
echo
"Done."
understand_sentiment/dataprovider.py
已删除
100755 → 0
浏览文件 @
2f6da124
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle.trainer.PyDataProvider2
import
*
def
hook
(
settings
,
dictionary
,
**
kwargs
):
settings
.
word_dict
=
dictionary
settings
.
input_types
=
{
'word'
:
integer_value_sequence
(
len
(
settings
.
word_dict
)),
'label'
:
integer_value
(
2
)
}
settings
.
logger
.
info
(
'dict len : %d'
%
(
len
(
settings
.
word_dict
)))
@
provider
(
init_hook
=
hook
)
def
process
(
settings
,
file_name
):
with
open
(
file_name
,
'r'
)
as
fdata
:
for
line_count
,
line
in
enumerate
(
fdata
):
label
,
comment
=
line
.
strip
().
split
(
'
\t\t
'
)
label
=
int
(
label
)
words
=
comment
.
split
()
word_slot
=
[
settings
.
word_dict
[
w
]
for
w
in
words
if
w
in
settings
.
word_dict
]
yield
{
'word'
:
word_slot
,
'label'
:
label
}
understand_sentiment/predict.py
已删除
100755 → 0
浏览文件 @
2f6da124
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
,
sys
import
numpy
as
np
from
optparse
import
OptionParser
from
py_paddle
import
swig_paddle
,
DataProviderConverter
from
paddle.trainer.PyDataProvider2
import
integer_value_sequence
from
paddle.trainer.config_parser
import
parse_config
"""
Usage: run following command to show help message.
python predict.py -h
"""
class
SentimentPrediction
():
def
__init__
(
self
,
train_conf
,
dict_file
,
model_dir
=
None
,
label_file
=
None
):
"""
train_conf: trainer configure.
dict_file: word dictionary file name.
model_dir: directory of model.
"""
self
.
train_conf
=
train_conf
self
.
dict_file
=
dict_file
self
.
word_dict
=
{}
self
.
dict_dim
=
self
.
load_dict
()
self
.
model_dir
=
model_dir
if
model_dir
is
None
:
self
.
model_dir
=
os
.
path
.
dirname
(
train_conf
)
self
.
label
=
None
if
label_file
is
not
None
:
self
.
load_label
(
label_file
)
conf
=
parse_config
(
train_conf
,
"is_predict=1"
)
self
.
network
=
swig_paddle
.
GradientMachine
.
createFromConfigProto
(
conf
.
model_config
)
self
.
network
.
loadParameters
(
self
.
model_dir
)
input_types
=
[
integer_value_sequence
(
self
.
dict_dim
)]
self
.
converter
=
DataProviderConverter
(
input_types
)
def
load_dict
(
self
):
"""
Load dictionary from self.dict_file.
"""
for
line_count
,
line
in
enumerate
(
open
(
self
.
dict_file
,
'r'
)):
self
.
word_dict
[
line
.
strip
().
split
(
'
\t
'
)[
0
]]
=
line_count
return
len
(
self
.
word_dict
)
def
load_label
(
self
,
label_file
):
"""
Load label.
"""
self
.
label
=
{}
for
v
in
open
(
label_file
,
'r'
):
self
.
label
[
int
(
v
.
split
(
'
\t
'
)[
1
])]
=
v
.
split
(
'
\t
'
)[
0
]
def
get_index
(
self
,
data
):
"""
transform word into integer index according to the dictionary.
"""
words
=
data
.
strip
().
split
()
word_slot
=
[
self
.
word_dict
[
w
]
for
w
in
words
if
w
in
self
.
word_dict
]
return
word_slot
def
batch_predict
(
self
,
data_batch
):
input
=
self
.
converter
(
data_batch
)
output
=
self
.
network
.
forwardTest
(
input
)
prob
=
output
[
0
][
"value"
]
labs
=
np
.
argsort
(
-
prob
)
for
idx
,
lab
in
enumerate
(
labs
):
if
self
.
label
is
None
:
print
(
"predicting label is %d"
%
(
lab
[
0
]))
else
:
print
(
"predicting label is %s"
%
(
self
.
label
[
lab
[
0
]]))
def
option_parser
():
usage
=
"python predict.py -n config -w model_dir -d dictionary -i input_file "
parser
=
OptionParser
(
usage
=
"usage: %s [options]"
%
usage
)
parser
.
add_option
(
"-n"
,
"--tconf"
,
action
=
"store"
,
dest
=
"train_conf"
,
help
=
"network config"
)
parser
.
add_option
(
"-d"
,
"--dict"
,
action
=
"store"
,
dest
=
"dict_file"
,
help
=
"dictionary file"
)
parser
.
add_option
(
"-b"
,
"--label"
,
action
=
"store"
,
dest
=
"label"
,
default
=
None
,
help
=
"dictionary file"
)
parser
.
add_option
(
"-c"
,
"--batch_size"
,
type
=
"int"
,
action
=
"store"
,
dest
=
"batch_size"
,
default
=
1
,
help
=
"the batch size for prediction"
)
parser
.
add_option
(
"-w"
,
"--model"
,
action
=
"store"
,
dest
=
"model_path"
,
default
=
None
,
help
=
"model path"
)
return
parser
.
parse_args
()
def
main
():
options
,
args
=
option_parser
()
train_conf
=
options
.
train_conf
batch_size
=
options
.
batch_size
dict_file
=
options
.
dict_file
model_path
=
options
.
model_path
label
=
options
.
label
swig_paddle
.
initPaddle
(
"--use_gpu=0"
)
predict
=
SentimentPrediction
(
train_conf
,
dict_file
,
model_path
,
label
)
batch
=
[]
for
line
in
sys
.
stdin
:
batch
.
append
([
predict
.
get_index
(
line
)])
if
len
(
batch
)
==
batch_size
:
predict
.
batch_predict
(
batch
)
batch
=
[]
if
len
(
batch
)
>
0
:
predict
.
batch_predict
(
batch
)
if
__name__
==
'__main__'
:
main
()
understand_sentiment/predict.sh
已删除
100755 → 0
浏览文件 @
2f6da124
#!/bin/bash
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set
-e
#Note the default model is pass-00002, you shold make sure the model path
#exists or change the mode path.
model
=
model_output/pass-00002/
config
=
trainer_config.py
label
=
data/pre-imdb/labels.list
cat
./data/aclImdb/test/pos/10007_10.txt | python predict.py
\
--tconf
=
$config
\
--model
=
$model
\
--label
=
$label
\
--dict
=
./data/pre-imdb/dict.txt
\
--batch_size
=
1
understand_sentiment/preprocess.py
已删除
100755 → 0
浏览文件 @
2f6da124
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
sys
import
random
import
operator
import
numpy
as
np
from
subprocess
import
Popen
,
PIPE
from
os.path
import
join
as
join_path
from
optparse
import
OptionParser
from
paddle.utils.preprocess_util
import
*
"""
Usage: run following command to show help message.
python preprocess.py -h
"""
def
save_dict
(
dict
,
filename
,
is_reverse
=
True
):
"""
Save dictionary into file.
dict: input dictionary.
filename: output file name, string.
is_reverse: True, descending order by value.
False, ascending order by value.
"""
f
=
open
(
filename
,
'w'
)
for
k
,
v
in
sorted
(
dict
.
items
(),
key
=
operator
.
itemgetter
(
1
),
\
reverse
=
is_reverse
):
f
.
write
(
'%s
\t
%s
\n
'
%
(
k
,
v
))
f
.
close
()
def
tokenize
(
sentences
):
"""
Use tokenizer.perl to tokenize input sentences.
tokenizer.perl is tool of Moses.
sentences : a list of input sentences.
return: a list of processed text.
"""
dir
=
'./data/mosesdecoder-master/scripts/tokenizer/tokenizer.perl'
tokenizer_cmd
=
[
dir
,
'-l'
,
'en'
,
'-q'
,
'-'
]
assert
isinstance
(
sentences
,
list
)
text
=
"
\n
"
.
join
(
sentences
)
tokenizer
=
Popen
(
tokenizer_cmd
,
stdin
=
PIPE
,
stdout
=
PIPE
)
tok_text
,
_
=
tokenizer
.
communicate
(
text
)
toks
=
tok_text
.
split
(
'
\n
'
)[:
-
1
]
return
toks
def
read_lines
(
path
):
"""
path: String, file path.
return a list of sequence.
"""
seqs
=
[]
with
open
(
path
,
'r'
)
as
f
:
for
line
in
f
.
readlines
():
line
=
line
.
strip
()
if
len
(
line
):
seqs
.
append
(
line
)
return
seqs
class
SentimentDataSetCreate
():
"""
A class to process data for sentiment analysis task.
"""
def
__init__
(
self
,
data_path
,
output_path
,
use_okenizer
=
True
,
multi_lines
=
False
):
"""
data_path: string, traing and testing dataset path
output_path: string, output path, store processed dataset
multi_lines: whether a file has multi lines.
In order to shuffle fully, it needs to read all files into
memory, then shuffle them if one file has multi lines.
"""
self
.
output_path
=
output_path
self
.
data_path
=
data_path
self
.
train_dir
=
'train'
self
.
test_dir
=
'test'
self
.
train_list
=
"train.list"
self
.
test_list
=
"test.list"
self
.
label_list
=
"labels.list"
self
.
classes_num
=
0
self
.
batch_size
=
50000
self
.
batch_dir
=
'batches'
self
.
dict_file
=
"dict.txt"
self
.
dict_with_test
=
False
self
.
dict_size
=
0
self
.
word_count
=
{}
self
.
tokenizer
=
use_okenizer
self
.
overwrite
=
False
self
.
multi_lines
=
multi_lines
self
.
train_dir
=
join_path
(
data_path
,
self
.
train_dir
)
self
.
test_dir
=
join_path
(
data_path
,
self
.
test_dir
)
self
.
train_list
=
join_path
(
output_path
,
self
.
train_list
)
self
.
test_list
=
join_path
(
output_path
,
self
.
test_list
)
self
.
label_list
=
join_path
(
output_path
,
self
.
label_list
)
self
.
dict_file
=
join_path
(
output_path
,
self
.
dict_file
)
def
data_list
(
self
,
path
):
"""
create dataset from path
path: data path
return: data list
"""
label_set
=
get_label_set_from_dir
(
path
)
data
=
[]
for
lab_name
in
label_set
.
keys
():
file_paths
=
list_files
(
join_path
(
path
,
lab_name
))
for
p
in
file_paths
:
data
.
append
({
"label"
:
label_set
[
lab_name
],
\
"seq_path"
:
p
})
return
data
,
label_set
def
create_dict
(
self
,
data
):
"""
create dict for input data.
data: list, [sequence, sequnce, ...]
"""
for
seq
in
data
:
for
w
in
seq
.
strip
().
lower
().
split
():
if
w
not
in
self
.
word_count
:
self
.
word_count
[
w
]
=
1
else
:
self
.
word_count
[
w
]
+=
1
def
create_dataset
(
self
):
"""
create file batches and dictionary of train data set.
If the self.overwrite is false and train.list already exists in
self.output_path, this function will not create and save file
batches from the data set path.
return: dictionary size, class number.
"""
out_path
=
self
.
output_path
if
out_path
and
not
os
.
path
.
exists
(
out_path
):
os
.
makedirs
(
out_path
)
# If self.overwrite is false or self.train_list has existed,
# it will not process dataset.
if
not
(
self
.
overwrite
or
not
os
.
path
.
exists
(
self
.
train_list
)):
print
"%s already exists."
%
self
.
train_list
return
# Preprocess train data.
train_data
,
train_lab_set
=
self
.
data_list
(
self
.
train_dir
)
print
"processing train set..."
file_lists
=
self
.
save_data
(
train_data
,
"train"
,
self
.
batch_size
,
True
,
True
)
save_list
(
file_lists
,
self
.
train_list
)
# If have test data path, preprocess test data.
if
os
.
path
.
exists
(
self
.
test_dir
):
test_data
,
test_lab_set
=
self
.
data_list
(
self
.
test_dir
)
assert
(
train_lab_set
==
test_lab_set
)
print
"processing test set..."
file_lists
=
self
.
save_data
(
test_data
,
"test"
,
self
.
batch_size
,
False
,
self
.
dict_with_test
)
save_list
(
file_lists
,
self
.
test_list
)
# save labels set.
save_dict
(
train_lab_set
,
self
.
label_list
,
False
)
self
.
classes_num
=
len
(
train_lab_set
.
keys
())
# save dictionary.
save_dict
(
self
.
word_count
,
self
.
dict_file
,
True
)
self
.
dict_size
=
len
(
self
.
word_count
)
def
save_data
(
self
,
data
,
prefix
=
""
,
batch_size
=
50000
,
is_shuffle
=
False
,
build_dict
=
False
):
"""
Create batches for a Dataset object.
data: the Dataset object to process.
prefix: the prefix of each batch.
batch_size: number of data in each batch.
build_dict: whether to build dictionary for data
return: list of batch names
"""
if
is_shuffle
and
self
.
multi_lines
:
return
self
.
save_data_multi_lines
(
data
,
prefix
,
batch_size
,
build_dict
)
if
is_shuffle
:
random
.
shuffle
(
data
)
num_batches
=
int
(
math
.
ceil
(
len
(
data
)
/
float
(
batch_size
)))
batch_names
=
[]
for
i
in
range
(
num_batches
):
batch_name
=
join_path
(
self
.
output_path
,
"%s_part_%03d"
%
(
prefix
,
i
))
begin
=
i
*
batch_size
end
=
min
((
i
+
1
)
*
batch_size
,
len
(
data
))
# read a batch of data
label_list
,
data_list
=
self
.
get_data_list
(
begin
,
end
,
data
)
if
build_dict
:
self
.
create_dict
(
data_list
)
self
.
save_file
(
label_list
,
data_list
,
batch_name
)
batch_names
.
append
(
batch_name
)
return
batch_names
def
get_data_list
(
self
,
begin
,
end
,
data
):
"""
begin: int, begining index of data.
end: int, ending index of data.
data: a list of {"seq_path": seqquence path, "label": label index}
return a list of label and a list of sequence.
"""
label_list
=
[]
data_list
=
[]
for
j
in
range
(
begin
,
end
):
seqs
=
read_lines
(
data
[
j
][
"seq_path"
])
lab
=
int
(
data
[
j
][
"label"
])
#File may have multiple lines.
for
seq
in
seqs
:
data_list
.
append
(
seq
)
label_list
.
append
(
lab
)
if
self
.
tokenizer
:
data_list
=
tokenize
(
data_list
)
return
label_list
,
data_list
def
save_data_multi_lines
(
self
,
data
,
prefix
=
""
,
batch_size
=
50000
,
build_dict
=
False
):
"""
In order to shuffle fully, there is no need to load all data if
each file only contains one sample, it only needs to shuffle list
of file name. But one file contains multi lines, each line is one
sample. It needs to read all data into memory to shuffle fully.
This interface is mainly for data containning multi lines in each
file, which consumes more memory if there is a great mount of data.
data: the Dataset object to process.
prefix: the prefix of each batch.
batch_size: number of data in each batch.
build_dict: whether to build dictionary for data
return: list of batch names
"""
assert
self
.
multi_lines
label_list
=
[]
data_list
=
[]
# read all data
label_list
,
data_list
=
self
.
get_data_list
(
0
,
len
(
data
),
data
)
if
build_dict
:
self
.
create_dict
(
data_list
)
length
=
len
(
label_list
)
perm_list
=
np
.
array
([
i
for
i
in
xrange
(
length
)])
random
.
shuffle
(
perm_list
)
num_batches
=
int
(
math
.
ceil
(
length
/
float
(
batch_size
)))
batch_names
=
[]
for
i
in
range
(
num_batches
):
batch_name
=
join_path
(
self
.
output_path
,
"%s_part_%03d"
%
(
prefix
,
i
))
begin
=
i
*
batch_size
end
=
min
((
i
+
1
)
*
batch_size
,
length
)
sub_label
=
[
label_list
[
perm_list
[
i
]]
for
i
in
range
(
begin
,
end
)]
sub_data
=
[
data_list
[
perm_list
[
i
]]
for
i
in
range
(
begin
,
end
)]
self
.
save_file
(
sub_label
,
sub_data
,
batch_name
)
batch_names
.
append
(
batch_name
)
return
batch_names
def
save_file
(
self
,
label_list
,
data_list
,
filename
):
"""
Save data into file.
label_list: a list of int value.
data_list: a list of sequnece.
filename: output file name.
"""
f
=
open
(
filename
,
'w'
)
print
"saving file: %s"
%
filename
for
lab
,
seq
in
zip
(
label_list
,
data_list
):
f
.
write
(
'%s
\t\t
%s
\n
'
%
(
lab
,
seq
))
f
.
close
()
def
option_parser
():
parser
=
OptionParser
(
usage
=
"usage: python preprcoess.py "
\
"-i data_dir [options]"
)
parser
.
add_option
(
"-i"
,
"--data"
,
action
=
"store"
,
dest
=
"input"
,
help
=
"Input data directory."
)
parser
.
add_option
(
"-o"
,
"--output"
,
action
=
"store"
,
dest
=
"output"
,
default
=
None
,
help
=
"Output directory."
)
parser
.
add_option
(
"-t"
,
"--tokenizer"
,
action
=
"store"
,
dest
=
"use_tokenizer"
,
default
=
True
,
help
=
"Whether to use tokenizer."
)
parser
.
add_option
(
"-m"
,
"--multi_lines"
,
action
=
"store"
,
dest
=
"multi_lines"
,
default
=
False
,
help
=
"If input text files have multi lines and they "
\
"need to be shuffled, you should set -m True,"
)
return
parser
.
parse_args
()
def
main
():
options
,
args
=
option_parser
()
data_dir
=
options
.
input
output_dir
=
options
.
output
use_tokenizer
=
options
.
use_tokenizer
multi_lines
=
options
.
multi_lines
if
output_dir
is
None
:
outname
=
os
.
path
.
basename
(
options
.
input
)
output_dir
=
join_path
(
os
.
path
.
dirname
(
data_dir
),
'pre-'
+
outname
)
data_creator
=
SentimentDataSetCreate
(
data_dir
,
output_dir
,
use_tokenizer
,
multi_lines
)
data_creator
.
create_dataset
()
if
__name__
==
'__main__'
:
main
()
understand_sentiment/test.sh
已删除
100755 → 0
浏览文件 @
2f6da124
#!/bin/bash
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set
-e
function
get_best_pass
()
{
cat
$1
|
grep
-Pzo
'Test .*\n.*pass-.*'
|
\
sed
-r
'N;s/Test.* classification_error_evaluator=([0-9]+\.[0-9]+).*\n.*pass-([0-9]+)/\1 \2/g'
|
\
sort
-n
|
head
-n
1
}
log
=
train.log
LOG
=
`
get_best_pass
$log
`
LOG
=(
${
LOG
}
)
evaluate_pass
=
"model_output/pass-
${
LOG
[1]
}
"
echo
'evaluating from pass '
$evaluate_pass
model_list
=
./model.list
touch
$model_list
|
echo
$evaluate_pass
>
$model_list
net_conf
=
trainer_config.py
paddle train
--config
=
$net_conf
\
--model_list
=
$model_list
\
--job
=
test
\
--use_gpu
=
false
\
--trainer_count
=
4
\
--config_args
=
is_test
=
1
\
2>&1 |
tee
'test.log'
understand_sentiment/train.sh
已删除
100755 → 0
浏览文件 @
2f6da124
#!/bin/bash
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set
-e
paddle train
--config
=
trainer_config.py
\
--save_dir
=
./model_output
\
--job
=
train
\
--use_gpu
=
false
\
--trainer_count
=
4
\
--num_passes
=
10
\
--log_period
=
10
\
--dot_period
=
20
\
--show_parameter_stats_period
=
100
\
--test_all_data_in_one_period
=
1
\
2>&1 |
tee
'train.log'
understand_sentiment/trainer_config.py
已删除
100644 → 0
浏览文件 @
2f6da124
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
os.path
import
join
as
join_path
from
paddle.trainer_config_helpers
import
*
# whether this config is used for test
is_test
=
get_config_arg
(
'is_test'
,
bool
,
False
)
# whether this config is used for prediction
is_predict
=
get_config_arg
(
'is_predict'
,
bool
,
False
)
data_dir
=
"./data/pre-imdb"
train_list
=
"train.list"
test_list
=
"test.list"
dict_file
=
"dict.txt"
dict_dim
=
len
(
open
(
join_path
(
data_dir
,
"dict.txt"
)).
readlines
())
class_dim
=
len
(
open
(
join_path
(
data_dir
,
'labels.list'
)).
readlines
())
if
not
is_predict
:
train_list
=
join_path
(
data_dir
,
train_list
)
test_list
=
join_path
(
data_dir
,
test_list
)
dict_file
=
join_path
(
data_dir
,
dict_file
)
train_list
=
train_list
if
not
is_test
else
None
word_dict
=
dict
()
with
open
(
dict_file
,
'r'
)
as
f
:
for
i
,
line
in
enumerate
(
open
(
dict_file
,
'r'
)):
word_dict
[
line
.
split
(
'
\t
'
)[
0
]]
=
i
define_py_data_sources2
(
train_list
,
test_list
,
module
=
"dataprovider"
,
obj
=
"process"
,
args
=
{
'dictionary'
:
word_dict
})
################## Algorithm Config #####################
settings
(
batch_size
=
128
,
learning_rate
=
2e-3
,
learning_method
=
AdamOptimizer
(),
average_window
=
0.5
,
regularization
=
L2Regularization
(
8e-4
),
gradient_clipping_threshold
=
25
)
#################### Network Config ######################
def
convolution_net
(
input_dim
,
class_dim
=
2
,
emb_dim
=
128
,
hid_dim
=
128
,
is_predict
=
False
):
data
=
data_layer
(
"word"
,
input_dim
)
emb
=
embedding_layer
(
input
=
data
,
size
=
emb_dim
)
conv_3
=
sequence_conv_pool
(
input
=
emb
,
context_len
=
3
,
hidden_size
=
hid_dim
)
conv_4
=
sequence_conv_pool
(
input
=
emb
,
context_len
=
4
,
hidden_size
=
hid_dim
)
output
=
fc_layer
(
input
=
[
conv_3
,
conv_4
],
size
=
class_dim
,
act
=
SoftmaxActivation
())
if
not
is_predict
:
lbl
=
data_layer
(
"label"
,
1
)
outputs
(
classification_cost
(
input
=
output
,
label
=
lbl
))
else
:
outputs
(
output
)
def
stacked_lstm_net
(
input_dim
,
class_dim
=
2
,
emb_dim
=
128
,
hid_dim
=
512
,
stacked_num
=
3
,
is_predict
=
False
):
"""
A Wrapper for sentiment classification task.
This network uses bi-directional recurrent network,
consisting three LSTM layers. This configure is referred to
the paper as following url, but use fewer layrs.
http://www.aclweb.org/anthology/P15-1109
input_dim: here is word dictionary dimension.
class_dim: number of categories.
emb_dim: dimension of word embedding.
hid_dim: dimension of hidden layer.
stacked_num: number of stacked lstm-hidden layer.
is_predict: is predicting or not.
Some layers is not needed in network when predicting.
"""
assert
stacked_num
%
2
==
1
layer_attr
=
ExtraLayerAttribute
(
drop_rate
=
0.5
)
fc_para_attr
=
ParameterAttribute
(
learning_rate
=
1e-3
)
lstm_para_attr
=
ParameterAttribute
(
initial_std
=
0.
,
learning_rate
=
1.
)
para_attr
=
[
fc_para_attr
,
lstm_para_attr
]
bias_attr
=
ParameterAttribute
(
initial_std
=
0.
,
l2_rate
=
0.
)
relu
=
ReluActivation
()
linear
=
LinearActivation
()
data
=
data_layer
(
"word"
,
input_dim
)
emb
=
embedding_layer
(
input
=
data
,
size
=
emb_dim
)
fc1
=
fc_layer
(
input
=
emb
,
size
=
hid_dim
,
act
=
linear
,
bias_attr
=
bias_attr
)
lstm1
=
lstmemory
(
input
=
fc1
,
act
=
relu
,
bias_attr
=
bias_attr
,
layer_attr
=
layer_attr
)
inputs
=
[
fc1
,
lstm1
]
for
i
in
range
(
2
,
stacked_num
+
1
):
fc
=
fc_layer
(
input
=
inputs
,
size
=
hid_dim
,
act
=
linear
,
param_attr
=
para_attr
,
bias_attr
=
bias_attr
)
lstm
=
lstmemory
(
input
=
fc
,
reverse
=
(
i
%
2
)
==
0
,
act
=
relu
,
bias_attr
=
bias_attr
,
layer_attr
=
layer_attr
)
inputs
=
[
fc
,
lstm
]
fc_last
=
pooling_layer
(
input
=
inputs
[
0
],
pooling_type
=
MaxPooling
())
lstm_last
=
pooling_layer
(
input
=
inputs
[
1
],
pooling_type
=
MaxPooling
())
output
=
fc_layer
(
input
=
[
fc_last
,
lstm_last
],
size
=
class_dim
,
act
=
SoftmaxActivation
(),
bias_attr
=
bias_attr
,
param_attr
=
para_attr
)
if
is_predict
:
outputs
(
output
)
else
:
outputs
(
classification_cost
(
input
=
output
,
label
=
data_layer
(
'label'
,
1
)))
stacked_lstm_net
(
dict_dim
,
class_dim
=
class_dim
,
stacked_num
=
3
,
is_predict
=
is_predict
)
# convolution_net(dict_dim, class_dim=class_dim, is_predict=is_predict)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录