未验证 提交 31662047 编写于 作者: J jzhang533 提交者: GitHub

update several notebooks (#894)

上级 5ab525db
...@@ -29,8 +29,7 @@ ...@@ -29,8 +29,7 @@
"name": "stdout", "name": "stdout",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"0.0.0\n", "2.0.0-beta0\n"
"89af2088b6e74bdfeef2d4d78e08461ed2aafee5\n"
] ]
} }
], ],
...@@ -40,8 +39,7 @@ ...@@ -40,8 +39,7 @@
"import numpy as np\n", "import numpy as np\n",
"\n", "\n",
"paddle.disable_static()\n", "paddle.disable_static()\n",
"print(paddle.__version__)\n", "print(paddle.__version__)"
"print(paddle.__git_commit__)\n"
] ]
}, },
{ {
...@@ -62,16 +60,16 @@ ...@@ -62,16 +60,16 @@
"name": "stdout", "name": "stdout",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"[[-0.49341336 -0.8112665 ]\n", "[[ 1.5645729 -0.74514765]\n",
" [ 0.8929015 0.24661176]\n", " [-0.01248 0.68240154]\n",
" [-0.64440054 -0.7945008 ]\n", " [ 0.11316949 -1.6579045 ]\n",
" [-0.07345356 1.3641853 ]]\n", " [-0.1425675 -1.0153968 ]]\n",
"[1. 2.]\n", "[1. 2.]\n",
"[[0.5065867 1.1887336 ]\n", "[[2.5645728 1.2548523 ]\n",
" [1.8929014 2.2466118 ]\n", " [0.98752 2.6824017 ]\n",
" [0.35559946 1.2054992 ]\n", " [1.1131694 0.3420955 ]\n",
" [0.92654645 3.3641853 ]]\n", " [0.8574325 0.98460317]]\n",
"[-2.1159463 1.386125 -2.2334023 2.654917 ]\n" "[ 0.07427764 1.352323 -3.2026396 -2.173361 ]\n"
] ]
} }
], ],
...@@ -100,7 +98,7 @@ ...@@ -100,7 +98,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 4, "execution_count": 5,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
...@@ -108,12 +106,12 @@ ...@@ -108,12 +106,12 @@
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"0 +> [5 6 7]\n", "0 +> [5 6 7]\n",
"1 +> [5 7 9]\n", "1 -> [-3 -3 -3]\n",
"2 +> [ 5 9 15]\n", "2 +> [ 5 9 15]\n",
"3 -> [-3 3 21]\n", "3 -> [-3 3 21]\n",
"4 -> [-3 11 75]\n", "4 +> [ 5 21 87]\n",
"5 +> [ 5 37 249]\n", "5 -> [ -3 27 237]\n",
"6 +> [ 5 69 735]\n", "6 -> [ -3 59 723]\n",
"7 -> [ -3 123 2181]\n", "7 -> [ -3 123 2181]\n",
"8 +> [ 5 261 6567]\n", "8 +> [ 5 261 6567]\n",
"9 +> [ 5 517 19689]\n" "9 +> [ 5 517 19689]\n"
...@@ -146,7 +144,7 @@ ...@@ -146,7 +144,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 5, "execution_count": 6,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
...@@ -172,28 +170,28 @@ ...@@ -172,28 +170,28 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 5, "execution_count": 7,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"name": "stdout", "name": "stdout",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"0 [2.0915627]\n", "0 [1.3384138]\n",
"200 [0.67530334]\n", "200 [0.7855983]\n",
"400 [0.52042854]\n", "400 [0.59084535]\n",
"600 [0.28010666]\n", "600 [0.30849028]\n",
"800 [0.09739777]\n", "800 [0.26992702]\n",
"1000 [0.09307177]\n", "1000 [0.03990713]\n",
"1200 [0.04252927]\n", "1200 [0.07111286]\n",
"1400 [0.03095707]\n", "1400 [0.01177792]\n",
"1600 [0.03022156]\n", "1600 [0.03160322]\n",
"1800 [0.01616007]\n", "1800 [0.02757282]\n",
"2000 [0.01069116]\n", "2000 [0.00916022]\n",
"2200 [0.0055158]\n", "2200 [0.00217024]\n",
"2400 [0.00195092]\n", "2400 [0.00186833]\n",
"2600 [0.00101116]\n", "2600 [0.00101926]\n",
"2800 [0.00192219]\n" "2800 [0.0009654]\n"
] ]
} }
], ],
...@@ -220,8 +218,8 @@ ...@@ -220,8 +218,8 @@
" print(t, loss.numpy())\n", " print(t, loss.numpy())\n",
"\n", "\n",
" loss.backward()\n", " loss.backward()\n",
" optimizer.minimize(loss)\n", " optimizer.step()\n",
" model.clear_gradients()" " optimizer.clear_grad()"
] ]
}, },
{ {
...@@ -230,29 +228,29 @@ ...@@ -230,29 +228,29 @@
"source": [ "source": [
"# 构建更加灵活的网络:共享权重\n", "# 构建更加灵活的网络:共享权重\n",
"\n", "\n",
"- 使用动态图还可以更加方便的创建共享权重的网络,下面的示例展示了一个共享了权重的简单的AutoEncoder的示例。\n", "- 使用动态图还可以更加方便的创建共享权重的网络,下面的示例展示了一个共享了权重的简单的AutoEncoder。\n",
"- 你也可以参考图像搜索的示例看到共享参数权重的更实际的使用。" "- 你也可以参考图像搜索的示例看到共享参数权重的更实际的使用。"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 7, "execution_count": 8,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"name": "stdout", "name": "stdout",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"step: 0, loss: [0.37666085]\n", "step: 0, loss: [0.33474904]\n",
"step: 1, loss: [0.3063845]\n", "step: 1, loss: [0.31669515]\n",
"step: 2, loss: [0.2647248]\n", "step: 2, loss: [0.29729688]\n",
"step: 3, loss: [0.23831272]\n", "step: 3, loss: [0.27288628]\n",
"step: 4, loss: [0.21714918]\n", "step: 4, loss: [0.24694422]\n",
"step: 5, loss: [0.1955545]\n", "step: 5, loss: [0.2203041]\n",
"step: 6, loss: [0.17261818]\n", "step: 6, loss: [0.19171436]\n",
"step: 7, loss: [0.15009595]\n", "step: 7, loss: [0.16213782]\n",
"step: 8, loss: [0.13051331]\n", "step: 8, loss: [0.13443354]\n",
"step: 9, loss: [0.11537809]\n" "step: 9, loss: [0.11170781]\n"
] ]
} }
], ],
...@@ -270,8 +268,8 @@ ...@@ -270,8 +268,8 @@
" loss = loss_fn(outputs, inputs)\n", " loss = loss_fn(outputs, inputs)\n",
" loss.backward()\n", " loss.backward()\n",
" print(\"step: {}, loss: {}\".format(i, loss.numpy()))\n", " print(\"step: {}, loss: {}\".format(i, loss.numpy()))\n",
" optimizer.minimize(loss)\n", " optimizer.step()\n",
" linear.clear_gradients()" " optimizer.clear_grad()"
] ]
}, },
{ {
......
...@@ -37,7 +37,7 @@ ...@@ -37,7 +37,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 24, "execution_count": 22,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
...@@ -90,21 +90,21 @@ ...@@ -90,21 +90,21 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 25, "execution_count": 3,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"name": "stdout", "name": "stdout",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"paddle version 0.0.0\n" "paddle 2.0.0-beta0\n"
] ]
} }
], ],
"source": [ "source": [
"import paddle\n", "import paddle\n",
"paddle.disable_static()\n", "paddle.disable_static()\n",
"print(\"paddle version \" + paddle.__version__)" "print(\"paddle \" + paddle.__version__)"
] ]
}, },
{ {
...@@ -121,7 +121,7 @@ ...@@ -121,7 +121,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 26, "execution_count": 4,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
...@@ -150,7 +150,7 @@ ...@@ -150,7 +150,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 27, "execution_count": 5,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
...@@ -168,14 +168,14 @@ ...@@ -168,14 +168,14 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 28, "execution_count": 6,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"name": "stdout", "name": "stdout",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"w before optimize: -1.7107375860214233\n", "w before optimize: -1.696260690689087\n",
"b before optimize: 0.0\n" "b before optimize: 0.0\n"
] ]
} }
...@@ -205,7 +205,7 @@ ...@@ -205,7 +205,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 29, "execution_count": 7,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
...@@ -224,19 +224,19 @@ ...@@ -224,19 +224,19 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 30, "execution_count": 8,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"name": "stdout", "name": "stdout",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"epoch 0 loss [2107.3943]\n", "epoch 0 loss [2094.069]\n",
"epoch 1000 loss [7.8432994]\n", "epoch 1000 loss [7.8451133]\n",
"epoch 2000 loss [1.7537074]\n", "epoch 2000 loss [1.7541145]\n",
"epoch 3000 loss [0.39211753]\n", "epoch 3000 loss [0.39221546]\n",
"epoch 4000 loss [0.08767726]\n", "epoch 4000 loss [0.08769739]\n",
"finished training, loss [0.01963376]\n" "finished training, loss [0.0196382]\n"
] ]
} }
], ],
...@@ -246,8 +246,8 @@ ...@@ -246,8 +246,8 @@
" y_predict = linear(x_data)\n", " y_predict = linear(x_data)\n",
" loss = mse_loss(y_predict, y_data)\n", " loss = mse_loss(y_predict, y_data)\n",
" loss.backward()\n", " loss.backward()\n",
" sgd_optimizer.minimize(loss)\n", " sgd_optimizer.step()\n",
" linear.clear_gradients()\n", " sgd_optimizer.clear_grad()\n",
" \n", " \n",
" if i%1000 == 0:\n", " if i%1000 == 0:\n",
" print(\"epoch {} loss {}\".format(i, loss.numpy()))\n", " print(\"epoch {} loss {}\".format(i, loss.numpy()))\n",
...@@ -266,15 +266,15 @@ ...@@ -266,15 +266,15 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 31, "execution_count": 9,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"name": "stdout", "name": "stdout",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"w after optimize: 2.017843246459961\n", "w after optimize: 2.0178451538085938\n",
"b after optimize: 9.771851539611816\n" "b after optimize: 9.771825790405273\n"
] ]
} }
], ],
...@@ -297,7 +297,7 @@ ...@@ -297,7 +297,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 32, "execution_count": 10,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
...@@ -339,5 +339,5 @@ ...@@ -339,5 +339,5 @@
} }
}, },
"nbformat": 4, "nbformat": 4,
"nbformat_minor": 1 "nbformat_minor": 4
} }
...@@ -9,9 +9,7 @@ ...@@ -9,9 +9,7 @@
"本示例教程演示如何在IMDB数据集上用简单的BOW网络完成文本分类的任务。\n", "本示例教程演示如何在IMDB数据集上用简单的BOW网络完成文本分类的任务。\n",
"\n", "\n",
"IMDB数据集是一个对电影评论标注为正向评论与负向评论的数据集,共有25000条文本数据作为训练集,25000条文本数据作为测试集。\n", "IMDB数据集是一个对电影评论标注为正向评论与负向评论的数据集,共有25000条文本数据作为训练集,25000条文本数据作为测试集。\n",
"该数据集的官方地址为: http://ai.stanford.edu/~amaas/data/sentiment/\n", "该数据集的官方地址为: http://ai.stanford.edu/~amaas/data/sentiment/"
"\n",
"- Warning: `paddle.dataset.imdb`先在是一个非常粗野的实现,后续需要有替代的方案。"
] ]
}, },
{ {
...@@ -25,15 +23,14 @@ ...@@ -25,15 +23,14 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 4, "execution_count": 2,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"name": "stdout", "name": "stdout",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"0.0.0\n", "2.0.0-beta0\n"
"264e76cae6861ad9b1d4bcd8c3212f7a78c01e4d\n"
] ]
} }
], ],
...@@ -42,8 +39,7 @@ ...@@ -42,8 +39,7 @@
"import numpy as np\n", "import numpy as np\n",
"\n", "\n",
"paddle.disable_static()\n", "paddle.disable_static()\n",
"print(paddle.__version__)\n", "print(paddle.__version__)"
"print(paddle.__git_commit__)\n"
] ]
}, },
{ {
...@@ -57,7 +53,7 @@ ...@@ -57,7 +53,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 5, "execution_count": 3,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
...@@ -78,7 +74,7 @@ ...@@ -78,7 +74,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 6, "execution_count": 4,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
...@@ -126,7 +122,7 @@ ...@@ -126,7 +122,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 7, "execution_count": 22,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
...@@ -157,7 +153,7 @@ ...@@ -157,7 +153,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 8, "execution_count": 23,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
...@@ -190,7 +186,7 @@ ...@@ -190,7 +186,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 9, "execution_count": 24,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
...@@ -241,7 +237,7 @@ ...@@ -241,7 +237,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 11, "execution_count": 25,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
...@@ -269,19 +265,19 @@ ...@@ -269,19 +265,19 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 13, "execution_count": 26,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"name": "stdout", "name": "stdout",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"epoch: 0, batch_id: 0, loss is: [0.6926701]\n", "epoch: 0, batch_id: 0, loss is: [0.6918494]\n",
"epoch: 0, batch_id: 500, loss is: [0.41248566]\n", "epoch: 0, batch_id: 500, loss is: [0.33142853]\n",
"[validation] accuracy/loss: 0.8505121469497681/0.3615057170391083\n", "[validation] accuracy/loss: 0.8506321907043457/0.3620821535587311\n",
"epoch: 1, batch_id: 0, loss is: [0.29521096]\n", "epoch: 1, batch_id: 0, loss is: [0.37161]\n",
"epoch: 1, batch_id: 500, loss is: [0.2916747]\n", "epoch: 1, batch_id: 500, loss is: [0.2296829]\n",
"[validation] accuracy/loss: 0.86475670337677/0.3259459137916565\n" "[validation] accuracy/loss: 0.8622759580612183/0.3286365270614624\n"
] ]
} }
], ],
...@@ -311,8 +307,8 @@ ...@@ -311,8 +307,8 @@
" if batch_id % 500 == 0:\n", " if batch_id % 500 == 0:\n",
" print(\"epoch: {}, batch_id: {}, loss is: {}\".format(epoch, batch_id, avg_loss.numpy()))\n", " print(\"epoch: {}, batch_id: {}, loss is: {}\".format(epoch, batch_id, avg_loss.numpy()))\n",
" avg_loss.backward()\n", " avg_loss.backward()\n",
" opt.minimize(avg_loss)\n", " opt.step()\n",
" model.clear_gradients()\n", " opt.clear_grad()\n",
"\n", "\n",
" # evaluate model after one epoch\n", " # evaluate model after one epoch\n",
" model.eval()\n", " model.eval()\n",
...@@ -349,13 +345,6 @@ ...@@ -349,13 +345,6 @@
"\n", "\n",
"可以看到,在这个数据集上,经过两轮的迭代可以得到86%左右的准确率。你也可以通过调整网络结构和超参数,来获得更好的效果。" "可以看到,在这个数据集上,经过两轮的迭代可以得到86%左右的准确率。你也可以通过调整网络结构和超参数,来获得更好的效果。"
] ]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
} }
], ],
"metadata": { "metadata": {
...@@ -369,8 +358,20 @@ ...@@ -369,8 +358,20 @@
"display_name": "Python 3", "display_name": "Python 3",
"language": "python", "language": "python",
"name": "python3" "name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.7"
} }
}, },
"nbformat": 4, "nbformat": 4,
"nbformat_minor": 1 "nbformat_minor": 4
} }
...@@ -27,8 +27,7 @@ ...@@ -27,8 +27,7 @@
"name": "stdout", "name": "stdout",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"0.0.0\n", "2.0.0-beta0\n"
"89af2088b6e74bdfeef2d4d78e08461ed2aafee5\n"
] ]
} }
], ],
...@@ -39,8 +38,7 @@ ...@@ -39,8 +38,7 @@
"import numpy as np\n", "import numpy as np\n",
"\n", "\n",
"paddle.disable_static()\n", "paddle.disable_static()\n",
"print(paddle.__version__)\n", "print(paddle.__version__)"
"print(paddle.__git_commit__)"
] ]
}, },
{ {
...@@ -61,16 +59,16 @@ ...@@ -61,16 +59,16 @@
"name": "stdout", "name": "stdout",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"--2020-09-04 16:13:35-- https://www.manythings.org/anki/cmn-eng.zip\n", "--2020-09-10 16:17:25-- https://www.manythings.org/anki/cmn-eng.zip\n",
"Resolving www.manythings.org (www.manythings.org)... 104.24.109.196, 172.67.173.198, 2606:4700:3037::6818:6cc4, ...\n", "Resolving www.manythings.org (www.manythings.org)... 2606:4700:3033::6818:6dc4, 2606:4700:3036::ac43:adc6, 2606:4700:3037::6818:6cc4, ...\n",
"Connecting to www.manythings.org (www.manythings.org)|104.24.109.196|:443... connected.\n", "Connecting to www.manythings.org (www.manythings.org)|2606:4700:3033::6818:6dc4|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n", "HTTP request sent, awaiting response... 200 OK\n",
"Length: 1030722 (1007K) [application/zip]\n", "Length: 1030722 (1007K) [application/zip]\n",
"Saving to: ‘cmn-eng.zip’\n", "Saving to: ‘cmn-eng.zip’\n",
"\n", "\n",
"cmn-eng.zip 100%[===================>] 1007K 520KB/s in 1.9s \n", "cmn-eng.zip 100%[===================>] 1007K 91.2KB/s in 11s \n",
"\n", "\n",
"2020-09-04 16:13:38 (520 KB/s) - ‘cmn-eng.zip’ saved [1030722/1030722]\n", "2020-09-10 16:17:38 (91.2 KB/s) - ‘cmn-eng.zip’ saved [1030722/1030722]\n",
"\n", "\n",
"Archive: cmn-eng.zip\n", "Archive: cmn-eng.zip\n",
" inflating: cmn.txt \n", " inflating: cmn.txt \n",
...@@ -91,7 +89,7 @@ ...@@ -91,7 +89,7 @@
"name": "stdout", "name": "stdout",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
" 23610 cmn.txt\r\n" " 23610 cmn.txt\n"
] ]
} }
], ],
...@@ -421,65 +419,65 @@ ...@@ -421,65 +419,65 @@
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"epoch:0\n", "epoch:0\n",
"iter 0, loss:[7.6194725]\n", "iter 0, loss:[7.620109]\n",
"iter 200, loss:[3.4147663]\n", "iter 200, loss:[2.9760551]\n",
"epoch:1\n", "epoch:1\n",
"iter 0, loss:[3.0931656]\n", "iter 0, loss:[2.9679596]\n",
"iter 200, loss:[2.7543137]\n", "iter 200, loss:[3.161064]\n",
"epoch:2\n", "epoch:2\n",
"iter 0, loss:[2.8413522]\n", "iter 0, loss:[2.7516625]\n",
"iter 200, loss:[2.340513]\n", "iter 200, loss:[2.9755423]\n",
"epoch:3\n", "epoch:3\n",
"iter 0, loss:[2.597812]\n", "iter 0, loss:[2.7249248]\n",
"iter 200, loss:[2.5552855]\n", "iter 200, loss:[2.3419888]\n",
"epoch:4\n", "epoch:4\n",
"iter 0, loss:[2.0783448]\n", "iter 0, loss:[2.3236473]\n",
"iter 200, loss:[2.4544785]\n", "iter 200, loss:[2.3453429]\n",
"epoch:5\n", "epoch:5\n",
"iter 0, loss:[1.8709135]\n", "iter 0, loss:[2.1926975]\n",
"iter 200, loss:[1.8736631]\n", "iter 200, loss:[2.1977856]\n",
"epoch:6\n", "epoch:6\n",
"iter 0, loss:[1.9589291]\n", "iter 0, loss:[2.014393]\n",
"iter 200, loss:[2.119414]\n", "iter 200, loss:[2.1863418]\n",
"epoch:7\n", "epoch:7\n",
"iter 0, loss:[1.5829577]\n", "iter 0, loss:[1.8619595]\n",
"iter 200, loss:[1.6002902]\n", "iter 200, loss:[1.8904227]\n",
"epoch:8\n", "epoch:8\n",
"iter 0, loss:[1.6022769]\n", "iter 0, loss:[1.5901132]\n",
"iter 200, loss:[1.52694]\n", "iter 200, loss:[1.7812968]\n",
"epoch:9\n", "epoch:9\n",
"iter 0, loss:[1.3616685]\n", "iter 0, loss:[1.341565]\n",
"iter 200, loss:[1.5420443]\n", "iter 200, loss:[1.4957166]\n",
"epoch:10\n", "epoch:10\n",
"iter 0, loss:[1.0397792]\n", "iter 0, loss:[1.2202356]\n",
"iter 200, loss:[1.2458231]\n", "iter 200, loss:[1.3485341]\n",
"epoch:11\n", "epoch:11\n",
"iter 0, loss:[1.2107158]\n", "iter 0, loss:[1.1035374]\n",
"iter 200, loss:[1.426417]\n", "iter 200, loss:[1.2871654]\n",
"epoch:12\n", "epoch:12\n",
"iter 0, loss:[1.1840894]\n", "iter 0, loss:[1.194801]\n",
"iter 200, loss:[1.0999664]\n", "iter 200, loss:[1.0479954]\n",
"epoch:13\n", "epoch:13\n",
"iter 0, loss:[1.0968472]\n", "iter 0, loss:[1.0022258]\n",
"iter 200, loss:[0.8149167]\n", "iter 200, loss:[1.0899843]\n",
"epoch:14\n", "epoch:14\n",
"iter 0, loss:[0.95585203]\n", "iter 0, loss:[0.93466896]\n",
"iter 200, loss:[1.0070628]\n", "iter 200, loss:[0.99347967]\n",
"epoch:15\n", "epoch:15\n",
"iter 0, loss:[0.89463925]\n", "iter 0, loss:[0.83665943]\n",
"iter 200, loss:[0.8288595]\n", "iter 200, loss:[0.9594004]\n",
"epoch:16\n", "epoch:16\n",
"iter 0, loss:[0.5672495]\n", "iter 0, loss:[0.78929776]\n",
"iter 200, loss:[0.7317069]\n", "iter 200, loss:[0.945769]\n",
"epoch:17\n", "epoch:17\n",
"iter 0, loss:[0.76785177]\n", "iter 0, loss:[0.62574965]\n",
"iter 200, loss:[0.5319323]\n", "iter 200, loss:[0.6308163]\n",
"epoch:18\n", "epoch:18\n",
"iter 0, loss:[0.5250005]\n", "iter 0, loss:[0.63433456]\n",
"iter 200, loss:[0.4182841]\n", "iter 200, loss:[0.6287957]\n",
"epoch:19\n", "epoch:19\n",
"iter 0, loss:[0.52320284]\n", "iter 0, loss:[0.54270047]\n",
"iter 200, loss:[0.47618982]\n" "iter 200, loss:[0.72688276]\n"
] ]
} }
], ],
...@@ -527,9 +525,8 @@ ...@@ -527,9 +525,8 @@
" print(\"iter {}, loss:{}\".format(iteration, loss.numpy()))\n", " print(\"iter {}, loss:{}\".format(iteration, loss.numpy()))\n",
"\n", "\n",
" loss.backward()\n", " loss.backward()\n",
" opt.minimize(loss)\n", " opt.step()\n",
" encoder.clear_gradients()\n", " opt.clear_grad()"
" atten_decoder.clear_gradients()"
] ]
}, },
{ {
...@@ -544,43 +541,43 @@ ...@@ -544,43 +541,43 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 18, "execution_count": 12,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"name": "stdout", "name": "stdout",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"i agree with him\n", "i want to study french\n",
"true: 我同意他。\n", "true: 我要学法语。\n",
"pred: 我同意他。\n", "pred: 我要学法语。\n",
"i think i ll take a bath tonight\n", "i didn t know that he was there\n",
"true: 我想我今晚會洗澡。\n", "true: 我不知道他在那裡。\n",
"pred: 我想我今晚會洗澡。\n", "pred: 我不知道他在那裡。\n",
"he asked for a drink of water\n", "i called tom\n",
"true: 他要了水喝。\n", "true: 我給湯姆打了電話。\n",
"pred: 他喝了一杯水。\n", "pred: 我看見湯姆了。\n",
"i began running\n", "he is getting along with his employees\n",
"true: 我開始跑。\n", "true: 他和他的員工相處。\n",
"pred: 我開始跑。\n", "pred: 他和他的員工相處。\n",
"i m sick\n", "we raced toward the fire\n",
"true: 我生病了。\n", "true: 我們急忙跑向火。\n",
"pred: 我生病了。\n", "pred: 我們住在美國。\n",
"you had better go to the dentist s\n", "i ran away in a hurry\n",
"true: 你最好去看牙醫。\n", "true: 我趕快跑走了。\n",
"pred: 你最好去看牙醫。\n", "pred: 我在班里是最高。\n",
"we went for a walk in the forest\n", "he cut the envelope open\n",
"true: 我们去了林中散步。\n", "true: 他裁開了那個信封。\n",
"pred: 我們去公园散步。\n", "pred: 他裁開了信封。\n",
"you ve arrived very early\n", "he s shorter than tom\n",
"true: 你來得很早。\n", "true: 他比湯姆矮。\n",
"pred: 你去早个。\n", "pred: 他比湯姆矮。\n",
"he pretended not to be listening\n", "i ve just started playing tennis\n",
"true: 他裝作沒在聽。\n", "true: 我剛開始打網球。\n",
"pred: 他假装聽到它。\n", "pred: 我剛去打網球。\n",
"he always wanted to study japanese\n", "i need to go home\n",
"true: 他一直想學日語。\n", "true: 我该回家了。\n",
"pred: 他一直想學日語。\n" "pred: 我该回家了。\n"
] ]
} }
], ],
...@@ -632,13 +629,6 @@ ...@@ -632,13 +629,6 @@
"\n", "\n",
"你还可以通过变换网络结构,调整数据集,尝试不同的参数的方式来进一步提升本示例当中的机器翻译的效果。同时,也可以尝试在其他的类似的任务中用飞桨来完成实际的实践。" "你还可以通过变换网络结构,调整数据集,尝试不同的参数的方式来进一步提升本示例当中的机器翻译的效果。同时,也可以尝试在其他的类似的任务中用飞桨来完成实际的实践。"
] ]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
} }
], ],
"metadata": { "metadata": {
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册