index.html 23.3 KB
Newer Older
1

Y
Yu Yang 已提交
2 3 4 5
<html>
<head>
  <script type="text/x-mathjax-config">
  MathJax.Hub.Config({
Y
Yu Yang 已提交
6
    extensions: ["tex2jax.js", "TeX/AMSsymbols.js", "TeX/AMSmath.js"],
Y
Yu Yang 已提交
7 8
    jax: ["input/TeX", "output/HTML-CSS"],
    tex2jax: {
9 10
      inlineMath: [ ['$','$'] ],
      displayMath: [ ['$$','$$'] ],
Y
Yu Yang 已提交
11 12 13 14
      processEscapes: true
    },
    "HTML-CSS": { availableFonts: ["TeX"] }
  });
Y
Yi Wang 已提交
15 16
  </script>
  <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js" async></script>
Y
Yu Yang 已提交
17
  <script type="text/javascript" src="../.tools/theme/marked.js">
Y
Yu Yang 已提交
18 19
  </script>
  <link href="http://cdn.bootcss.com/highlight.js/9.9.0/styles/darcula.min.css" rel="stylesheet">
Y
Yi Wang 已提交
20
  <script src="http://cdn.bootcss.com/highlight.js/9.9.0/highlight.min.js"></script>
Y
Yu Yang 已提交
21
  <link href="http://cdn.bootcss.com/bootstrap/4.0.0-alpha.6/css/bootstrap.min.css" rel="stylesheet">
Y
Yu Yang 已提交
22
  <link href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" rel="stylesheet">
Y
Yu Yang 已提交
23
  <link href="../.tools/theme/github-markdown.css" rel='stylesheet'>
Y
Yu Yang 已提交
24 25
</head>
<style type="text/css" >
Y
Yu Yang 已提交
26 27 28 29 30 31
.markdown-body {
    box-sizing: border-box;
    min-width: 200px;
    max-width: 980px;
    margin: 0 auto;
    padding: 45px;
Y
Yu Yang 已提交
32 33 34 35
}
</style>


Y
Yu Yang 已提交
36
<body>
Y
Yu Yang 已提交
37

Y
Yu Yang 已提交
38
<div id="context" class="container-fluid markdown-body">
Y
Yu Yang 已提交
39 40 41 42
</div>

<!-- This block will be replaced by each markdown file content. Please do not change lines below.-->
<div id="markdown" style='display:none'>
C
choijulie 已提交
43
# Personalized Recommendation
Y
Yu Yang 已提交
44

Y
Yi Wang 已提交
45
The source code from this tutorial is at [here](https://github.com/PaddlePaddle/book/tree/develop/05.recommender_system).  For instructions to run it, please refer to [this guide](https://github.com/PaddlePaddle/book/blob/develop/README.md#running-the-book).
Y
Yu Yang 已提交
46 47


C
choijulie 已提交
48
## Background
Y
Yu Yang 已提交
49

Y
Yi Wang 已提交
50
The recommender system is a component of e-commerce, online videos, and online reading services.  There are several different approaches for recommender systems to learn from user behavior and product properties and to understand users' interests.
Y
Yu Yang 已提交
51

M
Mimee 已提交
52
- User behavior-based approach.  A well-known method of this approach is collaborative filtering, which assumes that if two users made similar purchases, they share common interests and would likely go on making the same decision. Some variants of collaborative filtering are user-based[[3](#references)], item-based [[4](#references)], social network based[[5](#references)], and model-based.
Y
Yu Yang 已提交
53

M
Mimee 已提交
54
- Content-based approach[[1](#references)].  This approach represents product properties and user interests as feature vectors of the same space so that it could measure how much a user is interested in a product by the distance between two feature vectors.
Y
Yu Yang 已提交
55

M
Mimee 已提交
56
- Hybrid approach[[2](#references)]: This one combines above two to help with each other about the data sparsity problem[[6](#references)].
C
choijulie 已提交
57

Y
Yi Wang 已提交
58
This tutorial explains a deep learning based hybrid approach and its implement in PaddlePaddle.  We are going to train a model using a dataset that includes user information, movie information, and ratings.  Once we train the model, we will be able to get a predicted rating given a pair of user and movie IDs.
Y
Yu Yang 已提交
59 60


C
choijulie 已提交
61
## Model Overview
Y
Yu Yang 已提交
62

M
Mimee 已提交
63
To know more about deep learning based recommendation, let us start from going over the Youtube recommender system[[7](#references)] before introducing our hybrid model.
Y
Yu Yang 已提交
64 65


C
choijulie 已提交
66 67 68
### YouTube's Deep Learning Recommendation Model

YouTube is a video-sharing Web site with one of the largest user base in the world.  Its recommender system serves more than a billion users.  This system is composed of two major parts: candidate generation and ranking.  The former selects few hundreds of candidates from millions of videos, and the latter ranks and outputs the top 10.
Y
Yu Yang 已提交
69 70

<p align="center">
C
choijulie 已提交
71 72
<img src="image/YouTube_Overview.en.png" width="70%" ><br/>
Figure 1. YouTube recommender system overview.
Y
Yu Yang 已提交
73 74
</p>

C
choijulie 已提交
75
#### Candidate Generation Network
Y
Yu Yang 已提交
76

M
Mimee 已提交
77
YouTube models candidate generation as a multi-class classification problem with a huge number of classes equal to the number of videos.  The architecture of the model is as follows:
Y
Yu Yang 已提交
78 79

<p align="center">
C
choijulie 已提交
80 81
<img src="image/Deep_candidate_generation_model_architecture.en.png" width="70%" ><br/>
Figure 2. Deep candidate generation model.
Y
Yu Yang 已提交
82 83
</p>

M
Mimee 已提交
84
The first stage of this model maps watching history and search queries into fixed-length representative features.  Then, an MLP (multi-layer Perceptron, as described in the [Recognize Digits](https://github.com/PaddlePaddle/book/blob/develop/recognize_digits/README.md) tutorial) takes the concatenation of all representative vectors.  The output of the MLP represents the user' *intrinsic interests*.  At training time, it is used together with a softmax output layer for minimizing the classification error.   At serving time, it is used to compute the relevance of the user with all movies.
C
choijulie 已提交
85 86

For a user $U$, the predicted watching probability of video $i$ is
Y
Yu Yang 已提交
87 88 89

$$P(\omega=i|u)=\frac{e^{v_{i}u}}{\sum_{j \in V}e^{v_{j}u}}$$

C
choijulie 已提交
90
where $u$ is the representative vector of user $U$, $V$ is the corpus of all videos, $v_i$ is the representative vector of the $i$-th video. $u$ and $v_i$ are vectors of the same length, so we can compute their dot product using a fully connected layer.
Y
Yu Yang 已提交
91

C
choijulie 已提交
92
This model could have a performance issue as the softmax output covers millions of classification labels.  To optimize performance, at the training time, the authors down-sample negative samples, so the actual number of classes is reduced to thousands.  At serving time, the authors ignore the normalization of the softmax outputs, because the results are just for ranking.
Y
Yu Yang 已提交
93

C
choijulie 已提交
94
#### Ranking Network
Y
Yu Yang 已提交
95

C
choijulie 已提交
96
The architecture of the ranking network is similar to that of the candidate generation network.  Similar to ranking models widely used in online advertising, it uses rich features like video ID, last watching time, etc.  The output layer of the ranking network is a weighted logistic regression, which rates all candidate videos.
Y
Yu Yang 已提交
97

C
choijulie 已提交
98
### Hybrid Model
99

C
choijulie 已提交
100
In the section, let us introduce our movie recommendation system. Especially, we feed moives titles into a text convolution network to get a fixed-length representative feature vector. Accordingly we will introduce the convolutional neural network for texts and the hybrid recommendation model respectively.
101

C
choijulie 已提交
102
#### Convolutional Neural Networks for Texts (CNN)
103

C
choijulie 已提交
104
**Convolutional Neural Networks** are frequently applied to data with grid-like topology such as two-dimensional images and one-dimensional texts. A CNN can extract multiple local features, combine them, and produce high-level abstractions, which correspond to semantic understanding. Empirically, CNN is shown to be efficient for image and text modeling.
105

C
choijulie 已提交
106
CNN mainly contains convolution and pooling operation, with versatile combinations in various applications. Here, we briefly describe a CNN as shown in Figure 3.
107 108


C
choijulie 已提交
109 110 111 112
<p align="center">
<img src="image/text_cnn_en.png" width = "80%" align="center"/><br/>
Figure 3. CNN for text modeling.
</p>
113

C
choijulie 已提交
114
Let $n$ be the length of the sentence to process, and the $i$-th word has embedding as $x_i\in\mathbb{R}^k$,where $k$ is the embedding dimensionality.
115

C
choijulie 已提交
116
First, we concatenate the words by piecing together every $h$ words, each as a window of length $h$. This window is denoted as $x_{i:i+h-1}$, consisting of $x_{i},x_{i+1},\ldots,x_{i+h-1}$, where $x_i$ is the first word in the window and $i$ takes value ranging from $1$ to $n-h+1$: $x_{i:i+h-1}\in\mathbb{R}^{hk}$.
117

C
choijulie 已提交
118
Next, we apply the convolution operation: we apply the kernel $w\in\mathbb{R}^{hk}$ in each window, extracting features $c_i=f(w\cdot x_{i:i+h-1}+b)$, where $b\in\mathbb{R}$ is the bias and $f$ is a non-linear activation function such as $sigmoid$. Convolving by the kernel at every window ${x_{1:h},x_{2:h+1},\ldots,x_{n-h+1:n}}$ produces a feature map in the following form:
119

C
choijulie 已提交
120
$$c=[c_1,c_2,\ldots,c_{n-h+1}], c \in \mathbb{R}^{n-h+1}$$
Y
Yu Yang 已提交
121

C
choijulie 已提交
122
Next, we apply *max pooling* over time to represent the whole sentence $\hat c$, which is the maximum element across the feature map:
Y
Yu Yang 已提交
123

C
choijulie 已提交
124
$$\hat c=max(c)$$
Y
Yu Yang 已提交
125

C
choijulie 已提交
126
#### Model Structure Of The Hybrid Model
Y
Yu Yang 已提交
127

C
choijulie 已提交
128
In our network, the input includes features of users and movies.  The user feature includes four properties: user ID, gender, occupation, and age.  Movie features include their IDs, genres, and titles.
Y
Yu Yang 已提交
129

C
choijulie 已提交
130
We use fully-connected layers to map user features into representative feature vectors and concatenate them.  The process of movie features is similar, except that for movie titles -- we feed titles into a text convolution network as described in the above section to get a fixed-length representative feature vector.
Y
Yu Yang 已提交
131

C
choijulie 已提交
132
Given the feature vectors of users and movies, we compute the relevance using cosine similarity.  We minimize the squared error at training time.
Y
Yu Yang 已提交
133 134

<p align="center">
C
choijulie 已提交
135 136
<img src="image/rec_regression_network_en.png" width="90%" ><br/>
Figure 4. A hybrid recommendation model.
137
</p>
Y
Yu Yang 已提交
138

C
choijulie 已提交
139
## Dataset
Y
Yu Yang 已提交
140

C
choijulie 已提交
141
We use the [MovieLens ml-1m](http://files.grouplens.org/datasets/movielens/ml-1m.zip) to train our model.  This dataset includes 10,000 ratings of 4,000 movies from 6,000 users to 4,000 movies.  Each rate is in the range of 1~5.  Thanks to GroupLens Research for collecting, processing and publishing the dataset.
Y
Yu Yang 已提交
142

143
`paddle.datasets` package encapsulates multiple public datasets, including `cifar`, `imdb`, `mnist`, `movielens` and `wmt14`, etc. There's no need for us to manually download and preprocess `MovieLens` dataset.
144

C
choijulie 已提交
145 146
The raw `MoiveLens` contains movie ratings, relevant features from both movies and users.
For instance, one movie's feature could be:
Y
Yu Yang 已提交
147

148
```python
149
import paddle
C
choijulie 已提交
150 151
movie_info = paddle.dataset.movielens.movie_info()
print movie_info.values()[0]
Y
Yu Yang 已提交
152
```
153

C
choijulie 已提交
154 155
```text
<MovieInfo id(1), title(Toy Story), categories(['Animation', "Children's", 'Comedy'])>
Y
Yu Yang 已提交
156 157
```

C
choijulie 已提交
158
One user's feature could be:
Y
Yu Yang 已提交
159

160
```python
C
choijulie 已提交
161 162
user_info = paddle.dataset.movielens.user_info()
print user_info.values()[0]
Y
Yu Yang 已提交
163 164
```

C
choijulie 已提交
165 166 167
```text
<UserInfo id(1), gender(F), age(1), job(10)>
```
Y
Yu Yang 已提交
168

C
choijulie 已提交
169
In this dateset, the distribution of age is shown as follows:
170

C
choijulie 已提交
171 172 173 174 175 176 177 178
```text
1: "Under 18"
18: "18-24"
25: "25-34"
35: "35-44"
45: "45-49"
50: "50-55"
56: "56+"
Y
Yu Yang 已提交
179
```
180

C
choijulie 已提交
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
User's occupation is selected from the following options:

```text
0: "other" or not specified
1: "academic/educator"
2: "artist"
3: "clerical/admin"
4: "college/grad student"
5: "customer service"
6: "doctor/health care"
7: "executive/managerial"
8: "farmer"
9: "homemaker"
10: "K-12 student"
11: "lawyer"
12: "programmer"
13: "retired"
14: "sales/marketing"
15: "scientist"
16: "self-employed"
17: "technician/engineer"
18: "tradesman/craftsman"
19: "unemployed"
20: "writer"
```
206

C
choijulie 已提交
207 208
Each record consists of three main components: user features, movie features and movie ratings.
Likewise, as a simple example, consider the following:
209 210 211 212 213 214 215

```python
train_set_creator = paddle.dataset.movielens.train()
train_sample = next(train_set_creator())
uid = train_sample[0]
mov_id = train_sample[len(user_info[uid].value())]
print "User %s rates Movie %s with Score %s"%(user_info[uid], movie_info[mov_id], train_sample[-1])
Y
Yu Yang 已提交
216 217
```

C
choijulie 已提交
218 219 220 221 222
```text
User <UserInfo id(1), gender(F), age(1), job(10)> rates Movie <MovieInfo id(1193), title(One Flew Over the Cuckoo's Nest), categories(['Drama'])> with Score [5.0]
```

The output shows that user 1 gave movie `1193` a rating of 5.
223

C
choijulie 已提交
224
After issuing a command `python train.py`, training will start immediately. The details will be unpacked by the following sessions to see how it works.
Y
Yu Yang 已提交
225

226
## Model Configuration
C
choijulie 已提交
227

228
Our program starts with importing necessary packages and initializing some global variables:
C
choijulie 已提交
229
```python
230 231 232 233 234 235 236 237 238 239 240
import math
import sys
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.nets as nets

IS_SPARSE = True
USE_GPU = False
BATCH_SIZE = 256
C
choijulie 已提交
241
```
Y
Yu Yang 已提交
242

243 244

Then we define the model configuration for user combined features:
Y
Yu Yang 已提交
245 246

```python
247
def get_usr_combined_features():
Y
Yu Yang 已提交
248

249
    USR_DICT_SIZE = paddle.dataset.movielens.max_user_id() + 1
250

251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
    uid = layers.data(name='user_id', shape=[1], dtype='int64')

    usr_emb = layers.embedding(
        input=uid,
        dtype='float32',
        size=[USR_DICT_SIZE, 32],
        param_attr='user_table',
        is_sparse=IS_SPARSE)

    usr_fc = layers.fc(input=usr_emb, size=32)

    USR_GENDER_DICT_SIZE = 2

    usr_gender_id = layers.data(name='gender_id', shape=[1], dtype='int64')

    usr_gender_emb = layers.embedding(
        input=usr_gender_id,
        size=[USR_GENDER_DICT_SIZE, 16],
        param_attr='gender_table',
        is_sparse=IS_SPARSE)

    usr_gender_fc = layers.fc(input=usr_gender_emb, size=16)

    USR_AGE_DICT_SIZE = len(paddle.dataset.movielens.age_table)
    usr_age_id = layers.data(name='age_id', shape=[1], dtype="int64")

    usr_age_emb = layers.embedding(
        input=usr_age_id,
        size=[USR_AGE_DICT_SIZE, 16],
        is_sparse=IS_SPARSE,
        param_attr='age_table')

    usr_age_fc = layers.fc(input=usr_age_emb, size=16)

    USR_JOB_DICT_SIZE = paddle.dataset.movielens.max_job_id() + 1
    usr_job_id = layers.data(name='job_id', shape=[1], dtype="int64")

    usr_job_emb = layers.embedding(
        input=usr_job_id,
        size=[USR_JOB_DICT_SIZE, 16],
        param_attr='job_table',
        is_sparse=IS_SPARSE)

    usr_job_fc = layers.fc(input=usr_job_emb, size=16)

    concat_embed = layers.concat(
        input=[usr_fc, usr_gender_fc, usr_age_fc, usr_job_fc], axis=1)

    usr_combined_features = layers.fc(input=concat_embed, size=200, act="tanh")

    return usr_combined_features
Y
Yu Yang 已提交
302 303
```

304 305 306
As shown in the above code, the input is four dimension integers for each user, that is `user_id`,`gender_id`, `age_id` and `job_id`. In order to deal with these features conveniently, we use the language model in NLP to transform these discrete values into embedding vaules `usr_emb`, `usr_gender_emb`, `usr_age_emb` and `usr_job_emb`.

Then we can use user features as input, directly connecting to a fully-connected layer, which is used to reduce dimension to 200.
Y
Yu Yang 已提交
307

C
choijulie 已提交
308
Furthermore, we do a similar transformation for each movie feature. The model configuration is:
Y
Yu Yang 已提交
309 310

```python
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
def get_mov_combined_features():

    MOV_DICT_SIZE = paddle.dataset.movielens.max_movie_id() + 1

    mov_id = layers.data(name='movie_id', shape=[1], dtype='int64')

    mov_emb = layers.embedding(
        input=mov_id,
        dtype='float32',
        size=[MOV_DICT_SIZE, 32],
        param_attr='movie_table',
        is_sparse=IS_SPARSE)

    mov_fc = layers.fc(input=mov_emb, size=32)

    CATEGORY_DICT_SIZE = len(paddle.dataset.movielens.movie_categories())

    category_id = layers.data(
        name='category_id', shape=[1], dtype='int64', lod_level=1)

    mov_categories_emb = layers.embedding(
        input=category_id, size=[CATEGORY_DICT_SIZE, 32], is_sparse=IS_SPARSE)

    mov_categories_hidden = layers.sequence_pool(
        input=mov_categories_emb, pool_type="sum")

    MOV_TITLE_DICT_SIZE = len(paddle.dataset.movielens.get_movie_title_dict())

    mov_title_id = layers.data(
        name='movie_title', shape=[1], dtype='int64', lod_level=1)

    mov_title_emb = layers.embedding(
        input=mov_title_id, size=[MOV_TITLE_DICT_SIZE, 32], is_sparse=IS_SPARSE)

    mov_title_conv = nets.sequence_conv_pool(
        input=mov_title_emb,
        num_filters=32,
        filter_size=3,
        act="tanh",
        pool_type="sum")

    concat_embed = layers.concat(
        input=[mov_fc, mov_categories_hidden, mov_title_conv], axis=1)

    mov_combined_features = layers.fc(input=concat_embed, size=200, act="tanh")

    return mov_combined_features
358
```
Y
Yu Yang 已提交
359

360 361
Movie title, which is a sequence of words represented by an integer word index sequence, will be fed into a `sequence_conv_pool` layer, which will apply convolution and pooling on time dimension. Because pooling is done on time dimension, the output will be a fixed-length vector regardless the length of the input sequence.

Y
Yu Yang 已提交
362

363
Finally, we can define a `inference_program` that uses cosine similarity to calculate the similarity between user characteristics and movie features.
Y
Yu Yang 已提交
364

365
```python
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
def inference_program():
    usr_combined_features = get_usr_combined_features()
    mov_combined_features = get_mov_combined_features()

    inference = layers.cos_sim(X=usr_combined_features, Y=mov_combined_features)
    scale_infer = layers.scale(x=inference, scale=5.0)

    return scale_infer
```

Then we define a `training_program` that uses the result from `inference_program` to compute the cost with label data.
Also define `optimizer_func` to specify the optimizer.

```python
def train_program():

    scale_infer = inference_program()

    label = layers.data(name='score', shape=[1], dtype='float32')
    square_cost = layers.square_error_cost(input=scale_infer, label=label)
    avg_cost = layers.mean(square_cost)

    return [avg_cost, scale_infer]


def optimizer_func():
    return fluid.optimizer.SGD(learning_rate=0.2)
Y
Yu Yang 已提交
393 394
```

C
choijulie 已提交
395
## Model Training
396

397
### Specify training environment
Y
Yu Yang 已提交
398

399
Specify your training environment, you should specify if the training is on CPU or GPU.
Y
Yu Yang 已提交
400 401

```python
402 403
use_cuda = False
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
Y
Yu Yang 已提交
404 405
```

406
### Datafeeder Configuration
Y
Yu Yang 已提交
407

408 409
Next we define data feeders for test and train. The feeder reads a `buf_size` of data each time and feed them to the training/testing process.
`paddle.dataset.movielens.train` will yield records during each pass, after shuffling, a batch input of `BATCH_SIZE` is generated for training.
Y
Update  
Yi Wang 已提交
410

411
```python
412 413 414 415
train_reader = paddle.batch(
    paddle.reader.shuffle(
        paddle.dataset.movielens.train(), buf_size=8192),
    batch_size=BATCH_SIZE)
Y
Yu Yang 已提交
416

417 418
test_reader = paddle.batch(
    paddle.dataset.movielens.test(), batch_size=BATCH_SIZE)
C
choijulie 已提交
419
```
Y
Yu Yang 已提交
420

421
### Create Trainer
Y
Yu Yang 已提交
422

423
Create a trainer that takes `train_program` as input and specify optimizer function.
Y
Yu Yang 已提交
424

425
```python
426 427
trainer = fluid.Trainer(
    train_func=train_program, place=place, optimizer_func=optimizer_func)
428
```
Y
Yu Yang 已提交
429

430 431 432
### Feeding Data

`feed_order` is devoted to specifying the correspondence between each yield record and `paddle.layer.data`. For instance, the first column of data generated by `movielens.train` corresponds to `user_id` feature.
Y
Yu Yang 已提交
433

434
```python
435 436 437 438
feed_order = [
        'user_id', 'gender_id', 'age_id', 'job_id', 'movie_id', 'category_id',
        'movie_title', 'score'
    ]
Q
qijun 已提交
439 440
```

441 442 443 444
### Event Handler

Callback function `event_handler` will be called during training when a pre-defined event happens.
For example, we can check the cost by `trainer.test` when `EndStepEvent` occurs
Q
qijun 已提交
445 446

```python
447 448 449
# Specify the directory path to save the parameters
params_dirname = "recommender_system.inference.model"

Q
qijun 已提交
450
def event_handler(event):
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
    if isinstance(event, fluid.EndStepEvent):
        avg_cost_set = trainer.test(
            reader=test_reader, feed_order=feed_order)

        # get avg cost
        avg_cost = np.array(avg_cost_set).mean()

        print("avg_cost: %s" % avg_cost)
        print('BatchID {0}, Test Loss {1:0.2}'.format(event.epoch + 1,
                                                          float(avg_cost)))

        if float(avg_cost) < 4:
            trainer.save_params(params_dirname)
            trainer.stop()

Q
qijun 已提交
466 467
```

468 469 470 471
### Training

Finally, we invoke `trainer.train` to start training with `num_epochs` and other parameters.

Q
qijun 已提交
472
```python
473 474 475 476 477 478
trainer.train(
    num_epochs=1,
    event_handler=event_handler,
    reader=train_reader,
    feed_order=feed_order)
```
Q
qijun 已提交
479

480
## Inference
Y
Yu Yang 已提交
481

482
### Create Inferencer
Y
Yu Yang 已提交
483

484
Initialize Inferencer with `inference_program` and `params_dirname` which is where we save params from training.
Y
Yi Wang 已提交
485

486 487 488 489 490 491
```python
inferencer = fluid.Inferencer(
        inference_program, param_path=params_dirname, place=place)  
```

### Generate input data for testing
Y
Yi Wang 已提交
492

493 494 495
Use create_lod_tensor(data, lod, place) API to generate LoD Tensor, where `data` is a list of sequences of index numbers, `lod` is the level of detail (lod) info associated with `data`.
For example, data = [[10, 2, 3], [2, 3]] means that it contains two sequences of indices, of length 3 and 2, respectively.
Correspondingly, lod = [[3, 2]] contains one level of detail info, indicating that `data` consists of two sequences of length 3 and 2.
L
liaogang 已提交
496

497 498 499 500 501 502 503 504 505
```python
user_id = fluid.create_lod_tensor([[1]], [[1]], place)
gender_id = fluid.create_lod_tensor([[1]], [[1]], place)
age_id = fluid.create_lod_tensor([[0]], [[1]], place)
job_id = fluid.create_lod_tensor([[10]], [[1]], place)
movie_id = fluid.create_lod_tensor([[783]], [[1]], place)
category_id = fluid.create_lod_tensor([[10, 8, 9]], [[3]], place)
movie_title = fluid.create_lod_tensor([[1069, 4140, 2923, 710, 988]], [[5]],
                                      place)
L
liaogang 已提交
506
```
507

508 509 510
### Infer

Now we can infer with inputs that we provide in `feed_order` during training.
C
choijulie 已提交
511

L
liaogang 已提交
512
```python
513 514 515 516 517 518 519 520 521 522 523 524 525 526
results = inferencer.infer(
    {
        'user_id': user_id,
        'gender_id': gender_id,
        'age_id': age_id,
        'job_id': job_id,
        'movie_id': movie_id,
        'category_id': category_id,
        'movie_title': movie_title
    },
    return_numpy=False)

print("infer results: ", np.array(results[0]))

Y
Yu Yang 已提交
527 528
```

C
choijulie 已提交
529
## Conclusion
530

C
choijulie 已提交
531
This tutorial goes over traditional approaches in recommender system and a deep learning based approach.  We also show that how to train and use the model with PaddlePaddle.  Deep learning has been well used in computer vision and NLP, we look forward to its new successes in recommender systems.
Y
Yu Yang 已提交
532

M
Mimee 已提交
533
## References
Y
Yu Yang 已提交
534

C
choijulie 已提交
535 536
1. [Peter Brusilovsky](https://en.wikipedia.org/wiki/Peter_Brusilovsky) (2007). *The Adaptive Web*. p. 325.
2. Robin Burke , [Hybrid Web Recommender Systems](http://www.dcs.warwick.ac.uk/~acristea/courses/CS411/2010/Book%20-%20The%20Adaptive%20Web/HybridWebRecommenderSystems.pdf), pp. 377-408, The Adaptive Web, Peter Brusilovsky, Alfred Kobsa, Wolfgang Nejdl (Ed.), Lecture Notes in Computer Science, Springer-Verlag, Berlin, Germany, Lecture Notes in Computer Science, Vol. 4321, May 2007, 978-3-540-72078-2.
Y
Yu Yang 已提交
537
3. P. Resnick, N. Iacovou, etc. “[GroupLens: An Open Architecture for Collaborative Filtering of Netnews](http://ccs.mit.edu/papers/CCSWP165.html)”, Proceedings of ACM Conference on Computer Supported Cooperative Work, CSCW 1994. pp.175-186.
C
choijulie 已提交
538 539 540
4. Sarwar, Badrul, et al. "[Item-based collaborative filtering recommendation algorithms.](http://files.grouplens.org/papers/www10_sarwar.pdf)" *Proceedings of the 10th International Conference on World Wide Web*. ACM, 2001.
5. Kautz, Henry, Bart Selman, and Mehul Shah. "[Referral Web: Combining Social networks and collaborative filtering.](http://www.cs.cornell.edu/selman/papers/pdf/97.cacm.refweb.pdf)" Communications of the ACM 40.3 (1997): 63-65. APA
6. Yuan, Jianbo, et al. ["Solving Cold-Start Problem in Large-scale Recommendation Engines: A Deep Learning Approach."](https://arxiv.org/pdf/1611.05480v1.pdf) *arXiv preprint arXiv:1611.05480* (2016).
Y
Yu Yang 已提交
541
7. Covington P, Adams J, Sargin E. [Deep neural networks for youtube recommendations](https://static.googleusercontent.com/media/research.google.com/zh-CN//pubs/archive/45530.pdf)[C]//Proceedings of the 10th ACM Conference on Recommender Systems. ACM, 2016: 191-198.
542

Y
Yu Yang 已提交
543
<br/>
L
Luo Tao 已提交
544
This tutorial is contributed by <a xmlns:cc="http://creativecommons.org/ns#" href="http://book.paddlepaddle.org" property="cc:attributionName" rel="cc:attributionURL">PaddlePaddle</a>, and licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/">Creative Commons Attribution-ShareAlike 4.0 International License</a>.
545

Y
Yu Yang 已提交
546 547 548 549 550 551 552
</div>
<!-- You can change the lines below now. -->

<script type="text/javascript">
marked.setOptions({
  renderer: new marked.Renderer(),
  gfm: true,
Y
Yu Yang 已提交
553 554 555
  breaks: false,
  smartypants: true,
  highlight: function(code, lang) {
Y
Yu Yang 已提交
556
    code = code.replace(/&amp;/g, "&")
Y
Yu Yang 已提交
557 558
    code = code.replace(/&gt;/g, ">")
    code = code.replace(/&lt;/g, "<")
559
    code = code.replace(/&nbsp;/g, " ")
Y
Yu Yang 已提交
560
    return hljs.highlightAuto(code, [lang]).value;
Y
Yu Yang 已提交
561 562 563
  }
});
document.getElementById("context").innerHTML = marked(
564
        document.getElementById("markdown").innerHTML)
Y
Yu Yang 已提交
565 566
</script>
</body>