提交 29291677 编写于 作者: Y Yi Wang

Resolve conflicts

...@@ -8,6 +8,10 @@ ...@@ -8,6 +8,10 @@
和判别式神经元网络模型相对的一类模型是生成式模型(generative models)。它们通常是通过非监督训练(unsupervised learning)来得到的。这类模型的训练数据里只有 X,没有y。训练的目标是希望模型能蕴含训练数据的统计分布信息,从而可以从训练好的模型里产生出新的、在训练数据里没有出现过的新数据 x'。 和判别式神经元网络模型相对的一类模型是生成式模型(generative models)。它们通常是通过非监督训练(unsupervised learning)来得到的。这类模型的训练数据里只有 X,没有y。训练的目标是希望模型能蕴含训练数据的统计分布信息,从而可以从训练好的模型里产生出新的、在训练数据里没有出现过的新数据 x'。
一些为人熟知的生成模型的例子包括受限玻尔兹曼机(Restricted Boltzmann Machine)\[[4](#参考文献)\],深度玻尔兹曼机(Deep Boltzmann Machine)\[[5](#参考文献)\],神经自回归分布估计(Neural Autoregressive Distribution Estimator)\[[6](#参考文献)\]等。
近年出现了一些专门用来生成图像的模型,一种是变分自编码器(variational autoencoder)\[[3](#参考文献)\],它是在概率图模型(probabilistic graphical model)的框架下面搭建了一个生成模型,对数据有完整的概率描述,训练时是通过调节参数来最大化数据的概率。用这种方法产生的图片,虽然似然(likelihood)比较高,但经常看起来比较模糊。另一种是像素循环神经网络(Pixel Recurrent Neural Network)\[[7](#参考文献)\],它是通过根据周围的像素来一个像素一个像素的生成图片,但这种方法生成的图片在全局看来会不太一致。为了解决这些问题,人们又提出了本章所要介绍的另一种生成模型,对抗式生成网络。
本文介绍如何训练一个产生式神经元网络模型,它的输入是一个随机生成的向量(相当于不需要任何有意义的输入),而输出是一幅图像,其中有一个数字。换句话说,我们训练一个会写字(阿拉伯数字)的神经元网络模型。它“写”的一些数字如下图: 本文介绍如何训练一个产生式神经元网络模型,它的输入是一个随机生成的向量(相当于不需要任何有意义的输入),而输出是一幅图像,其中有一个数字。换句话说,我们训练一个会写字(阿拉伯数字)的神经元网络模型。它“写”的一些数字如下图:
<p align="center"> <p align="center">
...@@ -17,11 +21,18 @@ ...@@ -17,11 +21,18 @@
现实中成功使用的生成式神经元网络模型往往接受有意义的输入。比如可能接受一幅低分辨率的图像,输出对应的高分辨率图像。这样的模型被称为 conditional GAN这过程实际上是从大量数据学习得到模型,或者说归纳得到知识,然后用这些知识来补足图像的分辨率。 现实中成功使用的生成式神经元网络模型往往接受有意义的输入。比如可能接受一幅低分辨率的图像,输出对应的高分辨率图像。这样的模型被称为 conditional GAN这过程实际上是从大量数据学习得到模型,或者说归纳得到知识,然后用这些知识来补足图像的分辨率。
## 传统训练方式和对抗式训练 ## 传统训练方式和对抗式训练
因为神经元网络是一个有向图,总是有输入和输出的。当我们用无监督学习方式来训练一个神经元网络,用于描述训练数据分布的时候,一个通常的学习目标是估计一组参数,使得输出和输入很接近 —— 或者说输入是什么输出就是什么。很多早期的生成式神经元网络模型,包括有限制波尔茨曼机(restricted Boltzmann machine,RBM)和 autoencoder 都是这么训练的。这种情况下优化目标经常是最小化输出和输入的差别。 因为神经元网络是一个有向图,总是有输入和输出的。当我们用无监督学习方式来训练一个神经元网络,用于描述训练数据分布的时候,一个通常的学习目标是估计一组参数,使得输出和输入很接近 —— 或者说输入是什么输出就是什么。很多早期的生成式神经元网络模型,包括受限波尔茨曼机和 autoencoder 都是这么训练的。这种情况下优化目标经常是最小化输出和输入的差别。
<p align="center">
<img src="./gan.png" width="500" height="300"><br/>
图2. GAN模型原理示意图
<a href="https://ishmaelbelghazi.github.io/ALI/">figure credit</a>
</p>
对抗式训练里,我们用一个判别式模型 D 辅助构造优化目标函数,来训练一个生成式模型 G。具体训练流程是不断交替执行如下两步: 对抗式训练里,我们用一个判别式模型 D 辅助构造优化目标函数,来训练一个生成式模型 G。如图2所示。具体训练流程是不断交替执行如下两步:
1. 更新模型 D: 1. 更新模型 D:
1. 固定G的参数不变,对于一组随机输入,得到一组(产生式)输出,$X_f$,并且将其label成“假”。 1. 固定G的参数不变,对于一组随机输入,得到一组(产生式)输出,$X_f$,并且将其label成“假”。
...@@ -39,23 +50,28 @@ $$\min_G \max_D \frac{1}{N}\sum_{i=1}^N[\log D(x^i) + \log(1-D(G(z^i)))]$$ ...@@ -39,23 +50,28 @@ $$\min_G \max_D \frac{1}{N}\sum_{i=1}^N[\log D(x^i) + \log(1-D(G(z^i)))]$$
其中$x$是真实数据,$z$是随机产生的输入,$N$是训练数据的数量。这个损失函数的意思是:真实数据被分类为真的概率加上伪数据被分类为假的概率。因为上述两步交替优化G生成的结果的仿真程度(看起来像x)和D分辨G的生成结果和x的能力,所以这个方法被称为对抗(adversarial)方法。 其中$x$是真实数据,$z$是随机产生的输入,$N$是训练数据的数量。这个损失函数的意思是:真实数据被分类为真的概率加上伪数据被分类为假的概率。因为上述两步交替优化G生成的结果的仿真程度(看起来像x)和D分辨G的生成结果和x的能力,所以这个方法被称为对抗(adversarial)方法。
在最早的对抗式生成网络的论文中,生成器和分类器用的都是全联接层,所以没有办法很好的生成图片数据,也没有办法做的很深。所以在随后的论文中,人们提出了深度卷积对抗式生成网络(deep convolutional generative adversarial network or DCGAN)\[[2](#参考文献)\]。在DCGAN中,生成器 G 是由多个卷积转置层(transposed convolution)组成的,这样可以用更少的参数来生成质量更高的图片。具体网络结果可参见图3。 在最早的对抗式生成网络的论文中,生成器和分类器用的都是全联接层。在附带的代码[`gan_conf.py`](./gan_conf.py)中,我们实现了一个类似的结构。G和D是由三层全联接层构成,并且在某些全联接层后面加入了批标准化层(batch normalization)。所用网络结构在图3中给出。
<p align="center">
<img src="./gan_conf_graph.png" width="700" height="400"><br/>
图3. GAN模型结构图
</p>
由于上面的这种网络都是由全联接层组成,所以没有办法很好的生成图片数据,也没有办法做的很深。所以在随后的论文中,人们提出了深度卷积对抗式生成网络(deep convolutional generative adversarial network or DCGAN)\[[2](#参考文献)\]。在DCGAN中,生成器 G 是由多个卷积转置层(transposed convolution)组成的,这样可以用更少的参数来生成质量更高的图片。具体网络结果可参见图4。而判别器是由多个卷积层组成。
<p align="center"> <p align="center">
<img src="./dcgan.png" width="700" height="300"><br/> <img src="./dcgan.png" width="700" height="300"><br/>
3. DCGAN生成器模型结构 4. DCGAN生成器模型结构
<a href="https://arxiv.org/pdf/1511.06434v2.pdf">figure credit</a> <a href="https://arxiv.org/pdf/1511.06434v2.pdf">figure credit</a>
</p> </p>
## 数据准备 ## 数据
### 数据介绍与下载
这章会用到两种数据,一种是G的随机输入,一种是来自MNIST数据集的图片,其中一张是人类手写的一个数字。随机输入数据的生成方式如下: 这章会用到两种数据,一种是G的随机输入,一种是来自MNIST数据集的图片,其中一张是人类手写的一个数字。随机输入数据的生成方式如下:
```python ```python
# synthesize 2-D uniform data in gan_trainer.py:114 # 合成2-D均匀分布数据 gan_trainer.py:114
def load_uniform_data(): def load_uniform_data():
data = numpy.random.rand(1000000, 2).astype('float32') data = numpy.random.rand(1000000, 2).astype('float32')
return data return data
...@@ -75,10 +91,45 @@ $cd data/ ...@@ -75,10 +91,45 @@ $cd data/
$./download_cifar.sh $./download_cifar.sh
``` ```
## 模型配置说明 ## 模型配置
由于对抗式生产网络涉及到多个神经网络,所以必须用PaddlePaddle Python API来训练。下面的介绍也可以部分的拿来当作PaddlePaddle Python API的使用说明。 由于对抗式生产网络涉及到多个神经网络,所以必须用PaddlePaddle Python API来训练。下面的介绍也可以部分的拿来当作PaddlePaddle Python API的使用说明。
### 数据定义
这里数据没有通过data provider提供,而是在`gan_trainer.py`里面直接产生`data_batch`并以`Arguments`的形式提供给trainer。
```python
def prepare_generator_data_batch(batch_size, noise):
# generator训练标签。根据前文的介绍,generator是为了让自己的生成的数据
# 被标记为真,所以这里的标签都统一生成1,也就是真
label = numpy.ones(batch_size, dtype='int32')
数据是Arguments的类型这里创建的一个有两个位置的Arguments
inputs = api.Arguments.createArguments(2)
第一个Argument位置放noise
inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(noise))
第二个Argument位置放label
inputs.setSlotIds(1, api.IVector.createVectorFromNumpy(label))
return inputs
为generator训练创造数据
data_batch_gen = prepare_generator_data_batch(batch_size, noise)
# 把数据data_batch_gen传递给generator trainer
gen_trainer.trainOneDataBatch(batch_size, data_batch_gen)
```
### 算法配置
在这里,我们指定了模型的训练参数, 选择learning rate和batch size。这里的`beta1`参数比默认值0.9小很多是为了使学习的过程更稳定。
```python
settings(
batch_size=128,
learning_rate=1e-4,
learning_method=AdamOptimizer(beta1=0.5))
```
### 模型结构 ### 模型结构
在文件`gan_conf.py`当中我们定义了三个网络, **generator_training**, **discriminator_training** and **generator**. 和前文提到的模型结构的关系是:**discriminator_training** 是分类器,**generator** 是生成器,**generator_training** 是生成器加分类器因为训练生成器时需要用到分类器提供目标函数。这个对应关系在下面这段代码中定义: 在文件`gan_conf.py`当中我们定义了三个网络, **generator_training**, **discriminator_training** and **generator**. 和前文提到的模型结构的关系是:**discriminator_training** 是分类器,**generator** 是生成器,**generator_training** 是生成器加分类器因为训练生成器时需要用到分类器提供目标函数。这个对应关系在下面这段代码中定义:
...@@ -86,6 +137,7 @@ $./download_cifar.sh ...@@ -86,6 +137,7 @@ $./download_cifar.sh
```python ```python
if is_generator_training: if is_generator_training:
noise = data_layer(name="noise", size=noise_dim) noise = data_layer(name="noise", size=noise_dim)
# 函数generator定义了生成器的结构
sample = generator(noise) sample = generator(noise)
if is_discriminator_training: if is_discriminator_training:
...@@ -93,6 +145,7 @@ if is_discriminator_training: ...@@ -93,6 +145,7 @@ if is_discriminator_training:
if is_generator_training or is_discriminator_training: if is_generator_training or is_discriminator_training:
label = data_layer(name="label", size=1) label = data_layer(name="label", size=1)
函数discriminator定义了判别器的结构
prob = discriminator(sample) prob = discriminator(sample)
cost = cross_entropy(input=prob, label=label) cost = cross_entropy(input=prob, label=label)
classification_error_evaluator( classification_error_evaluator(
...@@ -104,7 +157,32 @@ if is_generator: ...@@ -104,7 +157,32 @@ if is_generator:
outputs(generator(noise)) outputs(generator(noise))
``` ```
为了能够训练在`gan_conf.py`中定义的网络,我们需要如下几个步骤: ## 训练模型
用MNIST手写数字图片训练对抗式生成网络可以用如下的命令:
```bash
$python gan_trainer.py -d mnist --use_gpu 1
```
训练中打印的日志信息大致如下:
```
d_pos_loss is 0.681067 d_neg_loss is 0.704936
d_loss is 0.693001151085 g_loss is 0.681496
...........d_pos_loss is 0.64475 d_neg_loss is 0.667874
d_loss is 0.656311988831 g_loss is 0.719081
...
I0105 17:15:48.346783 20517 TrainerInternal.cpp:165] Batch=100 samples=12800 AvgCost=0.701575 CurrentCost=0.701575 Eval: generator_training_error=0.679219 CurrentEval: generator_training_error=0.679219
.........d_pos_loss is 0.644203 d_neg_loss is 0.71601
d_loss is 0.680106401443 g_loss is 0.671118
....
I0105 17:16:37.172737 20517 TrainerInternal.cpp:165] Batch=100 samples=12800 AvgCost=0.687359 CurrentCost=0.687359 Eval: discriminator_training_error=0.438359 CurrentEval: discriminator_training_error=0.438359
```
其中`d_pos_loss`是判别器对于真实数据判别真的负对数概率,`d_neg_loss`是判别器对于伪数据判别为假的负对数概率,`d_loss`是这两者的平均值。`g_loss`是伪数据被判别器判别为真的负对数概率。对于对抗式生成网络来说,最好的训练情况是D和G的能力比较相近,也就是`d_loss``g_loss`在训练的前几个pass中数值比较接近(-log(0.5) = 0.693)。由于G和D是轮流训练,所以它们各自每过100个batch,都会打印各自的训练信息。
为了能够训练在gan_conf.py中定义的网络,我们需要如下几个步骤:
1. 初始化Paddle环境, 1. 初始化Paddle环境,
1. 解析设置, 1. 解析设置,
...@@ -112,19 +190,20 @@ if is_generator: ...@@ -112,19 +190,20 @@ if is_generator:
这几步分别由下面几段代码实现: 这几步分别由下面几段代码实现:
```python ```python
import py_paddle.swig_paddle as api import py_paddle.swig_paddle as api
# init paddle environment # 初始化Paddle环境
api.initPaddle('--use_gpu=' + use_gpu, '--dot_period=10', api.initPaddle('--use_gpu=' + use_gpu, '--dot_period=10',
'--log_period=100', '--gpu_id=' + args.gpu_id, '--log_period=100', '--gpu_id=' + args.gpu_id,
'--save_dir=' + "./%s_params/" % data_source) '--save_dir=' + "./%s_params/" % data_source)
# Parse config # 解析设置
gen_conf = parse_config(conf, "mode=generator_training,data=" + data_source) gen_conf = parse_config(conf, "mode=generator_training,data=" + data_source)
dis_conf = parse_config(conf, "mode=discriminator_training,data=" + data_source) dis_conf = parse_config(conf, "mode=discriminator_training,data=" + data_source)
generator_conf = parse_config(conf, "mode=generator,data=" + data_source) generator_conf = parse_config(conf, "mode=generator,data=" + data_source)
# Create GradientMachine # 由设置创造GradientMachine
dis_training_machine = api.GradientMachine.createFromConfigProto( dis_training_machine = api.GradientMachine.createFromConfigProto(
dis_conf.model_config) dis_conf.model_config)
gen_training_machine = api.GradientMachine.createFromConfigProto( gen_training_machine = api.GradientMachine.createFromConfigProto(
...@@ -132,7 +211,7 @@ gen_conf.model_config) ...@@ -132,7 +211,7 @@ gen_conf.model_config)
generator_machine = api.GradientMachine.createFromConfigProto( generator_machine = api.GradientMachine.createFromConfigProto(
generator_conf.model_config) generator_conf.model_config)
# Create trainer # 由GradientMachine创造trainer
dis_trainer = api.Trainer.create(dis_conf, dis_training_machine) dis_trainer = api.Trainer.create(dis_conf, dis_training_machine)
gen_trainer = api.Trainer.create(gen_conf, gen_training_machine) gen_trainer = api.Trainer.create(gen_conf, gen_training_machine)
``` ```
...@@ -150,58 +229,24 @@ def get_training_loss(training_machine, inputs): ...@@ -150,58 +229,24 @@ def get_training_loss(training_machine, inputs):
每当训练完一个网络,我们需要和其他几个网络同步互相分享的参数值。下面的代码展示了其中一个例子: 每当训练完一个网络,我们需要和其他几个网络同步互相分享的参数值。下面的代码展示了其中一个例子:
```python ```python
# Train the gen_training # 训练gen_training
gen_trainer.trainOneDataBatch(batch_size, data_batch_gen) gen_trainer.trainOneDataBatch(batch_size, data_batch_gen)
# Copy the parameters from gen_training to dis_training and generator # 把gen_training中的参数同步到dis_training和generator当中
copy_shared_parameters(gen_training_machine, copy_shared_parameters(gen_training_machine,
dis_training_machine) dis_training_machine)
copy_shared_parameters(gen_training_machine, generator_machine) copy_shared_parameters(gen_training_machine, generator_machine)
``` ```
### 数据定义
这里数据没有通过`dataprovider`提供,而是在`gan_trainer.py`里面直接产生读取minibatches,并以`Arguments`的形式提供给trainer。
```python
def prepare_generator_data_batch(batch_size, noise):
label = numpy.ones(batch_size, dtype='int32')
inputs = api.Arguments.createArguments(2)
inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(noise))
inputs.setSlotIds(1, api.IVector.createVectorFromNumpy(label))
return inputs
Create data_batch for generator
data_batch_gen = prepare_generator_data_batch(batch_size, noise)
# Feed data_batch_gen into generator trainer
gen_trainer.trainOneDataBatch(batch_size, data_batch_gen)
```
### 算法配置
在这里,我们指定了模型的训练参数, 选择learning rate和batch size。这里的`beta1`参数比默认值0.9小很多是为了使学习的过程更稳定。
```python
settings(
batch_size=128,
learning_rate=1e-4,
learning_method=AdamOptimizer(beta1=0.5))
```
## 训练模型
用MNIST手写数字图片训练对抗式生成网络可以用如下的命令:
```bash
$python gan_trainer.py -d mnist --useGpu 1
```
## 应用模型 ## 应用模型
图片由训练好的生成器生成。以下的代码将随机向量输入到模型 G,通过向前传递得到生成的图片。 图片由训练好的生成器生成。以下的代码将随机向量输入到模型 G,通过向前传递得到生成的图片。
```python ```python
# 噪音z是多维正态分布
def get_noise(batch_size, noise_dim):
return numpy.random.normal(size=(batch_size, noise_dim)).astype('float32')
def get_fake_samples(generator_machine, batch_size, noise): def get_fake_samples(generator_machine, batch_size, noise):
gen_inputs = api.Arguments.createArguments(1) gen_inputs = api.Arguments.createArguments(1)
gen_inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(noise)) gen_inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(noise))
...@@ -210,7 +255,8 @@ def get_fake_samples(generator_machine, batch_size, noise): ...@@ -210,7 +255,8 @@ def get_fake_samples(generator_machine, batch_size, noise):
fake_samples = gen_outputs.getSlotValue(0).copyToNumpyMat() fake_samples = gen_outputs.getSlotValue(0).copyToNumpyMat()
return fake_samples return fake_samples
# At the end of each pass, save the generated samples/images # 在每个pass的最后,保存生成的图片
noise = get_noise(batch_size, noise_dim)
fake_samples = get_fake_samples(generator_machine, batch_size, noise) fake_samples = get_fake_samples(generator_machine, batch_size, noise)
``` ```
...@@ -223,3 +269,8 @@ fake_samples = get_fake_samples(generator_machine, batch_size, noise) ...@@ -223,3 +269,8 @@ fake_samples = get_fake_samples(generator_machine, batch_size, noise)
1. Goodfellow I, Pouget-Abadie J, Mirza M, et al. [Generative adversarial nets](https://arxiv.org/pdf/1406.2661v1.pdf)[C] Advances in Neural Information Processing Systems. 2014 1. Goodfellow I, Pouget-Abadie J, Mirza M, et al. [Generative adversarial nets](https://arxiv.org/pdf/1406.2661v1.pdf)[C] Advances in Neural Information Processing Systems. 2014
2. Radford A, Metz L, Chintala S. [Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks](https://arxiv.org/pdf/1511.06434v2.pdf)[C] arXiv preprint arXiv:1511.06434. 2015 2. Radford A, Metz L, Chintala S. [Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks](https://arxiv.org/pdf/1511.06434v2.pdf)[C] arXiv preprint arXiv:1511.06434. 2015
3. Kingma D.P. and Welling M. [Auto-encoding variational bayes](https://arxiv.org/pdf/1312.6114v10.pdf)[C] arXiv preprint arXiv:1312.6114. 2013
4. Hinton G and Salakhutdinov R. [Reducing the dimensionality of data with neural networks](https://www.cs.toronto.edu/~hinton/science.pdf) Science 313.5786. 2006
5. Salakhutdinov R and Hinton G. [Deep Boltzmann Machines](http://www.jmlr.org/proceedings/papers/v5/salakhutdinov09a/salakhutdinov09a.pdf)[J] AISTATS. Vol. 1. 2009
6. Larochelle H and Murray I. [The Neural Autoregressive Distribution Estimator](http://www.jmlr.org/proceedings/papers/v15/larochelle11a/larochelle11a.pdf) AISTATS. Vol. 1. 2011.
7. van den Oord A, Kalchbrenner N and Kavukcuoglu K. [Pixel Recurrent Neural Networks](https://arxiv.org/pdf/1601.06759v3.pdf) arXiv preprint arXiv:1601.06759 (2016).
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册