提交 4ce6770d 编写于 作者: G gangliao 提交者: GitHub

Merge pull request #173 from hedaoyuan/v2.sentiment

use v2 attr and pooling
......@@ -110,8 +110,6 @@ Paddle在`dataset/imdb.py`中提实现了imdb数据集的自动下载和读取
```
import sys
import paddle.trainer_config_helpers.attrs as attrs
from paddle.trainer_config_helpers.poolings import MaxPooling
import paddle.v2 as paddle
```
## 配置模型
......@@ -159,11 +157,11 @@ def stacked_lstm_net(input_dim,
"""
assert stacked_num % 2 == 1
layer_attr = attrs.ExtraLayerAttribute(drop_rate=0.5)
fc_para_attr = attrs.ParameterAttribute(learning_rate=1e-3)
lstm_para_attr = attrs.ParameterAttribute(initial_std=0., learning_rate=1.)
layer_attr = paddle.attr.Extra(drop_rate=0.5)
fc_para_attr = paddle.attr.Param(learning_rate=1e-3)
lstm_para_attr = paddle.attr.Param(initial_std=0., learning_rate=1.)
para_attr = [fc_para_attr, lstm_para_attr]
bias_attr = attrs.ParameterAttribute(initial_std=0., l2_rate=0.)
bias_attr = paddle.attr.Param(initial_std=0., l2_rate=0.)
relu = paddle.activation.Relu()
linear = paddle.activation.Linear()
......@@ -193,8 +191,8 @@ def stacked_lstm_net(input_dim,
layer_attr=layer_attr)
inputs = [fc, lstm]
fc_last = paddle.layer.pooling(input=inputs[0], pooling_type=MaxPooling())
lstm_last = paddle.layer.pooling(input=inputs[1], pooling_type=MaxPooling())
fc_last = paddle.layer.pooling(input=inputs[0], pooling_type=paddle.pooling.Max())
lstm_last = paddle.layer.pooling(input=inputs[1], pooling_type=paddle.pooling.Max())
output = paddle.layer.fc(input=[fc_last, lstm_last],
size=class_dim,
act=paddle.activation.Softmax(),
......
......@@ -152,8 +152,6 @@ Paddle在`dataset/imdb.py`中提实现了imdb数据集的自动下载和读取
```
import sys
import paddle.trainer_config_helpers.attrs as attrs
from paddle.trainer_config_helpers.poolings import MaxPooling
import paddle.v2 as paddle
```
## 配置模型
......@@ -201,11 +199,11 @@ def stacked_lstm_net(input_dim,
"""
assert stacked_num % 2 == 1
layer_attr = attrs.ExtraLayerAttribute(drop_rate=0.5)
fc_para_attr = attrs.ParameterAttribute(learning_rate=1e-3)
lstm_para_attr = attrs.ParameterAttribute(initial_std=0., learning_rate=1.)
layer_attr = paddle.attr.Extra(drop_rate=0.5)
fc_para_attr = paddle.attr.Param(learning_rate=1e-3)
lstm_para_attr = paddle.attr.Param(initial_std=0., learning_rate=1.)
para_attr = [fc_para_attr, lstm_para_attr]
bias_attr = attrs.ParameterAttribute(initial_std=0., l2_rate=0.)
bias_attr = paddle.attr.Param(initial_std=0., l2_rate=0.)
relu = paddle.activation.Relu()
linear = paddle.activation.Linear()
......@@ -235,8 +233,8 @@ def stacked_lstm_net(input_dim,
layer_attr=layer_attr)
inputs = [fc, lstm]
fc_last = paddle.layer.pooling(input=inputs[0], pooling_type=MaxPooling())
lstm_last = paddle.layer.pooling(input=inputs[1], pooling_type=MaxPooling())
fc_last = paddle.layer.pooling(input=inputs[0], pooling_type=paddle.pooling.Max())
lstm_last = paddle.layer.pooling(input=inputs[1], pooling_type=paddle.pooling.Max())
output = paddle.layer.fc(input=[fc_last, lstm_last],
size=class_dim,
act=paddle.activation.Softmax(),
......
......@@ -13,8 +13,6 @@
# limitations under the License.
import sys
import paddle.trainer_config_helpers.attrs as attrs
from paddle.trainer_config_helpers.poolings import MaxPooling
import paddle.v2 as paddle
......@@ -54,11 +52,11 @@ def stacked_lstm_net(input_dim,
"""
assert stacked_num % 2 == 1
layer_attr = attrs.ExtraLayerAttribute(drop_rate=0.5)
fc_para_attr = attrs.ParameterAttribute(learning_rate=1e-3)
lstm_para_attr = attrs.ParameterAttribute(initial_std=0., learning_rate=1.)
layer_attr = paddle.attr.Extra(drop_rate=0.5)
fc_para_attr = paddle.attr.Param(learning_rate=1e-3)
lstm_para_attr = paddle.attr.Param(initial_std=0., learning_rate=1.)
para_attr = [fc_para_attr, lstm_para_attr]
bias_attr = attrs.ParameterAttribute(initial_std=0., l2_rate=0.)
bias_attr = paddle.attr.Param(initial_std=0., l2_rate=0.)
relu = paddle.activation.Relu()
linear = paddle.activation.Linear()
......@@ -88,8 +86,10 @@ def stacked_lstm_net(input_dim,
layer_attr=layer_attr)
inputs = [fc, lstm]
fc_last = paddle.layer.pooling(input=inputs[0], pooling_type=MaxPooling())
lstm_last = paddle.layer.pooling(input=inputs[1], pooling_type=MaxPooling())
fc_last = paddle.layer.pooling(
input=inputs[0], pooling_type=paddle.pooling.Max())
lstm_last = paddle.layer.pooling(
input=inputs[1], pooling_type=paddle.pooling.Max())
output = paddle.layer.fc(input=[fc_last, lstm_last],
size=class_dim,
act=paddle.activation.Softmax(),
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册