提交 26e1f22d 编写于 作者: F fengjiayi

Rebuild index.html

上级 8d3f6ee0
......@@ -164,7 +164,6 @@ def stacked_lstm_net(input_dim,
"""
assert stacked_num % 2 == 1
layer_attr = paddle.attr.Extra(drop_rate=0.5)
fc_para_attr = paddle.attr.Param(learning_rate=1e-3)
lstm_para_attr = paddle.attr.Param(initial_std=0., learning_rate=1.)
para_attr = [fc_para_attr, lstm_para_attr]
......@@ -181,7 +180,7 @@ def stacked_lstm_net(input_dim,
act=linear,
bias_attr=bias_attr)
lstm1 = paddle.layer.lstmemory(
input=fc1, act=relu, bias_attr=bias_attr, layer_attr=layer_attr)
input=fc1, act=relu, bias_attr=bias_attr)
inputs = [fc1, lstm1]
for i in range(2, stacked_num + 1):
......@@ -194,8 +193,7 @@ def stacked_lstm_net(input_dim,
input=fc,
reverse=(i % 2) == 0,
act=relu,
bias_attr=bias_attr,
layer_attr=layer_attr)
bias_attr=bias_attr)
inputs = [fc, lstm]
fc_last = paddle.layer.pooling(input=inputs[0], pooling_type=paddle.pooling.Max())
......@@ -292,6 +290,9 @@ Paddle中提供了一系列优化算法的API,这里使用Adam优化算法。
sys.stdout.write('.')
sys.stdout.flush()
if isinstance(event, paddle.event.EndPass):
with open('./params_pass_%d.tar' % event.pass_id, 'w') as f:
parameters.to_tar(f)
result = trainer.test(reader=test_reader, feeding=feeding)
print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)
```
......
......@@ -136,7 +136,7 @@ def convolution_net(input_dim, class_dim=2, emb_dim=128, hid_dim=128):
act=paddle.activation.Softmax())
lbl = paddle.layer.data("label", paddle.data_type.integer_value(2))
cost = paddle.layer.classification_cost(input=output, label=lbl)
return cost
return cost, output
```
1. Define input data and its dimension
......@@ -175,7 +175,6 @@ def stacked_lstm_net(input_dim,
"""
assert stacked_num % 2 == 1
layer_attr = paddle.attr.Extra(drop_rate=0.5)
fc_para_attr = paddle.attr.Param(learning_rate=1e-3)
lstm_para_attr = paddle.attr.Param(initial_std=0., learning_rate=1.)
para_attr = [fc_para_attr, lstm_para_attr]
......@@ -192,7 +191,7 @@ def stacked_lstm_net(input_dim,
act=linear,
bias_attr=bias_attr)
lstm1 = paddle.layer.lstmemory(
input=fc1, act=relu, bias_attr=bias_attr, layer_attr=layer_attr)
input=fc1, act=relu, bias_attr=bias_attr)
inputs = [fc1, lstm1]
for i in range(2, stacked_num + 1):
......@@ -205,8 +204,7 @@ def stacked_lstm_net(input_dim,
input=fc,
reverse=(i % 2) == 0,
act=relu,
bias_attr=bias_attr,
layer_attr=layer_attr)
bias_attr=bias_attr)
inputs = [fc, lstm]
fc_last = paddle.layer.pooling(
......@@ -221,7 +219,7 @@ def stacked_lstm_net(input_dim,
lbl = paddle.layer.data("label", paddle.data_type.integer_value(2))
cost = paddle.layer.classification_cost(input=output, label=lbl)
return cost
return cost, output
```
1. Define input data and its dimension
......@@ -245,9 +243,9 @@ dict_dim = len(word_dict)
class_dim = 2
# option 1
cost = convolution_net(dict_dim, class_dim=class_dim)
[cost, output] = convolution_net(dict_dim, class_dim=class_dim)
# option 2
# cost = stacked_lstm_net(dict_dim, class_dim=class_dim, stacked_num=3)
# [cost, output] = stacked_lstm_net(dict_dim, class_dim=class_dim, stacked_num=3)
```
## Model Training
......@@ -311,6 +309,9 @@ def event_handler(event):
sys.stdout.write('.')
sys.stdout.flush()
if isinstance(event, paddle.event.EndPass):
with open('./params_pass_%d.tar' % event.pass_id, 'w') as f:
parameters.to_tar(f)
result = trainer.test(reader=test_reader, feeding=feeding)
print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)
```
......
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册