未验证 提交 21e1717c 编写于 作者: N Nicky Chan 提交者: GitHub

Merge branch 'develop' into high-level-api-branch

...@@ -168,13 +168,17 @@ def stacked_lstm_net(data, input_dim, class_dim, emb_dim, hid_dim, stacked_num): ...@@ -168,13 +168,17 @@ def stacked_lstm_net(data, input_dim, class_dim, emb_dim, hid_dim, stacked_num):
input=fc, size=hid_dim, is_reverse=(i % 2) == 0) input=fc, size=hid_dim, is_reverse=(i % 2) == 0)
inputs = [fc, lstm] inputs = [fc, lstm]
fc_last = fluid.layers.sequence_pool(input=inputs[0], pool_type='max') fc_last = paddle.layer.pooling(input=inputs[0], pooling_type=paddle.pooling.Max())
lstm_last = fluid.layers.sequence_pool(input=inputs[1], pool_type='max') lstm_last = paddle.layer.pooling(input=inputs[1], pooling_type=paddle.pooling.Max())
output = paddle.layer.fc(input=[fc_last, lstm_last],
prediction = fluid.layers.fc(input=[fc_last, lstm_last], size=class_dim,
size=class_dim, act=paddle.activation.Softmax(),
act='softmax') bias_attr=bias_attr,
return prediction param_attr=para_attr)
lbl = paddle.layer.data("label", paddle.data_type.integer_value(2))
cost = paddle.layer.classification_cost(input=output, label=lbl)
return cost, output
``` ```
以上的栈式双向LSTM抽象出了高级特征并把其映射到和分类类别数同样大小的向量上。`paddle.activation.Softmax`函数用来计算分类属于某个类别的概率。 以上的栈式双向LSTM抽象出了高级特征并把其映射到和分类类别数同样大小的向量上。`paddle.activation.Softmax`函数用来计算分类属于某个类别的概率。
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册