`reader_dict` is devoted to specifying the correspondence between each yield record and `paddle.layer.data`. For instance, the first column of data generated by `movielens.train` corresponds to `user_id` feature.
`feeding` is devoted to specifying the correspondence between each yield record and `paddle.layer.data`. For instance, the first column of data generated by `movielens.train` corresponds to `user_id` feature.
```python
```python
reader_dict={
feeding={
'user_id':0,
'user_id':0,
'gender_id':1,
'gender_id':1,
'age_id':2,
'age_id':2,
...
@@ -363,7 +363,7 @@ Finally, we can invoke `trainer.train` to start training:
...
@@ -363,7 +363,7 @@ Finally, we can invoke `trainer.train` to start training:
`reader_dict` is devoted to specifying the correspondence between each yield record and `paddle.layer.data`. For instance, the first column of data generated by `movielens.train` corresponds to `user_id` feature.
`feeding` is devoted to specifying the correspondence between each yield record and `paddle.layer.data`. For instance, the first column of data generated by `movielens.train` corresponds to `user_id` feature.
```python
```python
reader_dict = {
feeding = {
'user_id': 0,
'user_id': 0,
'gender_id': 1,
'gender_id': 1,
'age_id': 2,
'age_id': 2,
...
@@ -405,7 +405,7 @@ Finally, we can invoke `trainer.train` to start training:
...
@@ -405,7 +405,7 @@ Finally, we can invoke `trainer.train` to start training: