提交 30040b2f 编写于 作者: T Tao Luo 提交者: GitHub

Merge pull request #205 from luotao1/clean

clean recognize digits
......@@ -24,7 +24,7 @@
files: \.md$
- id: remove-tabs
files: \.md$
- repo: git://github.com/reyoung/pre-commit-hooks-jinja-compile.git
- repo: https://github.com/reyoung/pre-commit-hooks-jinja-compile.git
sha: 85ad800cbc9c60a64230d60971aa9576fd57e508
hooks:
- id: convert-jinja2-into-html
......
#!/usr/bin/env sh
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This scripts downloads the mnist data and unzips it.
set -e
DIR="$( cd "$(dirname "$0")" ; pwd -P )"
rm -rf "$DIR/raw_data"
mkdir "$DIR/raw_data"
cd "$DIR/raw_data"
echo "Downloading..."
for fname in train-images-idx3-ubyte train-labels-idx1-ubyte t10k-images-idx3-ubyte t10k-labels-idx1-ubyte
do
if [ ! -e $fname ]; then
wget --no-check-certificate http://yann.lecun.com/exdb/mnist/${fname}.gz
gunzip ${fname}.gz
fi
done
cd $DIR
rm -f *.list
echo "./data/raw_data/train" > "$DIR/train.list"
echo "./data/raw_data/t10k" > "$DIR/test.list"
#!/usr/bin/python
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import re
import math
def get_best_pass(filename):
with open(filename, 'r') as f:
text = f.read()
pattern = re.compile(
'Test.*? cost=([0-9]+\.[0-9]+).*?classification_error_evaluator=([0-9]+\.[0-9]+).*?pass-([0-9]+)',
re.S)
results = re.findall(pattern, text)
sorted_results = sorted(results, key=lambda result: float(result[0]))
return sorted_results[0]
filename = sys.argv[1]
log = get_best_pass(filename)
classification_accuracy = (1 - float(log[1])) * 100
print 'Best pass is %s, testing Avgcost is %s' % (log[2], log[0])
print 'The classification accuracy is %.2f%%' % classification_accuracy
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import matplotlib.pyplot as plt
import random
import struct
def read_data(path, filename):
with open(path + filename + "-images-idx3-ubyte",
"rb") as f: # open picture file
magic, n, rows, cols = struct.unpack(">IIII", f.read(16))
images = np.fromfile(
f, 'ubyte',
count=n * rows * cols).reshape(n, rows, cols).astype('float32')
with open(path + filename + "-labels-idx1-ubyte",
"rb") as l: # open label file
magic, n = struct.unpack(">II", l.read(8))
labels = np.fromfile(l, 'ubyte', count=n).astype("int")
return images, labels
if __name__ == "__main__":
train_images, train_labels = read_data("./data/raw_data/", "train")
test_images, test_labels = read_data("./data/raw_data/", "t10k")
label_list = []
for i in range(10):
index = random.randint(0, train_images.shape[0] - 1)
label_list.append(train_labels[index])
plt.subplot(1, 10, i + 1)
plt.imshow(train_images[index], cmap="Greys_r")
plt.axis('off')
print('label: %s' % (label_list, ))
plt.show()
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer_config_helpers import *
is_predict = get_config_arg("is_predict", bool, False)
####################Data Configuration ##################
if not is_predict:
data_dir = './data/'
define_py_data_sources2(
train_list=data_dir + 'train.list',
test_list=data_dir + 'test.list',
module='mnist_provider',
obj='process')
######################Algorithm Configuration #############
settings(
batch_size=128,
learning_rate=0.1 / 128.0,
learning_method=MomentumOptimizer(0.9),
regularization=L2Regularization(0.0005 * 128))
#######################Network Configuration #############
data_size = 1 * 28 * 28
label_size = 10
img = data_layer(name='pixel', size=data_size)
def softmax_regression(img):
predict = fc_layer(input=img, size=10, act=SoftmaxActivation())
return predict
def multilayer_perceptron(img):
# The first fully-connected layer
hidden1 = fc_layer(input=img, size=128, act=ReluActivation())
# The second fully-connected layer and the according activation function
hidden2 = fc_layer(input=hidden1, size=64, act=ReluActivation())
# The thrid fully-connected layer, note that the hidden size should be 10,
# which is the number of unique digits
predict = fc_layer(input=hidden2, size=10, act=SoftmaxActivation())
return predict
def convolutional_neural_network(img):
# first conv layer
conv_pool_1 = simple_img_conv_pool(
input=img,
filter_size=5,
num_filters=20,
num_channel=1,
pool_size=2,
pool_stride=2,
act=TanhActivation())
# second conv layer
conv_pool_2 = simple_img_conv_pool(
input=conv_pool_1,
filter_size=5,
num_filters=50,
num_channel=20,
pool_size=2,
pool_stride=2,
act=TanhActivation())
# The first fully-connected layer
fc1 = fc_layer(input=conv_pool_2, size=128, act=TanhActivation())
# The softmax layer, note that the hidden size should be 10,
# which is the number of unique digits
predict = fc_layer(input=fc1, size=10, act=SoftmaxActivation())
return predict
predict = softmax_regression(img)
#predict = multilayer_perceptron(img)
#predict = convolutional_neural_network(img)
if not is_predict:
lbl = data_layer(name="label", size=label_size)
inputs(img, lbl)
outputs(classification_cost(input=predict, label=lbl))
else:
outputs(predict)
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer.PyDataProvider2 import *
import numpy as np
import struct
# Define a py data provider
@provider(
input_types={'pixel': dense_vector(28 * 28),
'label': integer_value(10)})
def process(settings, filename): # settings is not used currently.
with open(filename + "-images-idx3-ubyte", "rb") as f: # open picture file
magic, n, rows, cols = struct.unpack(">IIII", f.read(16))
images = np.fromfile(
f, 'ubyte',
count=n * rows * cols).reshape(n, rows, cols).astype('float32')
images = images / 255.0 * 2.0 - 1.0 # normalized to [-1,1]
with open(filename + "-labels-idx1-ubyte", "rb") as l: # open label file
magic, n = struct.unpack(">II", l.read(8))
labels = np.fromfile(l, 'ubyte', count=n).astype("int")
for i in xrange(n):
yield {"pixel": images[i, :], 'label': labels[i]}
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import matplotlib.pyplot as plt
import re
import sys
def plot_log(filename):
with open(filename, 'r') as f:
text = f.read()
pattern = re.compile(
'AvgCost=([0-9]+\.[0-9]+).*?Test.*? cost=([0-9]+\.[0-9]+).*?pass-([0-9]+)',
re.S)
results = re.findall(pattern, text)
train_cost, test_cost, pass_ = zip(*results)
train_cost_float = map(float, train_cost)
test_cost_float = map(float, test_cost)
pass_int = map(int, pass_)
plt.plot(pass_int, train_cost_float, 'red', label='Train')
plt.plot(pass_int, test_cost_float, 'g--', label='Test')
plt.ylabel('AvgCost')
plt.xlabel('Epoch')
# Now add the legend with some customizations.
legend = plt.legend(loc='upper right', shadow=False)
# The frame is matplotlib.patches.Rectangle instance surrounding the legend.
frame = legend.get_frame()
frame.set_facecolor('0.90')
# Set the fontsize
for label in legend.get_texts():
label.set_fontsize('large')
for label in legend.get_lines():
label.set_linewidth(1.5) # the legend line width
plt.show()
if __name__ == '__main__':
plot_log(sys.argv[1])
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Usage: predict.py -c CONF -d DATA -m MODEL
Arguments:
CONF train conf
DATA MNIST Data
MODEL Model
Options:
-h --help
-c conf
-d data
-m model
"""
import os
import sys
from docopt import docopt
import numpy as np
from py_paddle import swig_paddle, DataProviderConverter
from paddle.trainer.PyDataProvider2 import dense_vector
from paddle.trainer.config_parser import parse_config
from load_data import read_data
class Prediction():
def __init__(self, train_conf, data_dir, model_dir):
conf = parse_config(train_conf, 'is_predict=1')
self.network = swig_paddle.GradientMachine.createFromConfigProto(
conf.model_config)
self.network.loadParameters(model_dir)
self.images, self.labels = read_data(data_dir, "t10k")
self.images = self.images / 255.0 * 2.0 - 1.0 # normalized to [-1,1]
slots = [dense_vector(28 * 28)]
self.converter = DataProviderConverter(slots)
def predict(self, index):
input = self.converter([[self.images[index].flatten().tolist()]])
output = self.network.forwardTest(input)
prob = output[0]["value"]
predict = np.argsort(-prob)
print "Predicted probability of each digit:"
print prob
print "Predict Number: %d" % predict[0][0]
print "Actual Number: %d" % self.labels[index]
def main():
arguments = docopt(__doc__)
train_conf = arguments['CONF']
data_dir = arguments['DATA']
model_dir = arguments['MODEL']
swig_paddle.initPaddle("--use_gpu=0")
predictor = Prediction(train_conf, data_dir, model_dir)
while True:
index = int(raw_input("Input image_id [0~9999]: "))
predictor.predict(index)
if __name__ == '__main__':
main()
#!/bin/bash
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set -e
config=mnist_model.py
output=./softmax_mnist_model
log=softmax_train.log
paddle train \
--config=$config \
--dot_period=10 \
--log_period=100 \
--test_all_data_in_one_period=1 \
--use_gpu=0 \
--trainer_count=1 \
--num_passes=100 \
--save_dir=$output \
2>&1 | tee $log
python -m paddle.utils.plotcurve -i $log > plot.png
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册