Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
book
提交
37a6556e
B
book
项目概览
PaddlePaddle
/
book
通知
16
Star
4
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
40
列表
看板
标记
里程碑
合并请求
37
Wiki
5
Wiki
分析
仓库
DevOps
项目成员
Pages
B
book
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
40
Issue
40
列表
看板
标记
里程碑
合并请求
37
合并请求
37
Pages
分析
分析
仓库分析
DevOps
Wiki
5
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
37a6556e
编写于
9月 15, 2017
作者:
Q
Qiao Longfei
提交者:
GitHub
9月 15, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #410 from jacquesqiao/use-word2vec
add save/load dict_and_embedding for word2vector
上级
ceb3fc4e
da00779c
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
157 addition
and
1 deletion
+157
-1
04.word2vec/README.cn.md
04.word2vec/README.cn.md
+32
-0
04.word2vec/README.md
04.word2vec/README.md
+33
-0
04.word2vec/index.cn.html
04.word2vec/index.cn.html
+32
-0
04.word2vec/index.html
04.word2vec/index.html
+33
-0
04.word2vec/train.py
04.word2vec/train.py
+27
-1
未找到文件。
04.word2vec/README.cn.md
浏览文件 @
37a6556e
...
...
@@ -207,6 +207,28 @@ hiddensize = 256 # 隐层维度
N
=
5
# 训练5-Gram
```
用于保存和加载word_dict和embedding table的函数
```
python
# save and load word dict and embedding table
def
save_dict_and_embedding
(
word_dict
,
embeddings
):
with
open
(
"word_dict"
,
"w"
)
as
f
:
for
key
in
word_dict
:
f
.
write
(
key
+
" "
+
str
(
word_dict
[
key
])
+
"
\n
"
)
with
open
(
"embedding_table"
,
"w"
)
as
f
:
numpy
.
savetxt
(
f
,
embeddings
,
delimiter
=
','
,
newline
=
'
\n
'
)
def
load_dict_and_embedding
():
word_dict
=
dict
()
with
open
(
"word_dict"
,
"r"
)
as
f
:
for
line
in
f
:
key
,
value
=
line
.
strip
().
split
(
" "
)
word_dict
[
key
]
=
value
embeddings
=
numpy
.
loadtxt
(
"embedding_table"
,
delimiter
=
","
)
return
word_dict
,
embeddings
```
接着,定义网络结构:
-
将$w_t$之前的$n-1$个词 $w_{t-n+1},...w_{t-1}$,通过$|V|
\t
imes D$的矩阵映射到D维词向量(本例中取D=32)。
...
...
@@ -333,6 +355,16 @@ Pass 0, Batch 200, Cost 5.786797, {'classification_error_evaluator': 0.8125}, Te
经过30个pass,我们将得到平均错误率为classification_error_evaluator=0.735611。
## 保存词典和embedding
训练完成之后,我们可以把词典和embedding table单独保存下来,后面可以直接使用
```
python
# save word dict and embedding table
embeddings
=
parameters
.
get
(
"_proj"
).
reshape
(
len
(
word_dict
),
embsize
)
save_dict_and_embedding
(
word_dict
,
embeddings
)
```
## 应用模型
训练模型后,我们可以加载模型参数,用训练出来的词向量初始化其他模型,也可以将模型查看参数用来做后续应用。
...
...
04.word2vec/README.md
浏览文件 @
37a6556e
...
...
@@ -224,6 +224,29 @@ hiddensize = 256 # hidden layer dimension
N
=
5
# train 5-gram
```
-
functions used to save and load word dict and embedding table
```
python
# save and load word dict and embedding table
def
save_dict_and_embedding
(
word_dict
,
embeddings
):
with
open
(
"word_dict"
,
"w"
)
as
f
:
for
key
in
word_dict
:
f
.
write
(
key
+
" "
+
str
(
word_dict
[
key
])
+
"
\n
"
)
with
open
(
"embedding_table"
,
"w"
)
as
f
:
numpy
.
savetxt
(
f
,
embeddings
,
delimiter
=
','
,
newline
=
'
\n
'
)
def
load_dict_and_embedding
():
word_dict
=
dict
()
with
open
(
"word_dict"
,
"r"
)
as
f
:
for
line
in
f
:
key
,
value
=
line
.
strip
().
split
(
" "
)
word_dict
[
key
]
=
value
embeddings
=
numpy
.
loadtxt
(
"embedding_table"
,
delimiter
=
","
)
return
word_dict
,
embeddings
```
-
Map the $n-1$ words $w_{t-n+1},...w_{t-1}$ before $w_t$ to a D-dimensional vector though matrix of dimention $|V|
\t
imes D$ (D=32 in this example).
```
python
...
...
@@ -343,6 +366,16 @@ Pass 0, Batch 200, Cost 5.786797, {'classification_error_evaluator': 0.8125}, Te
After 30 passes, we can get average error rate around 0.735611.
## Save word dict and embedding table
after training, we can save the word dict and embedding table for the future usage.
```
python
# save word dict and embedding table
embeddings
=
parameters
.
get
(
"_proj"
).
reshape
(
len
(
word_dict
),
embsize
)
save_dict_and_embedding
(
word_dict
,
embeddings
)
```
## Model Application
...
...
04.word2vec/index.cn.html
浏览文件 @
37a6556e
...
...
@@ -249,6 +249,28 @@ hiddensize = 256 # 隐层维度
N = 5 # 训练5-Gram
```
用于保存和加载word_dict和embedding table的函数
```python
# save and load word dict and embedding table
def save_dict_and_embedding(word_dict, embeddings):
with open("word_dict", "w") as f:
for key in word_dict:
f.write(key + " " + str(word_dict[key]) + "\n")
with open("embedding_table", "w") as f:
numpy.savetxt(f, embeddings, delimiter=',', newline='\n')
def load_dict_and_embedding():
word_dict = dict()
with open("word_dict", "r") as f:
for line in f:
key, value = line.strip().split(" ")
word_dict[key] = value
embeddings = numpy.loadtxt("embedding_table", delimiter=",")
return word_dict, embeddings
```
接着,定义网络结构:
- 将$w_t$之前的$n-1$个词 $w_{t-n+1},...w_{t-1}$,通过$|V|\times D$的矩阵映射到D维词向量(本例中取D=32)。
...
...
@@ -375,6 +397,16 @@ Pass 0, Batch 200, Cost 5.786797, {'classification_error_evaluator': 0.8125}, Te
经过30个pass,我们将得到平均错误率为classification_error_evaluator=0.735611。
## 保存词典和embedding
训练完成之后,我们可以把词典和embedding table单独保存下来,后面可以直接使用
```python
# save word dict and embedding table
embeddings = parameters.get("_proj").reshape(len(word_dict), embsize)
save_dict_and_embedding(word_dict, embeddings)
```
## 应用模型
训练模型后,我们可以加载模型参数,用训练出来的词向量初始化其他模型,也可以将模型查看参数用来做后续应用。
...
...
04.word2vec/index.html
浏览文件 @
37a6556e
...
...
@@ -266,6 +266,29 @@ hiddensize = 256 # hidden layer dimension
N = 5 # train 5-gram
```
- functions used to save and load word dict and embedding table
```python
# save and load word dict and embedding table
def save_dict_and_embedding(word_dict, embeddings):
with open("word_dict", "w") as f:
for key in word_dict:
f.write(key + " " + str(word_dict[key]) + "\n")
with open("embedding_table", "w") as f:
numpy.savetxt(f, embeddings, delimiter=',', newline='\n')
def load_dict_and_embedding():
word_dict = dict()
with open("word_dict", "r") as f:
for line in f:
key, value = line.strip().split(" ")
word_dict[key] = value
embeddings = numpy.loadtxt("embedding_table", delimiter=",")
return word_dict, embeddings
```
- Map the $n-1$ words $w_{t-n+1},...w_{t-1}$ before $w_t$ to a D-dimensional vector though matrix of dimention $|V|\times D$ (D=32 in this example).
```python
...
...
@@ -385,6 +408,16 @@ Pass 0, Batch 200, Cost 5.786797, {'classification_error_evaluator': 0.8125}, Te
After 30 passes, we can get average error rate around 0.735611.
## Save word dict and embedding table
after training, we can save the word dict and embedding table for the future usage.
```python
# save word dict and embedding table
embeddings = parameters.get("_proj").reshape(len(word_dict), embsize)
save_dict_and_embedding(word_dict, embeddings)
```
## Model Application
...
...
04.word2vec/train.py
浏览文件 @
37a6556e
import
math
,
os
import
math
import
os
import
numpy
import
paddle.v2
as
paddle
with_gpu
=
os
.
getenv
(
'WITH_GPU'
,
'0'
)
!=
'0'
...
...
@@ -18,6 +20,26 @@ def wordemb(inlayer):
return
wordemb
# save and load word dict and embedding table
def
save_dict_and_embedding
(
word_dict
,
embeddings
):
with
open
(
"word_dict"
,
"w"
)
as
f
:
for
key
in
word_dict
:
f
.
write
(
key
+
" "
+
str
(
word_dict
[
key
])
+
"
\n
"
)
with
open
(
"embedding_table"
,
"w"
)
as
f
:
numpy
.
savetxt
(
f
,
embeddings
,
delimiter
=
','
,
newline
=
'
\n
'
)
def
load_dict_and_embedding
():
word_dict
=
dict
()
with
open
(
"word_dict"
,
"r"
)
as
f
:
for
line
in
f
:
key
,
value
=
line
.
strip
().
split
(
" "
)
word_dict
[
key
]
=
value
embeddings
=
numpy
.
loadtxt
(
"embedding_table"
,
delimiter
=
","
)
return
word_dict
,
embeddings
def
main
():
paddle
.
init
(
use_gpu
=
with_gpu
,
trainer_count
=
3
)
word_dict
=
paddle
.
dataset
.
imikolov
.
build_dict
()
...
...
@@ -79,6 +101,10 @@ def main():
num_passes
=
100
,
event_handler
=
event_handler
)
# save word dict and embedding table
embeddings
=
parameters
.
get
(
"_proj"
).
reshape
(
len
(
word_dict
),
embsize
)
save_dict_and_embedding
(
word_dict
,
embeddings
)
if
__name__
==
'__main__'
:
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录