提交 38c4d781 编写于 作者: D dangqingqing

Rename reader_dict

上级 824c95dc
......@@ -440,15 +440,15 @@ trainer = paddle.trainer.SGD(cost=crf_cost,
As mentioned in data preparation section, we will use CoNLL 2005 test corpus as training data set. `conll05.test()` outputs one training instance at a time. It will be shuffled, and batched into mini batches as input.
```python
reader = paddle.reader.batched(
reader = paddle.batch(
paddle.reader.shuffle(
conll05.test(), buf_size=8192), batch_size=20)
```
`reader_dict` is used to specify relationship between data instance and layer layer. For example, according to following `reader_dict`, the 0th column of data instance produced by`conll05.test()` correspond to data layer named `word_data`.
`feeding` is used to specify relationship between data instance and layer layer. For example, according to following `feeding`, the 0th column of data instance produced by`conll05.test()` correspond to data layer named `word_data`.
```python
reader_dict = {
feeding = {
'word_data': 0,
'ctx_n2_data': 1,
'ctx_n1_data': 2,
......@@ -478,7 +478,7 @@ trainer.train(
reader=reader,
event_handler=event_handler,
num_passes=10000,
reader_dict=reader_dict)
feeding=feeding)
```
## Conclusion
......
......@@ -409,11 +409,11 @@ reader = paddle.batch(
conll05.test(), buf_size=8192), batch_size=20)
```
通过`reader_dict`来指定每一个数据和data_layer的对应关系。 例如 下面`reader_dict`表示: `conll05.test()`产生数据的第0列对应`word_data`层的特征。
通过`feeding`来指定每一个数据和data_layer的对应关系。 例如 下面`feeding`表示: `conll05.test()`产生数据的第0列对应`word_data`层的特征。
```python
reader_dict = {
feeding = {
'word_data': 0,
'ctx_n2_data': 1,
'ctx_n1_data': 2,
......@@ -443,7 +443,7 @@ trainer.train(
reader=reader,
event_handler=event_handler,
num_passes=10000,
reader_dict=reader_dict)
feeding=feeding)
```
## 总结
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册