Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
book
提交
42d37ac3
B
book
项目概览
PaddlePaddle
/
book
通知
16
Star
4
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
40
列表
看板
标记
里程碑
合并请求
37
Wiki
5
Wiki
分析
仓库
DevOps
项目成员
Pages
B
book
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
40
Issue
40
列表
看板
标记
里程碑
合并请求
37
合并请求
37
Pages
分析
分析
仓库分析
DevOps
Wiki
5
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
42d37ac3
编写于
6月 19, 2018
作者:
D
daminglu
提交者:
GitHub
6月 19, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
05 readme cn (#549)
上级
97b5a8b4
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
221 addition
and
157 deletion
+221
-157
05.recommender_system/README.cn.md
05.recommender_system/README.cn.md
+221
-157
未找到文件。
05.recommender_system/README.cn.md
浏览文件 @
42d37ac3
...
@@ -121,8 +121,9 @@ Paddle在API中提供了自动加载数据的模块。数据模块为 `paddle.da
...
@@ -121,8 +121,9 @@ Paddle在API中提供了自动加载数据的模块。数据模块为 `paddle.da
```
python
```
python
import
paddle.v2
as
paddle
import
paddle
paddle
.
init
(
use_gpu
=
False
)
movie_info
=
paddle
.
dataset
.
movielens
.
movie_info
()
print
movie_info
.
values
()[
0
]
```
```
...
@@ -210,241 +211,304 @@ print "User %s rates Movie %s with Score %s"%(user_info[uid], movie_info[mov_id]
...
@@ -210,241 +211,304 @@ print "User %s rates Movie %s with Score %s"%(user_info[uid], movie_info[mov_id]
## 模型配置说明
## 模型配置说明
下面我们开始根据输入数据的形式配置模型。
下面我们开始根据输入数据的形式配置模型。
首先引入所需的库函数以及定义全局变量。
```
python
```
python
uid
=
paddle
.
layer
.
data
(
import
math
name
=
'user_id'
,
import
sys
type
=
paddle
.
data_type
.
integer_value
(
import
numpy
as
np
paddle
.
dataset
.
movielens
.
max_user_id
()
+
1
))
import
paddle
usr_emb
=
paddle
.
layer
.
embedding
(
input
=
uid
,
size
=
32
)
import
paddle.fluid
as
fluid
usr_fc
=
paddle
.
layer
.
fc
(
input
=
usr_emb
,
size
=
32
)
import
paddle.fluid.layers
as
layers
import
paddle.fluid.nets
as
nets
usr_gender_id
=
paddle
.
layer
.
data
(
name
=
'gender_id'
,
type
=
paddle
.
data_type
.
integer_value
(
2
))
IS_SPARSE
=
True
usr_gender_emb
=
paddle
.
layer
.
embedding
(
input
=
usr_gender_id
,
size
=
16
)
USE_GPU
=
False
usr_gender_fc
=
paddle
.
layer
.
fc
(
input
=
usr_gender_emb
,
size
=
16
)
BATCH_SIZE
=
256
usr_age_id
=
paddle
.
layer
.
data
(
name
=
'age_id'
,
type
=
paddle
.
data_type
.
integer_value
(
len
(
paddle
.
dataset
.
movielens
.
age_table
)))
usr_age_emb
=
paddle
.
layer
.
embedding
(
input
=
usr_age_id
,
size
=
16
)
usr_age_fc
=
paddle
.
layer
.
fc
(
input
=
usr_age_emb
,
size
=
16
)
usr_job_id
=
paddle
.
layer
.
data
(
name
=
'job_id'
,
type
=
paddle
.
data_type
.
integer_value
(
paddle
.
dataset
.
movielens
.
max_job_id
()
+
1
))
usr_job_emb
=
paddle
.
layer
.
embedding
(
input
=
usr_job_id
,
size
=
16
)
usr_job_fc
=
paddle
.
layer
.
fc
(
input
=
usr_job_emb
,
size
=
16
)
```
```
如上述代码所示,对于每个用户,我们输入4维特征。其中包括
`user_id`
,
`gender_id`
,
`age_id`
,
`job_id`
。这几维特征均是简单的整数值。为了后续神经网络处理这些特征方便,我们借鉴NLP中的语言模型,将这几维离散的整数值,变换成embedding取出。分别形成
`usr_emb`
,
`usr_gender_emb`
,
`usr_age_emb`
,
`usr_job_emb`
。
然后为我们的用户特征综合模型定义模型配置
```
python
```
python
usr_combined_features
=
paddle
.
layer
.
fc
(
def
get_usr_combined_features
():
input
=
[
usr_fc
,
usr_gender_fc
,
usr_age_fc
,
usr_job_fc
],
size
=
200
,
USR_DICT_SIZE
=
paddle
.
dataset
.
movielens
.
max_user_id
()
+
1
act
=
paddle
.
activation
.
Tanh
())
uid
=
layers
.
data
(
name
=
'user_id'
,
shape
=
[
1
],
dtype
=
'int64'
)
usr_emb
=
layers
.
embedding
(
input
=
uid
,
dtype
=
'float32'
,
size
=
[
USR_DICT_SIZE
,
32
],
param_attr
=
'user_table'
,
is_sparse
=
IS_SPARSE
)
usr_fc
=
layers
.
fc
(
input
=
usr_emb
,
size
=
32
)
USR_GENDER_DICT_SIZE
=
2
usr_gender_id
=
layers
.
data
(
name
=
'gender_id'
,
shape
=
[
1
],
dtype
=
'int64'
)
usr_gender_emb
=
layers
.
embedding
(
input
=
usr_gender_id
,
size
=
[
USR_GENDER_DICT_SIZE
,
16
],
param_attr
=
'gender_table'
,
is_sparse
=
IS_SPARSE
)
usr_gender_fc
=
layers
.
fc
(
input
=
usr_gender_emb
,
size
=
16
)
USR_AGE_DICT_SIZE
=
len
(
paddle
.
dataset
.
movielens
.
age_table
)
usr_age_id
=
layers
.
data
(
name
=
'age_id'
,
shape
=
[
1
],
dtype
=
"int64"
)
usr_age_emb
=
layers
.
embedding
(
input
=
usr_age_id
,
size
=
[
USR_AGE_DICT_SIZE
,
16
],
is_sparse
=
IS_SPARSE
,
param_attr
=
'age_table'
)
usr_age_fc
=
layers
.
fc
(
input
=
usr_age_emb
,
size
=
16
)
USR_JOB_DICT_SIZE
=
paddle
.
dataset
.
movielens
.
max_job_id
()
+
1
usr_job_id
=
layers
.
data
(
name
=
'job_id'
,
shape
=
[
1
],
dtype
=
"int64"
)
usr_job_emb
=
layers
.
embedding
(
input
=
usr_job_id
,
size
=
[
USR_JOB_DICT_SIZE
,
16
],
param_attr
=
'job_table'
,
is_sparse
=
IS_SPARSE
)
usr_job_fc
=
layers
.
fc
(
input
=
usr_job_emb
,
size
=
16
)
concat_embed
=
layers
.
concat
(
input
=
[
usr_fc
,
usr_gender_fc
,
usr_age_fc
,
usr_job_fc
],
axis
=
1
)
usr_combined_features
=
layers
.
fc
(
input
=
concat_embed
,
size
=
200
,
act
=
"tanh"
)
return
usr_combined_features
```
```
如上述代码所示,对于每个用户,我们输入4维特征。其中包括user_id,gender_id,age_id,job_id。这几维特征均是简单的整数值。为了后续神经网络处理这些特征方便,我们借鉴NLP中的语言模型,将这几维离散的整数值,变换成embedding取出。分别形成usr_emb, usr_gender_emb, usr_age_emb, usr_job_emb。
然后,我们对于所有的用户特征,均输入到一个全连接层(fc)中。将所有特征融合为一个200维度的特征。
然后,我们对于所有的用户特征,均输入到一个全连接层(fc)中。将所有特征融合为一个200维度的特征。
进而,我们对每一个电影特征做类似的变换,网络配置为:
进而,我们对每一个电影特征做类似的变换,网络配置为:
```
python
```
python
mov_id
=
paddle
.
layer
.
data
(
def
get_mov_combined_features
():
name
=
'movie_id'
,
type
=
paddle
.
data_type
.
integer_value
(
paddle
.
dataset
.
movielens
.
max_movie_id
()
+
1
))
mov_emb
=
paddle
.
layer
.
embedding
(
input
=
mov_id
,
size
=
32
)
mov_fc
=
paddle
.
layer
.
fc
(
input
=
mov_emb
,
size
=
32
)
mov_categories
=
paddle
.
layer
.
data
(
name
=
'category_id'
,
type
=
paddle
.
data_type
.
sparse_binary_vector
(
len
(
paddle
.
dataset
.
movielens
.
movie_categories
())))
mov_categories_hidden
=
paddle
.
layer
.
fc
(
input
=
mov_categories
,
size
=
32
)
movie_title_dict
=
paddle
.
dataset
.
movielens
.
get_movie_title_dict
()
mov_title_id
=
paddle
.
layer
.
data
(
name
=
'movie_title'
,
type
=
paddle
.
data_type
.
integer_value_sequence
(
len
(
movie_title_dict
)))
mov_title_emb
=
paddle
.
layer
.
embedding
(
input
=
mov_title_id
,
size
=
32
)
mov_title_conv
=
paddle
.
networks
.
sequence_conv_pool
(
input
=
mov_title_emb
,
hidden_size
=
32
,
context_len
=
3
)
mov_combined_features
=
paddle
.
layer
.
fc
(
input
=
[
mov_fc
,
mov_categories_hidden
,
mov_title_conv
],
size
=
200
,
act
=
paddle
.
activation
.
Tanh
())
```
电影ID和电影类型分别映射到其对应的特征隐层。对于电影标题名称(title),一个ID序列表示的词语序列,在输入卷积层后,将得到每个时间窗口的特征(序列特征),然后通过在时间维度降采样得到固定维度的特征,整个过程在sequence_conv_pool实现。
MOV_DICT_SIZE
=
paddle
.
dataset
.
movielens
.
max_movie_id
()
+
1
最后再将电影的特征融合进
`mov_combined_features`
中。
mov_id
=
layers
.
data
(
name
=
'movie_id'
,
shape
=
[
1
],
dtype
=
'int64'
)
mov_emb
=
layers
.
embedding
(
input
=
mov_id
,
dtype
=
'float32'
,
size
=
[
MOV_DICT_SIZE
,
32
],
param_attr
=
'movie_table'
,
is_sparse
=
IS_SPARSE
)
```
python
mov_fc
=
layers
.
fc
(
input
=
mov_emb
,
size
=
32
)
inference
=
paddle
.
layer
.
cos_sim
(
a
=
usr_combined_features
,
b
=
mov_combined_features
,
size
=
1
,
scale
=
5
)
```
进而,我们使用余弦相似度计算用户特征与电影特征的相似性。并将这个相似性拟合(回归)到用户评分上。
CATEGORY_DICT_SIZE
=
len
(
paddle
.
dataset
.
movielens
.
movie_categories
())
category_id
=
layers
.
data
(
name
=
'category_id'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
```
python
mov_categories_emb
=
layers
.
embedding
(
cost
=
paddle
.
layer
.
square_error_cost
(
input
=
category_id
,
size
=
[
CATEGORY_DICT_SIZE
,
32
],
is_sparse
=
IS_SPARSE
)
input
=
inference
,
label
=
paddle
.
layer
.
data
(
name
=
'score'
,
type
=
paddle
.
data_type
.
dense_vector
(
1
)))
```
至此,我们的优化目标就是这个网络配置中的
`cost`
了。
mov_categories_hidden
=
layers
.
sequence_pool
(
input
=
mov_categories_emb
,
pool_type
=
"sum"
)
## 训练模型
MOV_TITLE_DICT_SIZE
=
len
(
paddle
.
dataset
.
movielens
.
get_movie_title_dict
())
### 定义参数
mov_title_id
=
layers
.
data
(
神经网络的模型,我们可以简单的理解为网络拓朴结构+参数。之前一节,我们定义出了优化目标
`cost`
。这个
`cost`
即为网络模型的拓扑结构。我们开始训练模型,需要先定义出参数。定义方法为:
name
=
'movie_title'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
mov_title_emb
=
layers
.
embedding
(
input
=
mov_title_id
,
size
=
[
MOV_TITLE_DICT_SIZE
,
32
],
is_sparse
=
IS_SPARSE
)
```
python
mov_title_conv
=
nets
.
sequence_conv_pool
(
parameters
=
paddle
.
parameters
.
create
(
cost
)
input
=
mov_title_emb
,
```
num_filters
=
32
,
filter_size
=
3
,
act
=
"tanh"
,
pool_type
=
"sum"
)
concat_embed
=
layers
.
concat
(
input
=
[
mov_fc
,
mov_categories_hidden
,
mov_title_conv
],
axis
=
1
)
[INFO 2017-03-06 17:12:13,284 networks.py:1472] The input order is [user_id, gender_id, age_id, job_id, movie_id, category_id, movie_title, score]
mov_combined_features
=
layers
.
fc
(
input
=
concat_embed
,
size
=
200
,
act
=
"tanh"
)
[INFO 2017-03-06 17:12:13,287 networks.py:1478] The output order is [__square_error_cost_0__]
return
mov_combined_features
```
`parameters`
是模型的所有参数集合。他是一个python的dict。我们可以查看到这个网络中的所有参数名称。因为之前定义模型的时候,我们没有指定参数名称,这里参数名称是自动生成的。当然,我们也可以指定每一个参数名称,方便日后维护
。
电影标题名称(title)是一个序列的整数,整数代表的是这个词在索引序列中的下标。这个序列会被送入
`sequence_conv_pool`
层,这个层会在时间维度上使用卷积和池化。因为如此,所以输出会是固定长度,尽管输入的序列长度各不相同
。
最后,我们定义一个
`inference_program`
来使用余弦相似度计算用户特征与电影特征的相似性。
```
python
```
python
print
parameters
.
keys
()
def
inference_program
():
usr_combined_features
=
get_usr_combined_features
()
mov_combined_features
=
get_mov_combined_features
()
inference
=
layers
.
cos_sim
(
X
=
usr_combined_features
,
Y
=
mov_combined_features
)
scale_infer
=
layers
.
scale
(
x
=
inference
,
scale
=
5.0
)
return
scale_infer
```
```
[u'___fc_layer_2__.wbias', u'___fc_layer_2__.w2', u'___embedding_layer_3__.w0', u'___embedding_layer_5__.w0', u'___embedding_layer_2__.w0', u'___embedding_layer_1__.w0', u'___fc_layer_1__.wbias', u'___fc_layer_0__.wbias', u'___fc_layer_1__.w0', u'___fc_layer_0__.w2', u'___fc_layer_0__.w3', u'___fc_layer_0__.w0', u'___fc_layer_0__.w1', u'___fc_layer_2__.w1', u'___fc_layer_2__.w0', u'___embedding_layer_4__.w0', u'___sequence_conv_pool_0___conv_fc.w0', u'___embedding_layer_0__.w0', u'___sequence_conv_pool_0___conv_fc.wbias']
进而,我们定义一个
`train_program`
来使用
`inference_program`
计算出的结果,在标记数据的帮助下来计算误差。我们还定义了一个
`optimizer_func`
来定义优化器。
```
python
def
train_program
():
scale_infer
=
inference_program
()
### 构造训练(trainer)
label
=
layers
.
data
(
name
=
'score'
,
shape
=
[
1
],
dtype
=
'float32'
)
square_cost
=
layers
.
square_error_cost
(
input
=
scale_infer
,
label
=
label
)
avg_cost
=
layers
.
mean
(
square_cost
)
下面,我们根据网络拓扑结构和模型参数来构造出一个本地训练(trainer)。在构造本地训练的时候,我们还需要指定这个训练的优化方法。这里我们使用Adam来作为优化算法。
return
[
avg_cost
,
scale_infer
]
```
python
def
optimizer_func
():
trainer
=
paddle
.
trainer
.
SGD
(
cost
=
cost
,
parameters
=
parameters
,
return
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.2
)
update_equation
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
1e-4
))
```
```
[INFO 2017-03-06 17:12:13,378 networks.py:1472] The input order is [user_id, gender_id, age_id, job_id, movie_id, category_id, movie_title, score]
[INFO 2017-03-06 17:12:13,379 networks.py:1478] The output order is [__square_error_cost_0__]
## 训练模型
### 训练
### 定义训练环境
定义您的训练环境,可以指定训练是发生在CPU还是GPU上。
下面我们开始训练过程。
```
python
use_cuda
=
False
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
```
### 定义数据提供器
下一步是为训练和测试定义数据提供器。提供器读入一个大小为
`BATCH_SIZE`
的数据。
`paddle.dataset.movielens.train`
每次会在乱序化后提供一个大小为
`BATCH_SIZE`
的数据,乱序化的大小为缓存大小
`buf_size`
。
我们直接使用Paddle提供的数据集读取程序。
`paddle.dataset.movielens.train()`
和
`paddle.dataset.movielens.test()`
分别做训练和预测数据集。并且通过
`feeding`
来指定每一个数据和data_layer的对应关系。
```
python
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
movielens
.
train
(),
buf_size
=
8192
),
batch_size
=
BATCH_SIZE
)
例如,这里的feeding表示的是,对于数据层
`user_id`
,使用了reader中每一条数据的第0个元素。
`gender_id`
数据层使用了第1个元素。以此类推。
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
movielens
.
test
(),
batch_size
=
BATCH_SIZE
)
```
### 构造训练器(trainer)
训练器需要一个训练程序和一个训练优化函数。
```
python
```
python
feeding
=
{
trainer
=
fluid
.
Trainer
(
'user_id'
:
0
,
train_func
=
train_program
,
place
=
place
,
optimizer_func
=
optimizer_func
)
'gender_id'
:
1
,
'age_id'
:
2
,
'job_id'
:
3
,
'movie_id'
:
4
,
'category_id'
:
5
,
'movie_title'
:
6
,
'score'
:
7
}
```
```
训练过程是完全自动的。我们可以使用event_handler与event_handler_plot来观察训练过程,或进行测试等。这里我们在event_handler_plot里面绘制了训练误差曲线和测试误差曲线。并且保存了模型。
### 提供数据
`feed_order`
用来定义每条产生的数据和
`paddle.layer.data`
之间的映射关系。比如,
`movielens.train`
产生的第一列的数据对应的是
`user_id`
这个特征。
```
python
```
python
def
event_handler
(
event
):
feed_order
=
[
if
isinstance
(
event
,
paddle
.
event
.
EndIteration
):
'user_id'
,
'gender_id'
,
'age_id'
,
'job_id'
,
'movie_id'
,
'category_id'
,
if
event
.
batch_id
%
100
==
0
:
'movie_title'
,
'score'
print
"Pass %d Batch %d Cost %.2f"
%
(
]
event
.
pass_id
,
event
.
batch_id
,
event
.
cost
)
```
```
### 事件处理器
回调函数
`event_handler`
在一个之前定义好的事件发生后会被调用。例如,我们可以在每步训练结束后查看误差。
```
python
```
python
from
paddle.v2.plot
import
Ploter
# Specify the directory path to save the parameters
params_dirname
=
"recommender_system.inference.model"
train_title
=
"Train cost"
from
paddle.v2.plot
import
Ploter
test_title
=
"Test cost"
test_title
=
"Test cost"
cost_ploter
=
Ploter
(
train_title
,
test_title
)
plot_cost
=
Ploter
(
test_title
)
step
=
0
def
event_handler
(
event
):
if
isinstance
(
event
,
fluid
.
EndStepEvent
):
avg_cost_set
=
trainer
.
test
(
reader
=
test_reader
,
feed_order
=
feed_order
)
def
event_handler_plot
(
event
):
# get avg cost
global
step
avg_cost
=
np
.
array
(
avg_cost_set
).
mean
()
if
isinstance
(
event
,
paddle
.
event
.
EndIteration
):
if
step
%
10
==
0
:
# every 10 batches, record a train cost
cost_ploter
.
append
(
train_title
,
step
,
event
.
cost
)
if
step
%
1000
==
0
:
# every 1000 batches, record a test cost
plot_cost
.
append
(
test_title
,
event
.
step
,
avg_cost_set
[
0
])
result
=
trainer
.
test
(
plot_cost
.
plot
()
reader
=
paddle
.
batch
(
paddle
.
dataset
.
movielens
.
test
(),
batch_size
=
256
),
feeding
=
feeding
)
cost_ploter
.
append
(
test_title
,
step
,
result
.
cost
)
if
step
%
100
==
0
:
# every 100 batches, update cost plot
print
(
"avg_cost: %s"
%
avg_cost
)
cost_ploter
.
plot
()
print
(
'BatchID {0}, Test Loss {1:0.2}'
.
format
(
event
.
epoch
+
1
,
float
(
avg_cost
)))
step
+=
1
if
event
.
step
==
20
:
# Adjust this number for accuracy
trainer
.
save_params
(
params_dirname
)
trainer
.
stop
()
```
```
### 开始训练
最后,我们传入训练循环数(
`num_epoch`
)和一些别的参数,调用
`trainer.train`
来开始训练。
```
python
```
python
trainer
.
train
(
trainer
.
train
(
reader
=
paddle
.
batch
(
num_epochs
=
1
,
paddle
.
reader
.
shuffle
(
event_handler
=
event_handler
,
paddle
.
dataset
.
movielens
.
train
(),
buf_size
=
8192
),
reader
=
train_reader
,
batch_size
=
256
),
feed_order
=
feed_order
)
event_handler
=
event_handler_plot
,
feeding
=
feeding
,
num_passes
=
2
)
```
```
![
png
](
./image/output_32_0.png
)
## 应用模型
## 应用模型
在训练了几轮以后,您可以对模型进行推断。我们可以使用任意一个用户ID和电影ID,来预测该用户对该电影的评分。示例程序为:
### 构建预测器
传入
`inference_program`
和
`params_dirname`
来初始化一个预测器,
`params_dirname`
用来存放训练过程中的各个参数。
```
python
```
python
import
copy
inferencer
=
fluid
.
Inferencer
(
user_id
=
234
inference_program
,
param_path
=
params_dirname
,
place
=
place
)
movie_id
=
345
```
user
=
user_info
[
user_id
]
movie
=
movie_info
[
movie_id
]
feature
=
user
.
value
()
+
movie
.
value
()
### 生成测试用输入数据
使用 create_lod_tensor(data, lod, place) 的API来生成细节层次的张量。
`data`
是一个序列,每个元素是一个索引号的序列。
`lod`
是细节层次的信息,对应于
`data`
。比如,data = [[10, 2, 3], [2, 3]] 意味着它包含两个序列,长度分别是3和2。于是相应地 lod = [[3, 2]],它表明其包含一层细节信息,意味着
`data`
有两个序列,长度分别是3和2。
infer_dict
=
copy
.
copy
(
feeding
)
在这个预测例子中,我们试着预测用户ID为1的用户对于电影'Hunchback of Notre Dame'的评分
del
infer_dict
[
'score'
]
prediction
=
paddle
.
infer
(
inference
,
parameters
=
parameters
,
input
=
[
feature
],
feeding
=
infer_dict
)
```
python
score
=
(
prediction
[
0
][
0
]
+
5.0
)
/
2
infer_movie_id
=
783
print
"[Predict] User %d Rating Movie %d With Score %.2f"
%
(
user_id
,
movie_id
,
score
)
infer_movie_name
=
paddle
.
dataset
.
movielens
.
movie_info
()[
infer_movie_id
].
title
user_id
=
fluid
.
create_lod_tensor
([[
1
]],
[[
1
]],
place
)
gender_id
=
fluid
.
create_lod_tensor
([[
1
]],
[[
1
]],
place
)
age_id
=
fluid
.
create_lod_tensor
([[
0
]],
[[
1
]],
place
)
job_id
=
fluid
.
create_lod_tensor
([[
10
]],
[[
1
]],
place
)
movie_id
=
fluid
.
create_lod_tensor
([[
783
]],
[[
1
]],
place
)
# Hunchback of Notre Dame
category_id
=
fluid
.
create_lod_tensor
([[
10
,
8
,
9
]],
[[
3
]],
place
)
# Animation, Children's, Musical
movie_title
=
fluid
.
create_lod_tensor
([[
1069
,
4140
,
2923
,
710
,
988
]],
[[
5
]],
place
)
# 'hunchback','of','notre','dame','the'
```
```
[INFO 2017-03-06 17:17:08,132 networks.py:1472] The input order is [user_id, gender_id, age_id, job_id, movie_id, category_id, movie_title]
### 测试
[INFO 2017-03-06 17:17:08,134 networks.py:1478] The output order is [__cos_sim_0__]
现在我们可以进行预测了。我们要提供的
`feed_order`
应该和训练过程一致。
[Predict] User 234 Rating Movie 345 With Score 4.16
```
python
results
=
inferencer
.
infer
(
{
'user_id'
:
user_id
,
'gender_id'
:
gender_id
,
'age_id'
:
age_id
,
'job_id'
:
job_id
,
'movie_id'
:
movie_id
,
'category_id'
:
category_id
,
'movie_title'
:
movie_title
},
return_numpy
=
False
)
```
## 总结
## 总结
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录