提交 28935ac4 编写于 作者: Q qiaolongfei

move READERME.api.md to README.md

上级 bc9d4579
此差异已折叠。
此差异已折叠。
import os
import paddle.v2 as paddle import paddle.v2 as paddle
from seqToseq_net_v2 import seqToseq_net_v2
# Data Definiation.
# TODO:This code should be merged to dataset package.
data_dir = "./data/pre-wmt14"
src_lang_dict = os.path.join(data_dir, 'src.dict')
trg_lang_dict = os.path.join(data_dir, 'trg.dict')
source_dict_dim = len(open(src_lang_dict, "r").readlines())
target_dict_dim = len(open(trg_lang_dict, "r").readlines())
def read_to_dict(dict_path):
with open(dict_path, "r") as fin:
out_dict = {
line.strip(): line_count
for line_count, line in enumerate(fin)
}
return out_dict
src_dict = read_to_dict(src_lang_dict)
trg_dict = read_to_dict(trg_lang_dict)
train_list = os.path.join(data_dir, 'train.list')
test_list = os.path.join(data_dir, 'test.list')
UNK_IDX = 2
START = "<s>"
END = "<e>"
def _get_ids(s, dictionary):
words = s.strip().split()
return [dictionary[START]] + \
[dictionary.get(w, UNK_IDX) for w in words] + \
[dictionary[END]]
def train_reader(file_name):
def reader():
with open(file_name, 'r') as f:
for line_count, line in enumerate(f):
line_split = line.strip().split('\t')
if len(line_split) != 2:
continue
src_seq = line_split[0] # one source sequence
src_ids = _get_ids(src_seq, src_dict)
trg_seq = line_split[1] # one target sequence
trg_words = trg_seq.split()
trg_ids = [trg_dict.get(w, UNK_IDX) for w in trg_words]
# remove sequence whose length > 80 in training mode
if len(src_ids) > 80 or len(trg_ids) > 80:
continue
trg_ids_next = trg_ids + [trg_dict[END]]
trg_ids = [trg_dict[START]] + trg_ids
yield src_ids, trg_ids, trg_ids_next def seqToseq_net(source_dict_dim, target_dict_dim):
### Network Architecture
return reader word_vector_dim = 512 # dimension of word vector
decoder_size = 512 # dimension of hidden unit in GRU Decoder network
encoder_size = 512 # dimension of hidden unit in GRU Encoder network
#### Encoder
src_word_id = paddle.layer.data(
name='source_language_word',
type=paddle.data_type.integer_value_sequence(source_dict_dim))
src_embedding = paddle.layer.embedding(
input=src_word_id,
size=word_vector_dim,
param_attr=paddle.attr.ParamAttr(name='_source_language_embedding'))
src_forward = paddle.networks.simple_gru(
input=src_embedding, size=encoder_size)
src_backward = paddle.networks.simple_gru(
input=src_embedding, size=encoder_size, reverse=True)
encoded_vector = paddle.layer.concat(input=[src_forward, src_backward])
#### Decoder
with paddle.layer.mixed(size=decoder_size) as encoded_proj:
encoded_proj += paddle.layer.full_matrix_projection(
input=encoded_vector)
backward_first = paddle.layer.first_seq(input=src_backward)
with paddle.layer.mixed(
size=decoder_size, act=paddle.activation.Tanh()) as decoder_boot:
decoder_boot += paddle.layer.full_matrix_projection(
input=backward_first)
def gru_decoder_with_attention(enc_vec, enc_proj, current_word):
decoder_mem = paddle.layer.memory(
name='gru_decoder', size=decoder_size, boot_layer=decoder_boot)
context = paddle.networks.simple_attention(
encoded_sequence=enc_vec,
encoded_proj=enc_proj,
decoder_state=decoder_mem)
with paddle.layer.mixed(size=decoder_size * 3) as decoder_inputs:
decoder_inputs += paddle.layer.full_matrix_projection(input=context)
decoder_inputs += paddle.layer.full_matrix_projection(
input=current_word)
gru_step = paddle.layer.gru_step(
name='gru_decoder',
input=decoder_inputs,
output_mem=decoder_mem,
size=decoder_size)
with paddle.layer.mixed(
size=target_dict_dim,
bias_attr=True,
act=paddle.activation.Softmax()) as out:
out += paddle.layer.full_matrix_projection(input=gru_step)
return out
decoder_group_name = "decoder_group"
group_input1 = paddle.layer.StaticInputV2(input=encoded_vector, is_seq=True)
group_input2 = paddle.layer.StaticInputV2(input=encoded_proj, is_seq=True)
group_inputs = [group_input1, group_input2]
trg_embedding = paddle.layer.embedding(
input=paddle.layer.data(
name='target_language_word',
type=paddle.data_type.integer_value_sequence(target_dict_dim)),
size=word_vector_dim,
param_attr=paddle.attr.ParamAttr(name='_target_language_embedding'))
group_inputs.append(trg_embedding)
# For decoder equipped with attention mechanism, in training,
# target embeding (the groudtruth) is the data input,
# while encoded source sequence is accessed to as an unbounded memory.
# Here, the StaticInput defines a read-only memory
# for the recurrent_group.
decoder = paddle.layer.recurrent_group(
name=decoder_group_name,
step=gru_decoder_with_attention,
input=group_inputs)
lbl = paddle.layer.data(
name='target_language_next_word',
type=paddle.data_type.integer_value_sequence(target_dict_dim))
cost = paddle.layer.classification_cost(input=decoder, label=lbl)
return cost
def main(): def main():
paddle.init(use_gpu=False, trainer_count=1) paddle.init(use_gpu=False, trainer_count=1)
# source and target dict dim.
dict_size = 30000
source_dict_dim = target_dict_dim = dict_size
# define network topology # define network topology
cost = seqToseq_net_v2(source_dict_dim, target_dict_dim) cost = seqToseq_net(source_dict_dim, target_dict_dim)
parameters = paddle.parameters.create(cost) parameters = paddle.parameters.create(cost)
optimizer = paddle.optimizer.Adam(learning_rate=1e-4)
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 10 == 0:
print "Pass %d, Batch %d, Cost %f, %s" % (
event.pass_id, event.batch_id, event.cost, event.metrics)
# define optimize method and trainer
optimizer = paddle.optimizer.Adam(learning_rate=1e-4)
trainer = paddle.trainer.SGD(cost=cost, trainer = paddle.trainer.SGD(cost=cost,
parameters=parameters, parameters=parameters,
update_equation=optimizer) update_equation=optimizer)
# define data reader
reader_dict = { reader_dict = {
'source_language_word': 0, 'source_language_word': 0,
'target_language_word': 1, 'target_language_word': 1,
'target_language_next_word': 2 'target_language_next_word': 2
} }
wmt14_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.wmt14.train(dict_size=dict_size), buf_size=8192),
batch_size=5)
trn_reader = paddle.reader.batched( # define event_handler callback
paddle.reader.shuffle( def event_handler(event):
train_reader("data/pre-wmt14/train/train"), buf_size=8192), if isinstance(event, paddle.event.EndIteration):
batch_size=5) if event.batch_id % 10 == 0:
print "Pass %d, Batch %d, Cost %f, %s" % (
event.pass_id, event.batch_id, event.cost, event.metrics)
# start to train
trainer.train( trainer.train(
reader=trn_reader, reader=wmt14_reader,
event_handler=event_handler, event_handler=event_handler,
num_passes=10000, num_passes=10000,
reader_dict=reader_dict) reader_dict=reader_dict)
if __name__ == '__main__': if __name__ == '__main__':
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册