Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
book
提交
03240c47
B
book
项目概览
PaddlePaddle
/
book
通知
16
Star
4
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
40
列表
看板
标记
里程碑
合并请求
37
Wiki
5
Wiki
分析
仓库
DevOps
项目成员
Pages
B
book
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
40
Issue
40
列表
看板
标记
里程碑
合并请求
37
合并请求
37
Pages
分析
分析
仓库分析
DevOps
Wiki
5
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
03240c47
编写于
1月 20, 2017
作者:
T
Tao Luo
提交者:
GitHub
1月 20, 2017
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine recommender img size
上级
9fbab683
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
2 addition
and
2 deletion
+2
-2
recommender_system/README.md
recommender_system/README.md
+2
-2
未找到文件。
recommender_system/README.md
浏览文件 @
03240c47
...
...
@@ -35,7 +35,7 @@ Prediction Score is 4.25
YouTube是世界上最大的视频上传、分享和发现网站,YouTube推荐系统为超过10亿用户从不断增长的视频库中推荐个性化的内容。整个系统由两个神经网络组成:候选生成网络和排序网络。候选生成网络从百万量级的视频库中生成上百个候选,排序网络对候选进行打分排序,输出排名最高的数十个结果。系统结构如图1所示:
<p
align=
"center"
>
<img
src=
"image/YouTube_Overview.png"
width=
"7
5
%"
><br/>
<img
src=
"image/YouTube_Overview.png"
width=
"7
0
%"
><br/>
图1. YouTube 推荐系统结构
</p>
...
...
@@ -46,7 +46,7 @@ YouTube是世界上最大的视频上传、分享和发现网站,YouTube推荐
首先,将观看历史及搜索词记录这类历史信息,映射为向量后取平均值得到定长表示;同时,输入人口学特征以优化新用户的推荐效果,并将二值特征和连续特征归一化处理到
[
0, 1]范围。接下来,将所有特征表示拼接为一个向量,并输入给非线形多层感知器(MLP,详见[识别数字
](
https://github.com/PaddlePaddle/book/blob/develop/recognize_digits/README.md
)
教程)处理。最后,训练时将MLP的输出给softmax做分类,预测时计算用户的综合特征(MLP的输出)与所有视频的相似度,取得分最高的$k$个作为候选生成网络的筛选结果。图2显示了候选生成网络结构。
<p
align=
"center"
>
<img
src=
"image/Deep_candidate_generation_model_architecture.png"
width=
"7
5
%"
><br/>
<img
src=
"image/Deep_candidate_generation_model_architecture.png"
width=
"7
0
%"
><br/>
图2. 候选生成网络结构
</p>
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录