Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
book
提交
53b07468
B
book
项目概览
PaddlePaddle
/
book
通知
16
Star
4
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
40
列表
看板
标记
里程碑
合并请求
37
Wiki
5
Wiki
分析
仓库
DevOps
项目成员
Pages
B
book
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
40
Issue
40
列表
看板
标记
里程碑
合并请求
37
合并请求
37
Pages
分析
分析
仓库分析
DevOps
Wiki
5
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
53b07468
编写于
12月 05, 2018
作者:
L
lujun
提交者:
GitHub
12月 05, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #646 from junjun315/03-stuff
update to low level api--03 image-classification
上级
aaefadae
6d8aade8
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
365 addition
and
212 deletion
+365
-212
03.image_classification/README.cn.md
03.image_classification/README.cn.md
+123
-60
03.image_classification/index.cn.html
03.image_classification/index.cn.html
+123
-60
03.image_classification/resnet.py
03.image_classification/resnet.py
+0
-11
03.image_classification/train.py
03.image_classification/train.py
+119
-67
03.image_classification/vgg.py
03.image_classification/vgg.py
+0
-14
未找到文件。
03.image_classification/README.cn.md
浏览文件 @
53b07468
...
@@ -169,15 +169,7 @@ import paddle.fluid as fluid
...
@@ -169,15 +169,7 @@ import paddle.fluid as fluid
import
numpy
import
numpy
import
sys
import
sys
from
__future__
import
print_function
from
__future__
import
print_function
try
:
from
paddle.fluid.contrib.trainer
import
*
from
paddle.fluid.contrib.inferencer
import
*
except
ImportError
:
print
(
"In the fluid 1.0, the trainer and inferencer are moving to paddle.fluid.contrib"
,
file
=
sys
.
stderr
)
from
paddle.fluid.trainer
import
*
from
paddle.fluid.inferencer
import
*
```
```
本教程中我们提供了VGG和ResNet两个模型的配置。
本教程中我们提供了VGG和ResNet两个模型的配置。
...
@@ -348,19 +340,6 @@ def optimizer_program():
...
@@ -348,19 +340,6 @@ def optimizer_program():
## 训练模型
## 训练模型
### Trainer 配置
现在,我们需要配置
`Trainer`
。
`Trainer`
需要接受训练程序
`train_program`
,
`place`
和优化器
`optimizer_func`
。
```
python
use_cuda
=
False
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
trainer
=
Trainer
(
train_func
=
train_program
,
optimizer_func
=
optimizer_program
,
place
=
place
)
```
### Data Feeders 配置
### Data Feeders 配置
`cifar.train10()`
每次产生一条样本,在完成shuffle和batch之后,作为训练的输入。
`cifar.train10()`
每次产生一条样本,在完成shuffle和batch之后,作为训练的输入。
...
@@ -379,50 +358,104 @@ test_reader = paddle.batch(
...
@@ -379,50 +358,104 @@ test_reader = paddle.batch(
paddle
.
dataset
.
cifar
.
test10
(),
batch_size
=
BATCH_SIZE
)
paddle
.
dataset
.
cifar
.
test10
(),
batch_size
=
BATCH_SIZE
)
```
```
### Event Handler
### Trainer 程序的实现
我们需要为训练过程制定一个main_program, 同样的,还需要为测试程序配置一个test_program。定义训练的
`place`
,并使用先前定义的优化器
`optimizer_func`
。
可以使用
`event_handler`
回调函数来观察训练过程,或进行测试等, 该回调函数是
`trainer.train`
函数里设定。
`event_handler`
用来在训练过程中输出文本日志
```
python
```
python
params_dirname
=
"image_classification_resnet.inference.model"
use_cuda
=
False
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
# event handler to track training and testing process
feed_order
=
[
'pixel'
,
'label'
]
def
event_handler
(
event
):
if
isinstance
(
event
,
EndStepEvent
):
main_program
=
fluid
.
default_main_program
()
if
event
.
step
%
100
==
0
:
star_program
=
fluid
.
default_startup_program
()
print
(
"
\n
Pass %d, Batch %d, Cost %f, Acc %f"
%
(
event
.
step
,
event
.
epoch
,
event
.
metrics
[
0
],
predict
=
inference_program
()
event
.
metrics
[
1
]))
avg_cost
,
acc
=
train_program
(
predict
)
else
:
sys
.
stdout
.
write
(
'.'
)
# Test program
sys
.
stdout
.
flush
()
test_program
=
main_program
.
clone
(
for_test
=
True
)
optimizer
=
optimizer_program
()
optimizer
.
minimize
(
avg_cost
)
exe
=
fluid
.
Executor
(
place
)
EPOCH_NUM
=
2
# For training test cost
def
train_test
(
program
,
reader
):
count
=
0
feed_var_list
=
[
program
.
global_block
().
var
(
var_name
)
for
var_name
in
feed_order
]
feeder_test
=
fluid
.
DataFeeder
(
feed_list
=
feed_var_list
,
place
=
place
)
test_exe
=
fluid
.
Executor
(
place
)
accumulated
=
len
([
avg_cost
,
acc
])
*
[
0
]
for
tid
,
test_data
in
enumerate
(
reader
()):
avg_cost_np
=
test_exe
.
run
(
program
=
program
,
feed
=
feeder_test
.
feed
(
test_data
),
fetch_list
=
[
avg_cost
,
acc
])
accumulated
=
[
x
[
0
]
+
x
[
1
][
0
]
for
x
in
zip
(
accumulated
,
avg_cost_np
)]
count
+=
1
return
[
x
/
count
for
x
in
accumulated
]
```
if
isinstance
(
event
,
EndEpochEvent
):
### 训练主循环以及过程输出
# Test against with the test dataset to get accuracy.
avg_cost
,
accuracy
=
trainer
.
test
(
reader
=
test_reader
,
feed_order
=
[
'pixel'
,
'label'
])
print
(
'
\n
Test with Pass {0}, Loss {1:2.2}, Acc {2:2.2}'
.
format
(
event
.
epoch
,
avg_cost
,
accuracy
))
在接下来的主训练循环中,我们将通过输出来来观察训练过程,或进行测试等。
也可以使用
`plot`
, 利用回调数据来打点画图:
```
python
params_dirname
=
"image_classification_resnet.inference.model"
from
paddle.utils.plot
import
Ploter
train_prompt
=
"Train cost"
test_prompt
=
"Test cost"
plot_cost
=
Ploter
(
test_prompt
,
train_prompt
)
# main train loop.
def
train_loop
():
feed_var_list_loop
=
[
main_program
.
global_block
().
var
(
var_name
)
for
var_name
in
feed_order
]
feeder
=
fluid
.
DataFeeder
(
feed_list
=
feed_var_list_loop
,
place
=
place
)
exe
.
run
(
star_program
)
step
=
0
for
pass_id
in
range
(
EPOCH_NUM
):
for
step_id
,
data_train
in
enumerate
(
train_reader
()):
avg_loss_value
=
exe
.
run
(
main_program
,
feed
=
feeder
.
feed
(
data_train
),
fetch_list
=
[
avg_cost
,
acc
])
if
step
%
1
==
0
:
plot_cost
.
append
(
train_prompt
,
step
,
avg_loss_value
[
0
])
plot_cost
.
plot
()
step
+=
1
avg_cost_test
,
accuracy_test
=
train_test
(
test_program
,
reader
=
test_reader
)
plot_cost
.
append
(
test_prompt
,
step
,
avg_cost_test
)
# save parameters
# save parameters
if
params_dirname
is
not
None
:
if
params_dirname
is
not
None
:
trainer
.
save_params
(
params_dirname
)
fluid
.
io
.
save_inference_model
(
params_dirname
,
[
"pixel"
],
[
predict
],
exe
)
```
```
### 训练
### 训练
通过
`trainer
.train`
函数训练:
通过
`trainer
_loop`
函数训练, 这里我们只进行了2个Epoch, 一般我们在实际应用上会执行上百个以上Epoch
**注意:**
CPU,每个 Epoch 将花费大约15~20分钟。这部分可能需要一段时间。请随意修改代码,在GPU上运行测试,以提高训练速度。
**注意:**
CPU,每个 Epoch 将花费大约15~20分钟。这部分可能需要一段时间。请随意修改代码,在GPU上运行测试,以提高训练速度。
```
python
```
python
trainer
.
train
(
train_loop
()
reader
=
train_reader
,
num_epochs
=
2
,
event_handler
=
event_handler
,
feed_order
=
[
'pixel'
,
'label'
])
```
```
一轮训练log示例如下所示,经过1个pass, 训练集上平均 Accuracy 为0.59 ,测试集上平均 Accuracy 为0.6 。
一轮训练log示例如下所示,经过1个pass, 训练集上平均 Accuracy 为0.59 ,测试集上平均 Accuracy 为0.6 。
...
@@ -448,23 +481,22 @@ Test with Pass 0, Loss 1.1, Acc 0.6
...
@@ -448,23 +481,22 @@ Test with Pass 0, Loss 1.1, Acc 0.6
## 应用模型
## 应用模型
可以使用训练好的模型对图片进行分类,下面程序展示了如何
使用
`fluid.contrib.inferencer.Inferencer`
接口进行推断,可以打开注释,更改加载的模型
。
可以使用训练好的模型对图片进行分类,下面程序展示了如何
加载已经训练好的网络和参数进行推断
。
### 生成预测输入数据
### 生成预测输入数据
`dog.png`
is an example image of a dog. Turn it into an numpy array to match the data feeder format
.
`dog.png`
是一张小狗的图片. 我们将它转换成
`numpy`
数组以满足
`feeder`
的格式
.
```
python
```
python
# Prepare testing data.
# Prepare testing data.
from
PIL
import
Image
from
PIL
import
Image
import
numpy
as
np
import
os
import
os
def
load_image
(
file
):
def
load_image
(
file
):
im
=
Image
.
open
(
file
)
im
=
Image
.
open
(
file
)
im
=
im
.
resize
((
32
,
32
),
Image
.
ANTIALIAS
)
im
=
im
.
resize
((
32
,
32
),
Image
.
ANTIALIAS
)
im
=
n
p
.
array
(
im
).
astype
(
np
.
float32
)
im
=
n
umpy
.
array
(
im
).
astype
(
numpy
.
float32
)
# The storage order of the loaded image is W(width),
# The storage order of the loaded image is W(width),
# H(height), C(channel). PaddlePaddle requires
# H(height), C(channel). PaddlePaddle requires
# the CHW order, so transpose them.
# the CHW order, so transpose them.
...
@@ -481,17 +513,48 @@ img = load_image(cur_dir + '/image/dog.png')
...
@@ -481,17 +513,48 @@ img = load_image(cur_dir + '/image/dog.png')
### Inferencer 配置和预测
### Inferencer 配置和预测
`Inferencer`
需要一个
`infer_func`
和
`param_path`
来设置
网络和经过训练的参数。
与训练过程类似,inferencer需要构建相应的过程。我们从
`params_dirname`
加载
网络和经过训练的参数。
我们可以简单地插入前面定义的推理程序。
我们可以简单地插入前面定义的推理程序。
现在我们准备做预测。
现在我们准备做预测。
```
python
```
python
inferencer
=
Inferencer
(
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
infer_func
=
inference_program
,
param_path
=
params_dirname
,
place
=
place
)
exe
=
fluid
.
Executor
(
place
)
label_list
=
[
"airplane"
,
"automobile"
,
"bird"
,
"cat"
,
"deer"
,
"dog"
,
"frog"
,
"horse"
,
"ship"
,
"truck"
]
inference_scope
=
fluid
.
core
.
Scope
()
# inference
results
=
inferencer
.
infer
({
'pixel'
:
img
})
with
fluid
.
scope_guard
(
inference_scope
):
print
(
"infer results: %s"
%
label_list
[
np
.
argmax
(
results
[
0
])])
[
inference_program
,
feed_target_names
,
fetch_targets
]
=
fluid
.
io
.
load_inference_model
(
params_dirname
,
exe
)
# The input's dimension of conv should be 4-D or 5-D.
# Use inference_transpiler to speedup
inference_transpiler_program
=
inference_program
.
clone
()
t
=
fluid
.
transpiler
.
InferenceTranspiler
()
t
.
transpile
(
inference_transpiler_program
,
place
)
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
results
=
exe
.
run
(
inference_program
,
feed
=
{
feed_target_names
[
0
]:
img
},
fetch_list
=
fetch_targets
)
transpiler_results
=
exe
.
run
(
inference_transpiler_program
,
feed
=
{
feed_target_names
[
0
]:
img
},
fetch_list
=
fetch_targets
)
assert
len
(
results
[
0
])
==
len
(
transpiler_results
[
0
])
for
i
in
range
(
len
(
results
[
0
])):
numpy
.
testing
.
assert_almost_equal
(
results
[
0
][
i
],
transpiler_results
[
0
][
i
],
decimal
=
5
)
# infer label
label_list
=
[
"airplane"
,
"automobile"
,
"bird"
,
"cat"
,
"deer"
,
"dog"
,
"frog"
,
"horse"
,
"ship"
,
"truck"
]
print
(
"infer results: %s"
%
label_list
[
numpy
.
argmax
(
results
[
0
])])
```
```
## 总结
## 总结
...
...
03.image_classification/index.cn.html
浏览文件 @
53b07468
...
@@ -211,15 +211,7 @@ import paddle.fluid as fluid
...
@@ -211,15 +211,7 @@ import paddle.fluid as fluid
import numpy
import numpy
import sys
import sys
from __future__ import print_function
from __future__ import print_function
try:
from paddle.fluid.contrib.trainer import *
from paddle.fluid.contrib.inferencer import *
except ImportError:
print(
"In the fluid 1.0, the trainer and inferencer are moving to paddle.fluid.contrib",
file=sys.stderr)
from paddle.fluid.trainer import *
from paddle.fluid.inferencer import *
```
```
本教程中我们提供了VGG和ResNet两个模型的配置。
本教程中我们提供了VGG和ResNet两个模型的配置。
...
@@ -390,19 +382,6 @@ def optimizer_program():
...
@@ -390,19 +382,6 @@ def optimizer_program():
## 训练模型
## 训练模型
### Trainer 配置
现在,我们需要配置 `Trainer`。`Trainer` 需要接受训练程序 `train_program`, `place` 和优化器 `optimizer_func`。
```python
use_cuda = False
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
trainer = Trainer(
train_func=train_program,
optimizer_func=optimizer_program,
place=place)
```
### Data Feeders 配置
### Data Feeders 配置
`cifar.train10()` 每次产生一条样本,在完成shuffle和batch之后,作为训练的输入。
`cifar.train10()` 每次产生一条样本,在完成shuffle和batch之后,作为训练的输入。
...
@@ -421,50 +400,104 @@ test_reader = paddle.batch(
...
@@ -421,50 +400,104 @@ test_reader = paddle.batch(
paddle.dataset.cifar.test10(), batch_size=BATCH_SIZE)
paddle.dataset.cifar.test10(), batch_size=BATCH_SIZE)
```
```
### Event Handler
### Trainer 程序的实现
我们需要为训练过程制定一个main_program, 同样的,还需要为测试程序配置一个test_program。定义训练的 `place` ,并使用先前定义的优化器 `optimizer_func`。
可以使用`event_handler`回调函数来观察训练过程,或进行测试等, 该回调函数是`trainer.train`函数里设定。
`event_handler` 用来在训练过程中输出文本日志
```python
```python
params_dirname = "image_classification_resnet.inference.model"
use_cuda = False
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
# event handler to track training and testing process
feed_order = ['pixel', 'label']
def event_handler(event):
if isinstance(event, EndStepEvent):
main_program = fluid.default_main_program()
if event.step % 100 == 0:
star_program = fluid.default_startup_program()
print("\nPass %d, Batch %d, Cost %f, Acc %f" %
(event.step, event.epoch, event.metrics[0],
predict = inference_program()
event.metrics[1]))
avg_cost, acc = train_program(predict)
else:
sys.stdout.write('.')
# Test program
sys.stdout.flush()
test_program = main_program.clone(for_test=True)
optimizer = optimizer_program()
optimizer.minimize(avg_cost)
exe = fluid.Executor(place)
EPOCH_NUM = 2
# For training test cost
def train_test(program, reader):
count = 0
feed_var_list = [
program.global_block().var(var_name) for var_name in feed_order
]
feeder_test = fluid.DataFeeder(
feed_list=feed_var_list, place=place)
test_exe = fluid.Executor(place)
accumulated = len([avg_cost, acc]) * [0]
for tid, test_data in enumerate(reader()):
avg_cost_np = test_exe.run(program=program,
feed=feeder_test.feed(test_data),
fetch_list=[avg_cost, acc])
accumulated = [x[0] + x[1][0] for x in zip(accumulated, avg_cost_np)]
count += 1
return [x / count for x in accumulated]
```
if isinstance(event, EndEpochEvent):
### 训练主循环以及过程输出
# Test against with the test dataset to get accuracy.
avg_cost, accuracy = trainer.test(
reader=test_reader, feed_order=['pixel', 'label'])
print('\nTest with Pass {0}, Loss {1:2.2}, Acc {2:2.2}'.format(event.epoch, avg_cost, accuracy))
在接下来的主训练循环中,我们将通过输出来来观察训练过程,或进行测试等。
也可以使用`plot`, 利用回调数据来打点画图:
```python
params_dirname = "image_classification_resnet.inference.model"
from paddle.utils.plot import Ploter
train_prompt = "Train cost"
test_prompt = "Test cost"
plot_cost = Ploter(test_prompt,train_prompt)
# main train loop.
def train_loop():
feed_var_list_loop = [
main_program.global_block().var(var_name) for var_name in feed_order
]
feeder = fluid.DataFeeder(
feed_list=feed_var_list_loop, place=place)
exe.run(star_program)
step = 0
for pass_id in range(EPOCH_NUM):
for step_id, data_train in enumerate(train_reader()):
avg_loss_value = exe.run(main_program,
feed=feeder.feed(data_train),
fetch_list=[avg_cost, acc])
if step % 1 == 0:
plot_cost.append(train_prompt, step, avg_loss_value[0])
plot_cost.plot()
step += 1
avg_cost_test, accuracy_test = train_test(test_program,
reader=test_reader)
plot_cost.append(test_prompt, step, avg_cost_test)
# save parameters
# save parameters
if params_dirname is not None:
if params_dirname is not None:
trainer.save_params(params_dirname)
fluid.io.save_inference_model(params_dirname, ["pixel"],
[predict], exe)
```
```
### 训练
### 训练
通过`trainer
.train`函数训练:
通过`trainer
_loop`函数训练, 这里我们只进行了2个Epoch, 一般我们在实际应用上会执行上百个以上Epoch
**注意:** CPU,每个 Epoch 将花费大约15~20分钟。这部分可能需要一段时间。请随意修改代码,在GPU上运行测试,以提高训练速度。
**注意:** CPU,每个 Epoch 将花费大约15~20分钟。这部分可能需要一段时间。请随意修改代码,在GPU上运行测试,以提高训练速度。
```python
```python
trainer.train(
train_loop()
reader=train_reader,
num_epochs=2,
event_handler=event_handler,
feed_order=['pixel', 'label'])
```
```
一轮训练log示例如下所示,经过1个pass, 训练集上平均 Accuracy 为0.59 ,测试集上平均 Accuracy 为0.6 。
一轮训练log示例如下所示,经过1个pass, 训练集上平均 Accuracy 为0.59 ,测试集上平均 Accuracy 为0.6 。
...
@@ -490,23 +523,22 @@ Test with Pass 0, Loss 1.1, Acc 0.6
...
@@ -490,23 +523,22 @@ Test with Pass 0, Loss 1.1, Acc 0.6
## 应用模型
## 应用模型
可以使用训练好的模型对图片进行分类,下面程序展示了如何
使用 `fluid.contrib.inferencer.Inferencer` 接口进行推断,可以打开注释,更改加载的模型
。
可以使用训练好的模型对图片进行分类,下面程序展示了如何
加载已经训练好的网络和参数进行推断
。
### 生成预测输入数据
### 生成预测输入数据
`dog.png`
is an example image of a dog. Turn it into an numpy array to match the data feeder format
.
`dog.png`
是一张小狗的图片. 我们将它转换成 `numpy` 数组以满足`feeder`的格式
.
```python
```python
# Prepare testing data.
# Prepare testing data.
from PIL import Image
from PIL import Image
import numpy as np
import os
import os
def load_image(file):
def load_image(file):
im = Image.open(file)
im = Image.open(file)
im = im.resize((32, 32), Image.ANTIALIAS)
im = im.resize((32, 32), Image.ANTIALIAS)
im = n
p.array(im).astype(np
.float32)
im = n
umpy.array(im).astype(numpy
.float32)
# The storage order of the loaded image is W(width),
# The storage order of the loaded image is W(width),
# H(height), C(channel). PaddlePaddle requires
# H(height), C(channel). PaddlePaddle requires
# the CHW order, so transpose them.
# the CHW order, so transpose them.
...
@@ -523,17 +555,48 @@ img = load_image(cur_dir + '/image/dog.png')
...
@@ -523,17 +555,48 @@ img = load_image(cur_dir + '/image/dog.png')
### Inferencer 配置和预测
### Inferencer 配置和预测
`Inferencer` 需要一个 `infer_func` 和 `param_path` 来设置
网络和经过训练的参数。
与训练过程类似,inferencer需要构建相应的过程。我们从`params_dirname` 加载
网络和经过训练的参数。
我们可以简单地插入前面定义的推理程序。
我们可以简单地插入前面定义的推理程序。
现在我们准备做预测。
现在我们准备做预测。
```python
```python
inferencer = Inferencer(
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
infer_func=inference_program, param_path=params_dirname, place=place)
exe = fluid.Executor(place)
label_list = ["airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck"]
inference_scope = fluid.core.Scope()
# inference
results = inferencer.infer({'pixel': img})
with fluid.scope_guard(inference_scope):
print("infer results: %s" % label_list[np.argmax(results[0])])
[inference_program, feed_target_names,
fetch_targets] = fluid.io.load_inference_model(params_dirname, exe)
# The input's dimension of conv should be 4-D or 5-D.
# Use inference_transpiler to speedup
inference_transpiler_program = inference_program.clone()
t = fluid.transpiler.InferenceTranspiler()
t.transpile(inference_transpiler_program, place)
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
results = exe.run(inference_program,
feed={feed_target_names[0]: img},
fetch_list=fetch_targets)
transpiler_results = exe.run(inference_transpiler_program,
feed={feed_target_names[0]: img},
fetch_list=fetch_targets)
assert len(results[0]) == len(transpiler_results[0])
for i in range(len(results[0])):
numpy.testing.assert_almost_equal(
results[0][i], transpiler_results[0][i], decimal=5)
# infer label
label_list = [
"airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse",
"ship", "truck"
]
print("infer results: %s" % label_list[numpy.argmax(results[0])])
```
```
## 总结
## 总结
...
...
03.image_classification/resnet.py
浏览文件 @
53b07468
...
@@ -15,17 +15,6 @@
...
@@ -15,17 +15,6 @@
from
__future__
import
print_function
from
__future__
import
print_function
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
import
sys
try
:
from
paddle.fluid.contrib.trainer
import
*
from
paddle.fluid.contrib.inferencer
import
*
except
ImportError
:
print
(
"In the fluid 1.0, the trainer and inferencer are moving to paddle.fluid.contrib"
,
file
=
sys
.
stderr
)
from
paddle.fluid.trainer
import
*
from
paddle.fluid.inferencer
import
*
__all__
=
[
'resnet_cifar10'
]
__all__
=
[
'resnet_cifar10'
]
...
...
03.image_classification/train.py
浏览文件 @
53b07468
...
@@ -14,21 +14,11 @@
...
@@ -14,21 +14,11 @@
from
__future__
import
print_function
from
__future__
import
print_function
import
os
import
paddle
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
import
numpy
import
numpy
import
sys
import
sys
try
:
from
paddle.fluid.contrib.trainer
import
*
from
paddle.fluid.contrib.inferencer
import
*
except
ImportError
:
print
(
"In the fluid 1.0, the trainer and inferencer are moving to paddle.fluid.contrib"
,
file
=
sys
.
stderr
)
from
paddle.fluid.trainer
import
*
from
paddle.fluid.inferencer
import
*
from
vgg
import
vgg_bn_drop
from
vgg
import
vgg_bn_drop
from
resnet
import
resnet_cifar10
from
resnet
import
resnet_cifar10
...
@@ -43,8 +33,7 @@ def inference_network():
...
@@ -43,8 +33,7 @@ def inference_network():
return
predict
return
predict
def
train_network
():
def
train_network
(
predict
):
predict
=
inference_network
()
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
...
@@ -56,62 +45,101 @@ def optimizer_program():
...
@@ -56,62 +45,101 @@ def optimizer_program():
return
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
)
return
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
)
def
train
(
use_cuda
,
train_program
,
params_dirname
):
def
train
(
use_cuda
,
params_dirname
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
BATCH_SIZE
=
128
BATCH_SIZE
=
128
EPOCH_NUM
=
2
train_reader
=
paddle
.
batch
(
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
cifar
.
train10
(),
buf_size
=
50000
),
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
cifar
.
train10
(),
buf_size
=
128
*
100
),
batch_size
=
BATCH_SIZE
)
batch_size
=
BATCH_SIZE
)
test_reader
=
paddle
.
batch
(
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
cifar
.
test10
(),
batch_size
=
BATCH_SIZE
)
paddle
.
dataset
.
cifar
.
test10
(),
batch_size
=
BATCH_SIZE
)
def
event_handler
(
event
):
feed_order
=
[
'pixel'
,
'label'
]
if
isinstance
(
event
,
EndStepEvent
):
if
event
.
step
%
100
==
0
:
print
(
"
\n
Pass %d, Batch %d, Cost %f, Acc %f"
%
(
event
.
step
,
event
.
epoch
,
event
.
metrics
[
0
],
event
.
metrics
[
1
]))
else
:
sys
.
stdout
.
write
(
'.'
)
sys
.
stdout
.
flush
()
if
isinstance
(
event
,
EndEpochEvent
):
main_program
=
fluid
.
default_main_program
()
avg_cost
,
accuracy
=
trainer
.
test
(
star_program
=
fluid
.
default_startup_program
()
reader
=
test_reader
,
feed_order
=
[
'pixel'
,
'label'
])
predict
=
inference_network
()
avg_cost
,
acc
=
train_network
(
predict
)
# Test program
test_program
=
main_program
.
clone
(
for_test
=
True
)
optimizer
=
optimizer_program
()
optimizer
.
minimize
(
avg_cost
)
exe
=
fluid
.
Executor
(
place
)
EPOCH_NUM
=
1
# For training test cost
def
train_test
(
program
,
reader
):
count
=
0
feed_var_list
=
[
program
.
global_block
().
var
(
var_name
)
for
var_name
in
feed_order
]
feeder_test
=
fluid
.
DataFeeder
(
feed_list
=
feed_var_list
,
place
=
place
)
test_exe
=
fluid
.
Executor
(
place
)
accumulated
=
len
([
avg_cost
,
acc
])
*
[
0
]
for
tid
,
test_data
in
enumerate
(
reader
()):
avg_cost_np
=
test_exe
.
run
(
program
=
program
,
feed
=
feeder_test
.
feed
(
test_data
),
fetch_list
=
[
avg_cost
,
acc
])
accumulated
=
[
x
[
0
]
+
x
[
1
][
0
]
for
x
in
zip
(
accumulated
,
avg_cost_np
)
]
count
+=
1
return
[
x
/
count
for
x
in
accumulated
]
# main train loop.
def
train_loop
():
feed_var_list_loop
=
[
main_program
.
global_block
().
var
(
var_name
)
for
var_name
in
feed_order
]
feeder
=
fluid
.
DataFeeder
(
feed_list
=
feed_var_list_loop
,
place
=
place
)
exe
.
run
(
star_program
)
step
=
0
for
pass_id
in
range
(
EPOCH_NUM
):
for
step_id
,
data_train
in
enumerate
(
train_reader
()):
avg_loss_value
=
exe
.
run
(
main_program
,
feed
=
feeder
.
feed
(
data_train
),
fetch_list
=
[
avg_cost
,
acc
])
if
step_id
%
100
==
0
:
print
(
"
\n
Pass %d, Batch %d, Cost %f, Acc %f"
%
(
step_id
,
pass_id
,
avg_loss_value
[
0
],
avg_loss_value
[
1
]))
else
:
sys
.
stdout
.
write
(
'.'
)
sys
.
stdout
.
flush
()
step
+=
1
avg_cost_test
,
accuracy_test
=
train_test
(
test_program
,
reader
=
test_reader
)
print
(
'
\n
Test with Pass {0}, Loss {1:2.2}, Acc {2:2.2}'
.
format
(
print
(
'
\n
Test with Pass {0}, Loss {1:2.2}, Acc {2:2.2}'
.
format
(
event
.
epoch
,
avg_cost
,
accuracy
))
pass_id
,
avg_cost_test
,
accuracy_test
))
if
params_dirname
is
not
None
:
trainer
.
save_params
(
params_dirname
)
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
if
params_dirname
is
not
None
:
trainer
=
Trainer
(
fluid
.
io
.
save_inference_model
(
params_dirname
,
[
"pixel"
],
train_func
=
train_program
,
optimizer_func
=
optimizer_program
,
place
=
place
)
[
predict
],
exe
)
trainer
.
train
(
reader
=
train_reader
,
num_epochs
=
EPOCH_NUM
,
event_handler
=
event_handler
,
feed_order
=
[
'pixel'
,
'label'
])
train_loop
()
def
infer
(
use_cuda
,
inference_program
,
params_dirname
=
None
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
inferencer
=
Inferencer
(
infer_func
=
inference_program
,
param_path
=
params_dirname
,
place
=
place
)
# Prepare testing data.
def
infer
(
use_cuda
,
params_dirname
=
None
):
from
PIL
import
Image
from
PIL
import
Image
import
numpy
as
np
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
import
os
exe
=
fluid
.
Executor
(
place
)
inference_scope
=
fluid
.
core
.
Scope
()
def
load_image
(
file
):
def
load_image
(
infer_
file
):
im
=
Image
.
open
(
file
)
im
=
Image
.
open
(
infer_
file
)
im
=
im
.
resize
((
32
,
32
),
Image
.
ANTIALIAS
)
im
=
im
.
resize
((
32
,
32
),
Image
.
ANTIALIAS
)
im
=
n
p
.
array
(
im
).
astype
(
np
.
float32
)
im
=
n
umpy
.
array
(
im
).
astype
(
numpy
.
float32
)
# The storage order of the loaded image is W(width),
# The storage order of the loaded image is W(width),
# H(height), C(channel). PaddlePaddle requires
# H(height), C(channel). PaddlePaddle requires
# the CHW order, so transpose them.
# the CHW order, so transpose them.
...
@@ -125,14 +153,44 @@ def infer(use_cuda, inference_program, params_dirname=None):
...
@@ -125,14 +153,44 @@ def infer(use_cuda, inference_program, params_dirname=None):
cur_dir
=
os
.
path
.
dirname
(
os
.
path
.
realpath
(
__file__
))
cur_dir
=
os
.
path
.
dirname
(
os
.
path
.
realpath
(
__file__
))
img
=
load_image
(
cur_dir
+
'/image/dog.png'
)
img
=
load_image
(
cur_dir
+
'/image/dog.png'
)
# inference
with
fluid
.
scope_guard
(
inference_scope
):
results
=
inferencer
.
infer
({
'pixel'
:
img
})
# Use fluid.io.load_inference_model to obtain the inference program desc,
# the feed_target_names (the names of variables that will be feeded
label_list
=
[
# data using feed operators), and the fetch_targets (variables that
"airplane"
,
"automobile"
,
"bird"
,
"cat"
,
"deer"
,
"dog"
,
"frog"
,
"horse"
,
# we want to obtain data from using fetch operators).
"ship"
,
"truck"
[
inference_program
,
feed_target_names
,
]
fetch_targets
]
=
fluid
.
io
.
load_inference_model
(
params_dirname
,
exe
)
print
(
"infer results: %s"
%
label_list
[
np
.
argmax
(
results
[
0
])])
# The input's dimension of conv should be 4-D or 5-D.
# Use inference_transpiler to speedup
inference_transpiler_program
=
inference_program
.
clone
()
t
=
fluid
.
transpiler
.
InferenceTranspiler
()
t
.
transpile
(
inference_transpiler_program
,
place
)
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
results
=
exe
.
run
(
inference_program
,
feed
=
{
feed_target_names
[
0
]:
img
},
fetch_list
=
fetch_targets
)
transpiler_results
=
exe
.
run
(
inference_transpiler_program
,
feed
=
{
feed_target_names
[
0
]:
img
},
fetch_list
=
fetch_targets
)
assert
len
(
results
[
0
])
==
len
(
transpiler_results
[
0
])
for
i
in
range
(
len
(
results
[
0
])):
numpy
.
testing
.
assert_almost_equal
(
results
[
0
][
i
],
transpiler_results
[
0
][
i
],
decimal
=
5
)
# infer label
label_list
=
[
"airplane"
,
"automobile"
,
"bird"
,
"cat"
,
"deer"
,
"dog"
,
"frog"
,
"horse"
,
"ship"
,
"truck"
]
print
(
"infer results: %s"
%
label_list
[
numpy
.
argmax
(
results
[
0
])])
def
main
(
use_cuda
):
def
main
(
use_cuda
):
...
@@ -140,15 +198,9 @@ def main(use_cuda):
...
@@ -140,15 +198,9 @@ def main(use_cuda):
return
return
save_path
=
"image_classification_resnet.inference.model"
save_path
=
"image_classification_resnet.inference.model"
train
(
train
(
use_cuda
=
use_cuda
,
params_dirname
=
save_path
)
use_cuda
=
use_cuda
,
train_program
=
train_network
,
params_dirname
=
save_path
)
infer
(
infer
(
use_cuda
=
use_cuda
,
params_dirname
=
save_path
)
use_cuda
=
use_cuda
,
inference_program
=
inference_network
,
params_dirname
=
save_path
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
...
...
03.image_classification/vgg.py
浏览文件 @
53b07468
...
@@ -14,21 +14,7 @@
...
@@ -14,21 +14,7 @@
from
__future__
import
print_function
from
__future__
import
print_function
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
import
sys
try
:
from
paddle.fluid.contrib.trainer
import
*
from
paddle.fluid.contrib.inferencer
import
*
except
ImportError
:
print
(
"In the fluid 1.0, the trainer and inferencer are moving to paddle.fluid.contrib"
,
file
=
sys
.
stderr
)
from
paddle.fluid.trainer
import
*
from
paddle.fluid.inferencer
import
*
__all__
=
[
'vgg_bn_drop'
]
def
vgg_bn_drop
(
input
):
def
vgg_bn_drop
(
input
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录