提交 301c0f1e 编写于 作者: Y Yuanpeng

Translate Softmax Regression.

上级 e0b65164
...@@ -72,6 +72,29 @@ $$ crossentropy(label, y) = -\sum_i label_ilog(y_i) $$ ...@@ -72,6 +72,29 @@ $$ crossentropy(label, y) = -\sum_i label_ilog(y_i) $$
图2. softmax回归网络结构图<br/> 图2. softmax回归网络结构图<br/>
</p> </p>
### Softmax Regression
The simplest softmax regression model is to feed input to fully connected layers, and directly use softmax for multi-class classification \[[9](#References)\].
Input $X$ is multiplied with weights $W$, added by bias $b$, and activated.
$$ y_i = softmax(\sum_j W_{i,j}x_j + b_i) $$
where $ softmax(x_i) = \frac{e^{x_i}}{\sum_j e^{x_j}} $
For a $N$ class classification problem with $N$ output nodes, a $N$ dimensional input features is normalized to $N$ real values in [0, 1], each representing the probability of the sample to belong to the class. Here $y_i$ is the prediction probability that an image is digit $i$.
In classification problem, we usually use cross entropy loss function:
$$ crossentropy(label, y) = -\sum_i label_ilog(y_i) $$
Fig. 2 is softmax regression network, with weights in black, and bias in red. +1 indicates bias is 1.
<p align="center">
<img src="image/softmax_regression.png" width=400><br/>
Fig. 2. Softmax regression network architecture<br/>
</p>
### 多层感知器(Multilayer Perceptron, MLP) ### 多层感知器(Multilayer Perceptron, MLP)
Softmax回归模型采用了最简单的两层神经网络,即只有输入层和输出层,因此其拟合能力有限。为了达到更好的识别效果,我们考虑在输入层和输出层中间加上若干个隐藏层\[[10](#参考文献)\] Softmax回归模型采用了最简单的两层神经网络,即只有输入层和输出层,因此其拟合能力有限。为了达到更好的识别效果,我们考虑在输入层和输出层中间加上若干个隐藏层\[[10](#参考文献)\]
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册