提交 03c00de6 编写于 作者: T Tao Luo 提交者: GitHub

Merge pull request #293 from luotao1/mt

update seq2seq english md file
......@@ -213,25 +213,8 @@ import paddle.v2 as paddle
# train with a single CPU
paddle.init(use_gpu=False, trainer_count=1)
```
### Define DataSet
We will define dictionary size, and create [**data reader**](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/design/reader#python-data-reader-design-doc) for WMT-14 dataset.
```python
# source and target dict dim.
dict_size = 30000
feeding = {
'source_language_word': 0,
'target_language_word': 1,
'target_language_next_word': 2
}
wmt14_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.wmt14.train(dict_size=dict_size), buf_size=8192),
batch_size=5)
# False: training, True: generating
is_generating = False
```
### Model Configuration
......@@ -239,15 +222,18 @@ wmt14_reader = paddle.batch(
1. Define some global variables
```python
dict_size = 30000 # dict dim
source_dict_dim = dict_size # source language dictionary size
target_dict_dim = dict_size # destination language dictionary size
word_vector_dim = 512 # word embedding dimension
encoder_size = 512 # hidden layer size of GRU in encoder
decoder_size = 512 # hidden layer size of GRU in decoder
beam_size = 3 # expand width in beam search
max_length = 250 # a stop condition of sequence generation
```
1. Implement Encoder as follows:
1. Input is a sequence of words represented by an integer word index sequence. So we define data layer of data type `integer_value_sequence`. The value range of each element in the sequence is `[0, source_dict_dim)`
2. Implement Encoder as follows:
- Input is a sequence of words represented by an integer word index sequence. So we define data layer of data type `integer_value_sequence`. The value range of each element in the sequence is `[0, source_dict_dim)`
```python
src_word_id = paddle.layer.data(
......@@ -255,7 +241,7 @@ wmt14_reader = paddle.batch(
type=paddle.data_type.integer_value_sequence(source_dict_dim))
```
1. Map the one-hot vector (represented by word index) into a word vector $\mathbf{s}$ in a low-dimensional semantic space
- Map the one-hot vector (represented by word index) into a word vector $\mathbf{s}$ in a low-dimensional semantic space
```python
src_embedding = paddle.layer.embedding(
......@@ -264,7 +250,7 @@ wmt14_reader = paddle.batch(
param_attr=paddle.attr.ParamAttr(name='_source_language_embedding'))
```
1. Use bi-direcitonal GRU to encode the source language sequence, and concatenate the encoding outputs from the two GRUs to get $\mathbf{h}$
- Use bi-direcitonal GRU to encode the source language sequence, and concatenate the encoding outputs from the two GRUs to get $\mathbf{h}$
```python
src_forward = paddle.networks.simple_gru(
......@@ -274,9 +260,9 @@ wmt14_reader = paddle.batch(
encoded_vector = paddle.layer.concat(input=[src_forward, src_backward])
```
1. Implement Attention-based Decoder as follows:
3. Implement Attention-based Decoder as follows:
1. Get a projection of the encoding (c.f. 2.3) of the source language sequence by passing it into a feed forward neural network
- Get a projection of the encoding (c.f. 2.3) of the source language sequence by passing it into a feed forward neural network
```python
with paddle.layer.mixed(size=decoder_size) as encoded_proj:
......@@ -284,7 +270,7 @@ wmt14_reader = paddle.batch(
input=encoded_vector)
```
1. Use a non-linear transformation of the last hidden state of the backward GRU on the source language sentence as the initial state of the decoder RNN $c_0=h_T$
- Use a non-linear transformation of the last hidden state of the backward GRU on the source language sentence as the initial state of the decoder RNN $c_0=h_T$
```python
backward_first = paddle.layer.first_seq(input=src_backward)
......@@ -294,7 +280,7 @@ wmt14_reader = paddle.batch(
input=backward_first)
```
1. Define the computation in each time step for the decoder RNN, i.e., according to the current context vector $c_i$, hidden state for the decoder $z_i$ and the $i$-th word $u_i$ in the target language to predict the probability $p_{i+1}$ for the $i+1$-th word.
- Define the computation in each time step for the decoder RNN, i.e., according to the current context vector $c_i$, hidden state for the decoder $z_i$ and the $i$-th word $u_i$ in the target language to predict the probability $p_{i+1}$ for the $i+1$-th word.
- decoder_mem records the hidden state $z_i$ from the previous time step, with an initial state as decoder_boot.
- context is computed via `simple_attention` as $c_i=\sum {j=1}^{T}a_{ij}h_j$, where enc_vec is the projection of $h_j$ and enc_proj is the projection of $h_j$ (c.f. 3.1). $a_{ij}$ is calculated within `simple_attention`.
......@@ -332,7 +318,7 @@ wmt14_reader = paddle.batch(
return out
```
1. Define the name for the decoder and the first two input for `gru_decoder_with_attention`. Note that `StaticInput` is used for the two inputs. Please refer to [StaticInput Document](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/deep_model/rnn/recurrent_group_cn.md#输入) for more details.
4. Define the name for the decoder and the first two input for `gru_decoder_with_attention`. Note that `StaticInput` is used for the two inputs. Please refer to [StaticInput Document](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/deep_model/rnn/recurrent_group_cn.md#输入) for more details.
```python
decoder_group_name = "decoder_group"
......@@ -341,132 +327,213 @@ wmt14_reader = paddle.batch(
group_inputs = [group_input1, group_input2]
```
1. Training mode:
5. Training mode:
- word embedding from the target language trg_embedding is passed to `gru_decoder_with_attention` as current_word.
- `recurrent_group` calls `gru_decoder_with_attention` in a recurrent way
- the sequence of next words from the target language is used as label (lbl)
- multi-class cross-entropy (`classification_cost`) is used to calculate the cost
- word embedding from the target language trg_embedding is passed to `gru_decoder_with_attention` as current_word.
- `recurrent_group` calls `gru_decoder_with_attention` in a recurrent way
- the sequence of next words from the target language is used as label (lbl)
- multi-class cross-entropy (`classification_cost`) is used to calculate the cost
```python
trg_embedding = paddle.layer.embedding(
input=paddle.layer.data(
name='target_language_word',
type=paddle.data_type.integer_value_sequence(target_dict_dim)),
size=word_vector_dim,
param_attr=paddle.attr.ParamAttr(name='_target_language_embedding'))
group_inputs.append(trg_embedding)
# For decoder equipped with attention mechanism, in training,
# target embeding (the groudtruth) is the data input,
# while encoded source sequence is accessed to as an unbounded memory.
# Here, the StaticInput defines a read-only memory
# for the recurrent_group.
decoder = paddle.layer.recurrent_group(
name=decoder_group_name,
step=gru_decoder_with_attention,
input=group_inputs)
lbl = paddle.layer.data(
name='target_language_next_word',
type=paddle.data_type.integer_value_sequence(target_dict_dim))
cost = paddle.layer.classification_cost(input=decoder, label=lbl)
```
```python
if not is_generating:
trg_embedding = paddle.layer.embedding(
input=paddle.layer.data(
name='target_language_word',
type=paddle.data_type.integer_value_sequence(target_dict_dim)),
size=word_vector_dim,
param_attr=paddle.attr.ParamAttr(name='_target_language_embedding'))
group_inputs.append(trg_embedding)
# For decoder equipped with attention mechanism, in training,
# target embeding (the groudtruth) is the data input,
# while encoded source sequence is accessed to as an unbounded memory.
# Here, the StaticInput defines a read-only memory
# for the recurrent_group.
decoder = paddle.layer.recurrent_group(
name=decoder_group_name,
step=gru_decoder_with_attention,
input=group_inputs)
lbl = paddle.layer.data(
name='target_language_next_word',
type=paddle.data_type.integer_value_sequence(target_dict_dim))
cost = paddle.layer.classification_cost(input=decoder, label=lbl)
```
6. Generating mode:
- the decoder predicts a next target word based on the the last generated target word. Embedding of the last generated word is automatically gotten by GeneratedInputs.
- `beam_search` calls `gru_decoder_with_attention` in a recurrent way, to predict sequence id.
```python
if is_generating:
# In generation, the decoder predicts a next target word based on
# the encoded source sequence and the last generated target word.
# The encoded source sequence (encoder's output) must be specified by
# StaticInput, which is a read-only memory.
# Embedding of the last generated word is automatically gotten by
# GeneratedInputs, which is initialized by a start mark, such as <s>,
# and must be included in generation.
trg_embedding = paddle.layer.GeneratedInputV2(
size=target_dict_dim,
embedding_name='_target_language_embedding',
embedding_size=word_vector_dim)
group_inputs.append(trg_embedding)
beam_gen = paddle.layer.beam_search(
name=decoder_group_name,
step=gru_decoder_with_attention,
input=group_inputs,
bos_id=0,
eos_id=1,
beam_size=beam_size,
max_length=max_length)
```
Note: Our configuration is based on Bahdanau et al. \[[4](#Reference)\] but with a few simplifications. Please refer to [issue #1133](https://github.com/PaddlePaddle/Paddle/issues/1133) for more details.
### Create Parameters
## Model Training
Create every parameter that `cost` layer needs.
1. Create Parameters
```python
parameters = paddle.parameters.create(cost)
```
Create every parameter that `cost` layer needs. And we can get parameter names. If the parameter name is not specified during model configuration, it will be generated.
We can get parameter names. If the parameter name is not specified during model configuration, it will be generated.
```python
if not is_generating:
parameters = paddle.parameters.create(cost)
for param in parameters.keys():
print param
```
```python
for param in parameters.keys():
print param
```
2. Define DataSet
## Model Training
Create [**data reader**](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/design/reader#python-data-reader-design-doc) for WMT-14 dataset.
1. Create trainer
```python
if not is_generating:
wmt14_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.wmt14.train(dict_size=dict_size), buf_size=8192),
batch_size=5)
```
3. Create trainer
We need to tell trainer what to optimize, and how to optimize. Here trainer will optimize `cost` layer using stochastic gradient descent (SDG).
```python
optimizer = paddle.optimizer.Adam(
learning_rate=5e-5,
regularization=paddle.optimizer.L2Regularization(rate=8e-4))
trainer = paddle.trainer.SGD(cost=cost,
parameters=parameters,
update_equation=optimizer)
if not is_generating:
optimizer = paddle.optimizer.Adam(
learning_rate=5e-5,
regularization=paddle.optimizer.L2Regularization(rate=8e-4))
trainer = paddle.trainer.SGD(cost=cost,
parameters=parameters,
update_equation=optimizer)
```
1. Define event handler
4. Define event handler
The event handler is a callback function invoked by trainer when an event happens. Here we will print log in event handler.
```python
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 10 == 0:
print "\nPass %d, Batch %d, Cost %f, %s" % (
event.pass_id, event.batch_id, event.cost, event.metrics)
if not is_generating:
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 2 == 0:
print "\nPass %d, Batch %d, Cost %f, %s" % (
event.pass_id, event.batch_id, event.cost, event.metrics)
```
1. Start training
5. Start training
```python
trainer.train(
reader=wmt14_reader,
event_handler=event_handler,
num_passes=2,
feeding=feeding)
if not is_generating:
trainer.train(
reader=wmt14_reader, event_handler=event_handler, num_passes=2)
```
```text
Pass 0, Batch 0, Cost 247.408008, {'classification_error_evaluator': 1.0}
Pass 0, Batch 10, Cost 212.058789, {'classification_error_evaluator': 0.8737863898277283}
...
The training log is as follows:
```text
Pass 0, Batch 0, Cost 247.408008, {'classification_error_evaluator': 1.0}
Pass 0, Batch 10, Cost 212.058789, {'classification_error_evaluator': 0.8737863898277283}
...
```
## Model Usage
1. Download Pre-trained Model
As the training of an NMT model is very time consuming, we provide a pre-trained model. The model is trained with a cluster of 50 physical nodes (each node has two 6-core CPU) over 5 days. The provided model has the [BLEU Score](#BLEU Score) of 26.92, and the size of 205M.
```python
if is_generating:
parameters = paddle.dataset.wmt14.model()
```
2. Define DataSet
The model training is successful when the `classification_error_evaluator` is lower than 0.35.
Get the first 3 samples of wmt14 generating set as the source language sequences.
## Model Usage
```python
if is_generating:
gen_creator = paddle.dataset.wmt14.gen(dict_size)
gen_data = []
gen_num = 3
for item in gen_creator():
gen_data.append((item[0], ))
if len(gen_data) == gen_num:
break
```
### Download Pre-trained Model
3. Create infer
As the training of an NMT model is very time consuming, we provide a pre-trained model (pass-00012, ~205M). The model is trained with a cluster of 50 physical nodes (each node has two 6-core CPU). We trained 16 passes (taking about 5 days) with each pass taking about 7 hours. The provided model (pass-00012) has the highest [BLEU Score](#BLEU Score) of 26.92. Run the following command to download the model:
Use inference interface `paddle.infer` return the prediction probability (see field `prob`) and labels (see field `id`) of each generated sequence.
```bash
cd pretrained
./wmt14_model.sh
```
```python
if is_generating:
beam_result = paddle.infer(
output_layer=beam_gen,
parameters=parameters,
input=gen_data,
field=['prob', 'id'])
```
4. Print generated translation
### BLEU Evaluation
Print sequence and its `beam_size` generated translation results based on the dictionary.
BLEU (Bilingual Evaluation understudy) is a metric widely used for automatic machine translation proposed by IBM Watson Research Center in 2002\[[5](#References)\]. The closer the translation produced by a machine is to the translation produced by a human expert, the better the performance of the translation system.
To measure the closeness between machine translation and human translation, sentence precision is used. It compares the number of matched n-grams. More matches will lead to higher BLEU scores.
```python
if is_generating:
# get the dictionary
src_dict, trg_dict = paddle.dataset.wmt14.get_dict(dict_size)
# the delimited element of generated sequences is -1,
# the first element of each generated sequence is the sequence length
seq_list = []
seq = []
for w in beam_result[1]:
if w != -1:
seq.append(w)
else:
seq_list.append(' '.join([trg_dict.get(w) for w in seq[1:]]))
seq = []
prob = beam_result[0]
for i in xrange(gen_num):
print "\n*******************************************************\n"
print "src:", ' '.join(
[src_dict.get(w) for w in gen_data[i][0]]), "\n"
for j in xrange(beam_size):
print "prob = %f:" % (prob[i][j]), seq_list[i * beam_size + j]
```
[Moses](http://www.statmt.org/moses/) is an open-source machine translation system, we used [multi-bleu.perl](https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl) for BLEU evaluation. Run the following command for downloading:
```bash
./moses_bleu.sh
```
BLEU evaluation can be performed using the `eval_bleu` script as follows, where FILE is the name of the file to be evaluated, BEAMSIZE is the beam size value, and `data/wmt14/gen/ntst14.trg` is used as the standard translation in default.
```bash
./eval_bleu.sh FILE BEAMSIZE
```
Specificaly, the script is run as follows:
```bash
./eval_bleu.sh gen_result 3
```
You will see the following message as output:
```text
BLEU = 26.92
```
The generating log is as follows:
```text
src: <s> Les <unk> se <unk> au sujet de la largeur des sièges alors que de grosses commandes sont en jeu <e>
prob = -19.019573: The <unk> will be rotated about the width of the seats , while large orders are at stake . <e>
prob = -19.113066: The <unk> will be rotated about the width of the seats , while large commands are at stake . <e>
prob = -19.512890: The <unk> will be rotated about the width of the seats , while large commands are at play . <e>
```
## Summary
......
......@@ -416,13 +416,13 @@ is_generating = False
reader=wmt14_reader, event_handler=event_handler, num_passes=2)
```
训练开始后,可以观察到event_handler输出的日志如下:
Pass 0, Batch 0, Cost 148.444983, {'classification_error_evaluator': 1.0}
.........
Pass 0, Batch 10, Cost 335.896802, {'classification_error_evaluator': 0.9325153231620789}
.........
训练开始后,可以观察到event_handler输出的日志如下:
```text
Pass 0, Batch 0, Cost 148.444983, {'classification_error_evaluator': 1.0}
.........
Pass 0, Batch 10, Cost 335.896802, {'classification_error_evaluator': 0.9325153231620789}
.........
```
### 生成模型
......@@ -490,13 +490,14 @@ is_generating = False
print "prob = %f:" % (prob[i][j]), seq_list[i * beam_size + j]
```
生成开始后,可以观察到输出的日志如下:
生成开始后,可以观察到输出的日志如下:
```text
src: <s> Les <unk> se <unk> au sujet de la largeur des sièges alors que de grosses commandes sont en jeu <e>
src: <s> Les <unk> se <unk> au sujet de la largeur des sièges alors que de grosses commandes sont en jeu <e>
prob = -19.019573: The <unk> will be rotated about the width of the seats , while large orders are at stake . <e>
prob = -19.113066: The <unk> will be rotated about the width of the seats , while large commands are at stake . <e>
prob = -19.512890: The <unk> will be rotated about the width of the seats , while large commands are at play . <e>
prob = -19.019573: The <unk> will be rotated about the width of the seats , while large orders are at stake . <e>
prob = -19.113066: The <unk> will be rotated about the width of the seats , while large commands are at stake . <e>
prob = -19.512890: The <unk> will be rotated about the width of the seats , while large commands are at play . <e>
```
## 总结
......
......@@ -255,25 +255,8 @@ import paddle.v2 as paddle
# train with a single CPU
paddle.init(use_gpu=False, trainer_count=1)
```
### Define DataSet
We will define dictionary size, and create [**data reader**](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/design/reader#python-data-reader-design-doc) for WMT-14 dataset.
```python
# source and target dict dim.
dict_size = 30000
feeding = {
'source_language_word': 0,
'target_language_word': 1,
'target_language_next_word': 2
}
wmt14_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.wmt14.train(dict_size=dict_size), buf_size=8192),
batch_size=5)
# False: training, True: generating
is_generating = False
```
### Model Configuration
......@@ -281,15 +264,18 @@ wmt14_reader = paddle.batch(
1. Define some global variables
```python
dict_size = 30000 # dict dim
source_dict_dim = dict_size # source language dictionary size
target_dict_dim = dict_size # destination language dictionary size
word_vector_dim = 512 # word embedding dimension
encoder_size = 512 # hidden layer size of GRU in encoder
decoder_size = 512 # hidden layer size of GRU in decoder
beam_size = 3 # expand width in beam search
max_length = 250 # a stop condition of sequence generation
```
1. Implement Encoder as follows:
1. Input is a sequence of words represented by an integer word index sequence. So we define data layer of data type `integer_value_sequence`. The value range of each element in the sequence is `[0, source_dict_dim)`
2. Implement Encoder as follows:
- Input is a sequence of words represented by an integer word index sequence. So we define data layer of data type `integer_value_sequence`. The value range of each element in the sequence is `[0, source_dict_dim)`
```python
src_word_id = paddle.layer.data(
......@@ -297,7 +283,7 @@ wmt14_reader = paddle.batch(
type=paddle.data_type.integer_value_sequence(source_dict_dim))
```
1. Map the one-hot vector (represented by word index) into a word vector $\mathbf{s}$ in a low-dimensional semantic space
- Map the one-hot vector (represented by word index) into a word vector $\mathbf{s}$ in a low-dimensional semantic space
```python
src_embedding = paddle.layer.embedding(
......@@ -306,7 +292,7 @@ wmt14_reader = paddle.batch(
param_attr=paddle.attr.ParamAttr(name='_source_language_embedding'))
```
1. Use bi-direcitonal GRU to encode the source language sequence, and concatenate the encoding outputs from the two GRUs to get $\mathbf{h}$
- Use bi-direcitonal GRU to encode the source language sequence, and concatenate the encoding outputs from the two GRUs to get $\mathbf{h}$
```python
src_forward = paddle.networks.simple_gru(
......@@ -316,9 +302,9 @@ wmt14_reader = paddle.batch(
encoded_vector = paddle.layer.concat(input=[src_forward, src_backward])
```
1. Implement Attention-based Decoder as follows:
3. Implement Attention-based Decoder as follows:
1. Get a projection of the encoding (c.f. 2.3) of the source language sequence by passing it into a feed forward neural network
- Get a projection of the encoding (c.f. 2.3) of the source language sequence by passing it into a feed forward neural network
```python
with paddle.layer.mixed(size=decoder_size) as encoded_proj:
......@@ -326,7 +312,7 @@ wmt14_reader = paddle.batch(
input=encoded_vector)
```
1. Use a non-linear transformation of the last hidden state of the backward GRU on the source language sentence as the initial state of the decoder RNN $c_0=h_T$
- Use a non-linear transformation of the last hidden state of the backward GRU on the source language sentence as the initial state of the decoder RNN $c_0=h_T$
```python
backward_first = paddle.layer.first_seq(input=src_backward)
......@@ -336,7 +322,7 @@ wmt14_reader = paddle.batch(
input=backward_first)
```
1. Define the computation in each time step for the decoder RNN, i.e., according to the current context vector $c_i$, hidden state for the decoder $z_i$ and the $i$-th word $u_i$ in the target language to predict the probability $p_{i+1}$ for the $i+1$-th word.
- Define the computation in each time step for the decoder RNN, i.e., according to the current context vector $c_i$, hidden state for the decoder $z_i$ and the $i$-th word $u_i$ in the target language to predict the probability $p_{i+1}$ for the $i+1$-th word.
- decoder_mem records the hidden state $z_i$ from the previous time step, with an initial state as decoder_boot.
- context is computed via `simple_attention` as $c_i=\sum {j=1}^{T}a_{ij}h_j$, where enc_vec is the projection of $h_j$ and enc_proj is the projection of $h_j$ (c.f. 3.1). $a_{ij}$ is calculated within `simple_attention`.
......@@ -374,7 +360,7 @@ wmt14_reader = paddle.batch(
return out
```
1. Define the name for the decoder and the first two input for `gru_decoder_with_attention`. Note that `StaticInput` is used for the two inputs. Please refer to [StaticInput Document](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/deep_model/rnn/recurrent_group_cn.md#输入) for more details.
4. Define the name for the decoder and the first two input for `gru_decoder_with_attention`. Note that `StaticInput` is used for the two inputs. Please refer to [StaticInput Document](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/deep_model/rnn/recurrent_group_cn.md#输入) for more details.
```python
decoder_group_name = "decoder_group"
......@@ -383,132 +369,213 @@ wmt14_reader = paddle.batch(
group_inputs = [group_input1, group_input2]
```
1. Training mode:
5. Training mode:
- word embedding from the target language trg_embedding is passed to `gru_decoder_with_attention` as current_word.
- `recurrent_group` calls `gru_decoder_with_attention` in a recurrent way
- the sequence of next words from the target language is used as label (lbl)
- multi-class cross-entropy (`classification_cost`) is used to calculate the cost
- word embedding from the target language trg_embedding is passed to `gru_decoder_with_attention` as current_word.
- `recurrent_group` calls `gru_decoder_with_attention` in a recurrent way
- the sequence of next words from the target language is used as label (lbl)
- multi-class cross-entropy (`classification_cost`) is used to calculate the cost
```python
trg_embedding = paddle.layer.embedding(
input=paddle.layer.data(
name='target_language_word',
type=paddle.data_type.integer_value_sequence(target_dict_dim)),
size=word_vector_dim,
param_attr=paddle.attr.ParamAttr(name='_target_language_embedding'))
group_inputs.append(trg_embedding)
# For decoder equipped with attention mechanism, in training,
# target embeding (the groudtruth) is the data input,
# while encoded source sequence is accessed to as an unbounded memory.
# Here, the StaticInput defines a read-only memory
# for the recurrent_group.
decoder = paddle.layer.recurrent_group(
name=decoder_group_name,
step=gru_decoder_with_attention,
input=group_inputs)
lbl = paddle.layer.data(
name='target_language_next_word',
type=paddle.data_type.integer_value_sequence(target_dict_dim))
cost = paddle.layer.classification_cost(input=decoder, label=lbl)
```
```python
if not is_generating:
trg_embedding = paddle.layer.embedding(
input=paddle.layer.data(
name='target_language_word',
type=paddle.data_type.integer_value_sequence(target_dict_dim)),
size=word_vector_dim,
param_attr=paddle.attr.ParamAttr(name='_target_language_embedding'))
group_inputs.append(trg_embedding)
# For decoder equipped with attention mechanism, in training,
# target embeding (the groudtruth) is the data input,
# while encoded source sequence is accessed to as an unbounded memory.
# Here, the StaticInput defines a read-only memory
# for the recurrent_group.
decoder = paddle.layer.recurrent_group(
name=decoder_group_name,
step=gru_decoder_with_attention,
input=group_inputs)
lbl = paddle.layer.data(
name='target_language_next_word',
type=paddle.data_type.integer_value_sequence(target_dict_dim))
cost = paddle.layer.classification_cost(input=decoder, label=lbl)
```
6. Generating mode:
- the decoder predicts a next target word based on the the last generated target word. Embedding of the last generated word is automatically gotten by GeneratedInputs.
- `beam_search` calls `gru_decoder_with_attention` in a recurrent way, to predict sequence id.
```python
if is_generating:
# In generation, the decoder predicts a next target word based on
# the encoded source sequence and the last generated target word.
# The encoded source sequence (encoder's output) must be specified by
# StaticInput, which is a read-only memory.
# Embedding of the last generated word is automatically gotten by
# GeneratedInputs, which is initialized by a start mark, such as <s>,
# and must be included in generation.
trg_embedding = paddle.layer.GeneratedInputV2(
size=target_dict_dim,
embedding_name='_target_language_embedding',
embedding_size=word_vector_dim)
group_inputs.append(trg_embedding)
beam_gen = paddle.layer.beam_search(
name=decoder_group_name,
step=gru_decoder_with_attention,
input=group_inputs,
bos_id=0,
eos_id=1,
beam_size=beam_size,
max_length=max_length)
```
Note: Our configuration is based on Bahdanau et al. \[[4](#Reference)\] but with a few simplifications. Please refer to [issue #1133](https://github.com/PaddlePaddle/Paddle/issues/1133) for more details.
### Create Parameters
## Model Training
Create every parameter that `cost` layer needs.
1. Create Parameters
```python
parameters = paddle.parameters.create(cost)
```
Create every parameter that `cost` layer needs. And we can get parameter names. If the parameter name is not specified during model configuration, it will be generated.
We can get parameter names. If the parameter name is not specified during model configuration, it will be generated.
```python
if not is_generating:
parameters = paddle.parameters.create(cost)
for param in parameters.keys():
print param
```
```python
for param in parameters.keys():
print param
```
2. Define DataSet
## Model Training
Create [**data reader**](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/design/reader#python-data-reader-design-doc) for WMT-14 dataset.
1. Create trainer
```python
if not is_generating:
wmt14_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.wmt14.train(dict_size=dict_size), buf_size=8192),
batch_size=5)
```
3. Create trainer
We need to tell trainer what to optimize, and how to optimize. Here trainer will optimize `cost` layer using stochastic gradient descent (SDG).
```python
optimizer = paddle.optimizer.Adam(
learning_rate=5e-5,
regularization=paddle.optimizer.L2Regularization(rate=8e-4))
trainer = paddle.trainer.SGD(cost=cost,
parameters=parameters,
update_equation=optimizer)
if not is_generating:
optimizer = paddle.optimizer.Adam(
learning_rate=5e-5,
regularization=paddle.optimizer.L2Regularization(rate=8e-4))
trainer = paddle.trainer.SGD(cost=cost,
parameters=parameters,
update_equation=optimizer)
```
1. Define event handler
4. Define event handler
The event handler is a callback function invoked by trainer when an event happens. Here we will print log in event handler.
```python
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 10 == 0:
print "\nPass %d, Batch %d, Cost %f, %s" % (
event.pass_id, event.batch_id, event.cost, event.metrics)
if not is_generating:
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 2 == 0:
print "\nPass %d, Batch %d, Cost %f, %s" % (
event.pass_id, event.batch_id, event.cost, event.metrics)
```
1. Start training
5. Start training
```python
trainer.train(
reader=wmt14_reader,
event_handler=event_handler,
num_passes=2,
feeding=feeding)
if not is_generating:
trainer.train(
reader=wmt14_reader, event_handler=event_handler, num_passes=2)
```
```text
Pass 0, Batch 0, Cost 247.408008, {'classification_error_evaluator': 1.0}
Pass 0, Batch 10, Cost 212.058789, {'classification_error_evaluator': 0.8737863898277283}
...
The training log is as follows:
```text
Pass 0, Batch 0, Cost 247.408008, {'classification_error_evaluator': 1.0}
Pass 0, Batch 10, Cost 212.058789, {'classification_error_evaluator': 0.8737863898277283}
...
```
## Model Usage
1. Download Pre-trained Model
As the training of an NMT model is very time consuming, we provide a pre-trained model. The model is trained with a cluster of 50 physical nodes (each node has two 6-core CPU) over 5 days. The provided model has the [BLEU Score](#BLEU Score) of 26.92, and the size of 205M.
```python
if is_generating:
parameters = paddle.dataset.wmt14.model()
```
2. Define DataSet
The model training is successful when the `classification_error_evaluator` is lower than 0.35.
Get the first 3 samples of wmt14 generating set as the source language sequences.
## Model Usage
```python
if is_generating:
gen_creator = paddle.dataset.wmt14.gen(dict_size)
gen_data = []
gen_num = 3
for item in gen_creator():
gen_data.append((item[0], ))
if len(gen_data) == gen_num:
break
```
### Download Pre-trained Model
3. Create infer
As the training of an NMT model is very time consuming, we provide a pre-trained model (pass-00012, ~205M). The model is trained with a cluster of 50 physical nodes (each node has two 6-core CPU). We trained 16 passes (taking about 5 days) with each pass taking about 7 hours. The provided model (pass-00012) has the highest [BLEU Score](#BLEU Score) of 26.92. Run the following command to download the model:
Use inference interface `paddle.infer` return the prediction probability (see field `prob`) and labels (see field `id`) of each generated sequence.
```bash
cd pretrained
./wmt14_model.sh
```
```python
if is_generating:
beam_result = paddle.infer(
output_layer=beam_gen,
parameters=parameters,
input=gen_data,
field=['prob', 'id'])
```
4. Print generated translation
### BLEU Evaluation
Print sequence and its `beam_size` generated translation results based on the dictionary.
BLEU (Bilingual Evaluation understudy) is a metric widely used for automatic machine translation proposed by IBM Watson Research Center in 2002\[[5](#References)\]. The closer the translation produced by a machine is to the translation produced by a human expert, the better the performance of the translation system.
To measure the closeness between machine translation and human translation, sentence precision is used. It compares the number of matched n-grams. More matches will lead to higher BLEU scores.
```python
if is_generating:
# get the dictionary
src_dict, trg_dict = paddle.dataset.wmt14.get_dict(dict_size)
# the delimited element of generated sequences is -1,
# the first element of each generated sequence is the sequence length
seq_list = []
seq = []
for w in beam_result[1]:
if w != -1:
seq.append(w)
else:
seq_list.append(' '.join([trg_dict.get(w) for w in seq[1:]]))
seq = []
prob = beam_result[0]
for i in xrange(gen_num):
print "\n*******************************************************\n"
print "src:", ' '.join(
[src_dict.get(w) for w in gen_data[i][0]]), "\n"
for j in xrange(beam_size):
print "prob = %f:" % (prob[i][j]), seq_list[i * beam_size + j]
```
[Moses](http://www.statmt.org/moses/) is an open-source machine translation system, we used [multi-bleu.perl](https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl) for BLEU evaluation. Run the following command for downloading:
```bash
./moses_bleu.sh
```
BLEU evaluation can be performed using the `eval_bleu` script as follows, where FILE is the name of the file to be evaluated, BEAMSIZE is the beam size value, and `data/wmt14/gen/ntst14.trg` is used as the standard translation in default.
```bash
./eval_bleu.sh FILE BEAMSIZE
```
Specificaly, the script is run as follows:
```bash
./eval_bleu.sh gen_result 3
```
You will see the following message as output:
```text
BLEU = 26.92
```
The generating log is as follows:
```text
src: <s> Les <unk> se <unk> au sujet de la largeur des sièges alors que de grosses commandes sont en jeu <e>
prob = -19.019573: The <unk> will be rotated about the width of the seats , while large orders are at stake . <e>
prob = -19.113066: The <unk> will be rotated about the width of the seats , while large commands are at stake . <e>
prob = -19.512890: The <unk> will be rotated about the width of the seats , while large commands are at play . <e>
```
## Summary
......
......@@ -458,13 +458,13 @@ is_generating = False
reader=wmt14_reader, event_handler=event_handler, num_passes=2)
```
训练开始后,可以观察到event_handler输出的日志如下:
Pass 0, Batch 0, Cost 148.444983, {'classification_error_evaluator': 1.0}
.........
Pass 0, Batch 10, Cost 335.896802, {'classification_error_evaluator': 0.9325153231620789}
.........
训练开始后,可以观察到event_handler输出的日志如下:
```text
Pass 0, Batch 0, Cost 148.444983, {'classification_error_evaluator': 1.0}
.........
Pass 0, Batch 10, Cost 335.896802, {'classification_error_evaluator': 0.9325153231620789}
.........
```
### 生成模型
......@@ -532,13 +532,14 @@ is_generating = False
print "prob = %f:" % (prob[i][j]), seq_list[i * beam_size + j]
```
生成开始后,可以观察到输出的日志如下:
生成开始后,可以观察到输出的日志如下:
```text
src: <s> Les <unk> se <unk> au sujet de la largeur des sièges alors que de grosses commandes sont en jeu <e>
src: <s> Les <unk> se <unk> au sujet de la largeur des sièges alors que de grosses commandes sont en jeu <e>
prob = -19.019573: The <unk> will be rotated about the width of the seats , while large orders are at stake . <e>
prob = -19.113066: The <unk> will be rotated about the width of the seats , while large commands are at stake . <e>
prob = -19.512890: The <unk> will be rotated about the width of the seats , while large commands are at play . <e>
prob = -19.019573: The <unk> will be rotated about the width of the seats , while large orders are at stake . <e>
prob = -19.113066: The <unk> will be rotated about the width of the seats , while large commands are at stake . <e>
prob = -19.512890: The <unk> will be rotated about the width of the seats , while large commands are at play . <e>
```
## 总结
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册