index.en.html 24.8 KB
Newer Older
1

Y
Yi Wang 已提交
2 3 4 5 6 7 8
<html>
<head>
  <script type="text/x-mathjax-config">
  MathJax.Hub.Config({
    extensions: ["tex2jax.js", "TeX/AMSsymbols.js", "TeX/AMSmath.js"],
    jax: ["input/TeX", "output/HTML-CSS"],
    tex2jax: {
9 10
      inlineMath: [ ['$','$'] ],
      displayMath: [ ['$$','$$'] ],
Y
Yi Wang 已提交
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
      processEscapes: true
    },
    "HTML-CSS": { availableFonts: ["TeX"] }
  });
  </script>
  <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js" async></script>
  <script type="text/javascript" src="../.tmpl/marked.js">
  </script>
  <link href="http://cdn.bootcss.com/highlight.js/9.9.0/styles/darcula.min.css" rel="stylesheet">
  <script src="http://cdn.bootcss.com/highlight.js/9.9.0/highlight.min.js"></script>
  <link href="http://cdn.bootcss.com/bootstrap/4.0.0-alpha.6/css/bootstrap.min.css" rel="stylesheet">
  <link href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" rel="stylesheet">
  <link href="../.tmpl/github-markdown.css" rel='stylesheet'>
</head>
<style type="text/css" >
.markdown-body {
    box-sizing: border-box;
    min-width: 200px;
    max-width: 980px;
    margin: 0 auto;
    padding: 45px;
}
</style>


<body>

Y
Yu Yang 已提交
38
<div id="context" class="container-fluid markdown-body">
Y
Yi Wang 已提交
39 40 41 42 43 44 45 46
</div>

<!-- This block will be replaced by each markdown file content. Please do not change lines below.-->
<div id="markdown" style='display:none'>
# Word2Vec

This is intended as a reference tutorial. The source code of this tutorial lives on [book/word2vec](https://github.com/PaddlePaddle/book/tree/develop/word2vec).

47
For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst).
Y
Yi Wang 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

## Background Introduction

This section introduces the concept of **word embedding**, which is a vector representation of words. It is a popular technique used in natural language processing. Word embeddings support many Internet services, including search engines, advertising systems, and recommendation systems.

### One-Hot Vectors

Building these services requires us to quantify the similarity between two words or paragraphs. This calls for a new representation of all the words to make them more suitable for computation. An obvious way to achieve this is through the vector space model, where every word is represented as an **one-hot vector**.

For each word, its vector representation has the corresponding entry in the vector as 1, and all other entries as 0. The lengths of one-hot vectors match the size of the dictionary. Each entry of a vector corresponds to the presence (or absence) of a word in the dictionary.

One-hot vectors are intuitive, yet they have limited usefulness. Take the example of an Internet advertising system: Suppose a customer enters the query "Mother's Day", while an ad bids for the keyword carnations". Because the one-hot vectors of these two words are perpendicular, the metric distance (either Euclidean or cosine similarity) between them would indicate  little relevance. However, *we* know that these two queries are connected semantically, since people often gift their mothers bundles of carnation flowers on Mother's Day. This discrepancy is due to the low information capacity in each vector. That is, comparing the vector representations of two words does not assess their relevance sufficiently. To calculate their similarity accurately, we need more information, which could be learned from large amounts of data through machine learning methods.

Like many machine learning models, word embeddings can represent knowledge in various ways. Another model may project an one-hot vector to an embedding vector of lower dimension e.g. $embedding(mother's day) = [0.3, 4.2, -1.5, ...], embedding(carnations) = [0.2, 5.6, -2.3, ...]$. Mapping one-hot vectors onto an embedded vector space has the potential to bring the embedding vectors of similar words (either semantically or usage-wise) closer to each other, so that the cosine similarity between the corresponding vectors for words like "Mother's Day" and "carnations" are no longer zero.

A word embedding model could be a probabilistic model, a co-occurrence matrix model, or a neural network. Before people started using neural networks to generate word embedding, the traditional method was to calculate a co-occurrence matrix $X$ of words. Here, $X$ is a $|V| \times |V|$ matrix, where $X_{ij}$ represents the co-occurrence times of the $i$th and $j$th words in the vocabulary `V` within all corpus, and $|V|$ is the size of the vocabulary. By performing matrix decomposition on $X$ e.g. Singular Value Decomposition \[[5](#References)\]

$$X = USV^T$$

the resulting $U$ can be seen as the word embedding of all the words.

However, this method suffers from many drawbacks:
1) Since many pairs of words don't co-occur, the co-occurrence matrix is sparse. To achieve good performance of matrix factorization, further treatment on word frequency is needed;
2) The matrix is large, frequently on the order of $10^6*10^6$;
3) We need to manually filter out stop words (like "although", "a", ...), otherwise these frequent words will affect the performance of matrix factorization.

The neural network based model does not require storing huge hash tables of statistics on all of the corpus. It obtains the word embedding by learning from semantic information, hence could avoid the aforementioned problems in the traditional method. In this chapter, we will introduce the details of neural network word embedding model and how to train such model in PaddlePaddle.

## Results Demonstration

In this section, after training the word embedding model, we could use the data visualization algorithm $t-$SNE\[[4](#reference)\] to draw the word embedding vectors after projecting them onto a two-dimensional space (see figure below). From the figure we could see that the semantically relevant words -- *a*, *the*, and *these* or *big* and *huge* -- are close to each other in the projected space, while irrelevant words -- *say* and *business* or *decision* and *japan* -- are far from each other.

<p align="center">
81 82
    <img src = "image/2d_similarity.png" width=400><br/>
    Figure 1. Two dimension projection of word embeddings
Y
Yi Wang 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
</p>

### Cosine Similarity

On the other hand, we know that the cosine similarity between two vectors falls between $[-1,1]$. Specifically, the cosine similarity is 1 when the vectors are identical, 0 when the vectors are perpendicular, -1 when the are of opposite directions. That is, the cosine similarity between two vectors scales with their relevance. So we can calculate the cosine similarity of two word embedding vectors to represent their relevance:

```
please input two words: big huge
similarity: 0.899180685161

please input two words: from company
similarity: -0.0997506977351
```

The above results could be obtained by running `calculate_dis.py`, which loads the words in the dictionary and their corresponding trained word embeddings. For detailed instruction, see section [Model Application](#Model Application).


## Model Overview

In this section, we will introduce three word embedding models: N-gram model, CBOW, and Skip-gram, which all output the frequency of each word given its immediate context.

For N-gram model, we will first introduce the concept of language model, and implement it using PaddlePaddle in section [Model Training](#Model Training).

The latter two models, which became popular recently, are neural word embedding model developed by Tomas Mikolov at Google \[[3](#reference)\]. Despite their apparent simplicity, these models train very well.

### Language Model

Before diving into word embedding models, we will first introduce the concept of **language model**. Language models build the joint probability function $P(w_1, ..., w_T)$ of a sentence, where $w_i$ is the i-th word in the sentence. The goal is to give higher probabilities to meaningful sentences, and lower probabilities to meaningless constructions.

In general, models that generate the probability of a sequence can be applied to many fields, like machine translation, speech recognition, information retrieval, part-of-speech tagging, and handwriting recognition. Take information retrieval, for example. If you were to search for "how long is a football bame" (where bame is a medical noun), the search engine would have asked if you had meant "how long is a football game" instead. This is because the probability of "how long is a football bame" is very low according to the language model; in addition, among all of the words easily confused with "bame", "game" would build the most probable sentence.

#### Target Probability
115
For language model's target probability $P(w_1, ..., w_T)$, if the words in the sentence were to be independent, the joint probability of the whole sentence would be the product of each word's probability:
Y
Yi Wang 已提交
116 117 118 119 120

$$P(w_1, ..., w_T) = \prod_{t=1}^TP(w_t)$$

However, the frequency of words in a sentence typically relates to the words before them, so canonical language models are constructed using conditional probability in its target probability:

121
$$P(w_1, ..., w_T) = \prod_{t=1}^TP(w_t | w_1, ... , w_{t-1})$$
Y
Yi Wang 已提交
122 123


124
### N-gram neural model
Y
Yi Wang 已提交
125 126 127 128 129 130 131 132 133

In computational linguistics, n-gram is an important method to represent text. An n-gram represents a contiguous sequence of n consecutive items given a text. Based on the desired application scenario, each item could be a letter, a syllable or a word. The N-gram model is also an important method in statistical language modeling. When training language models with n-grams, the first (n-1) words of an n-gram are used to predict the *n*th word.

Yoshua Bengio and other scientists describe how to train a word embedding model using neural network in the famous paper of Neural Probabilistic Language Models \[[1](#reference)\] published in 2003. The Neural Network Language Model (NNLM) described in the paper learns the language model and word embedding simultaneously through a linear transformation and a non-linear hidden connection. That is, after training on large amounts of corpus, the model learns the word embedding; then, it computes the probability of the whole sentence, using the embedding. This type of language model can overcome the **curse of dimensionality** i.e. model inaccuracy caused by the difference in dimensionality between training and testing data. Note that the term *neural network language model* is ill-defined, so we will not use the name NNLM but only refer to it as *N-gram neural model* in this section.

We have previously described language model using conditional probability, where the probability of the *t*-th word in a sentence depends on all $t-1$ words before it. Furthermore, since words further prior have less impact on a word, and every word within an n-gram is only effected by its previous n-1 words, we have:

$$P(w_1, ..., w_T) = \prod_{t=n}^TP(w_t|w_{t-1}, w_{t-2}, ..., w_{t-n+1})$$

134
Given some real corpus in which all sentences are meaningful, the n-gram model should maximize the following objective function:
Y
Yi Wang 已提交
135 136 137

$$\frac{1}{T}\sum_t f(w_t, w_{t-1}, ..., w_{t-n+1};\theta) + R(\theta)$$

138
where $f(w_t, w_{t-1}, ..., w_{t-n+1})$ represents the conditional probability of the current word $w_t$ given its previous $n-1$ words, and $R(\theta)$ represents parameter regularization term.
Y
Yi Wang 已提交
139

140 141 142
<p align="center">
       <img src="image/nnlm_en.png" width=500><br/>
       Figure 2. N-gram neural network model
Y
Yi Wang 已提交
143 144 145 146 147 148
</p>


Figure 2 shows the N-gram neural network model. From the bottom up, the model has the following components:

 - For each sample, the model gets input $w_{t-n+1},...w_{t-1}$, and outputs the probability that the t-th word is one of `|V|` in the dictionary.
149 150 151

 Every input word $w_{t-n+1},...w_{t-1}$ first gets transformed into word embedding $C(w_{t-n+1}),...C(w_{t-1})$ through a transformation matrix.

Y
Yi Wang 已提交
152 153
 - All the word embeddings concatenate into a single vector, which is mapped (nonlinearly) into the $t$-th word hidden representation:

154 155 156
    $$g=Utanh(\theta^Tx + b_1) + Wx + b_2$$

   where $x$ is the large vector concatenated from all the word embeddings representing the context; $\theta$, $U$, $b_1$, $b_2$ and $W$ are parameters connecting word embedding layers to the hidden layers. $g$ represents the unnormalized probability of the output word, $g_i$ represents the unnormalized probability of the output word being the i-th word in the dictionary.
Y
Yi Wang 已提交
157 158

 - Based on the definition of softmax, using normalized $g_i$, the probability that the output word is $w_t$ is represented as:
159

Y
Yi Wang 已提交
160
  $$P(w_t | w_1, ..., w_{t-n+1}) = \frac{e^{g_{w_t}}}{\sum_i^{|V|} e^{g_i}}$$
161

Y
Yi Wang 已提交
162 163
 - The cost of the entire network is a multi-class cross-entropy and can be described by the following loss function

164
   $$J(\theta) = -\sum_{i=1}^N\sum_{c=1}^{|V|}y_k^{i}log(softmax(g_k^i))$$
Y
Yi Wang 已提交
165 166 167

   where $y_k^i$ represents the true label for the $k$-th class in the $i$-th sample ($0$ or $1$), $softmax(g_k^i)$ represents the softmax probability for the $k$-th class in the $i$-th sample.

168
### Continuous Bag-of-Words model(CBOW)
Y
Yi Wang 已提交
169 170 171

CBOW model predicts the current word based on the N words both before and after it. When $N=2$, the model is as the figure below:

172 173 174
<p align="center">
    <img src="image/cbow_en.png" width=250><br/>
    Figure 3. CBOW model
Y
Yi Wang 已提交
175 176 177 178 179 180 181 182
</p>

Specifically, by ignoring the order of words in the sequence, CBOW uses the average value of the word embedding of the context to predict the current word:

$$\text{context} = \frac{x_{t-1} + x_{t-2} + x_{t+1} + x_{t+2}}{4}$$

where $x_t$ is the word embedding of the t-th word, classification score vector is $z=U*\text{context}$, the final classification $y$ uses softmax and the loss function uses multi-class cross-entropy.

183
### Skip-gram model
Y
Yi Wang 已提交
184

185
The advantages of CBOW is that it smooths over the word embeddings of the context and reduces noise, so it is very effective on small dataset. Skip-gram uses a word to predict its context and get multiple context for the given word, so it can be used in larger datasets.
Y
Yi Wang 已提交
186

187 188 189
<p align="center">
    <img src="image/skipgram_en.png" width=250><br/>
    Figure 4. Skip-gram model
Y
Yi Wang 已提交
190 191
</p>

192
As illustrated in the figure above, skip-gram model maps the word embedding of the given word onto $2n$ word embeddings (including $n$ words before and $n$ words after the given word), and then combine the classification loss of all those $2n$ words by softmax.
Y
Yi Wang 已提交
193

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
## Dataset

We will use Peen Treebank (PTB) (Tomas Mikolov's pre-processed version) dataset. PTB is a small dataset, used in Recurrent Neural Network Language Modeling Toolkit\[[2](#reference)\]. Its statistics are as follows:

<p align="center">
<table>
    <tr>
        <td>training set</td>
        <td>validation set</td>
        <td>test set</td>
    </tr>
    <tr>
        <td>ptb.train.txt</td>
        <td>ptb.valid.txt</td>
        <td>ptb.test.txt</td>
    </tr>
    <tr>
        <td>42068 lines</td>
        <td>3370 lines</td>
        <td>3761 lines</td>
    </tr>
</table>
</p>

### Python Dataset Module

We encapsulated the PTB Data Set in our Python module `paddle.dataset.imikolov`. This module can

1. download the dataset to `~/.cache/paddle/dataset/imikolov`, if not yet, and
2. [preprocesses](#preprocessing) the dataset.

### Preprocessing

We will be training a 5-gram model. Given five words in a window, we will predict the fifth word given the first four words.

Beginning and end of a sentence have a special meaning, so we will add begin token `<s>` in the front of the sentence. And end token `<e>` in the end of the sentence. By moving the five word window in the sentence, data instances are generated.

For example, the sentence "I have a dream that one day" generates five data instances:

```text
<s> I have a dream
I have a dream that
have a dream that one
a dream that one day
dream that one day <e>
```

At last, each data instance will be converted into an integer sequence according it's words' index inside the dictionary.

## Training

The neural network that we will be using is illustrated in the graph below:
Y
Yi Wang 已提交
246

247 248 249
<p align="center">
    <img src="image/ngram.en.png" width=400><br/>
    Figure 5. N-gram neural network model in model configuration
Y
Yi Wang 已提交
250 251
</p>

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
`word2vec/train.py` demonstrates training word2vec using PaddlePaddle:

- Import packages.

```python
import math
import paddle.v2 as paddle
```

- Configure parameter.

```python
embsize = 32 # word vector dimension
hiddensize = 256 # hidden layer dimension
N = 5 # train 5-gram
```

- Map the $n-1$ words $w_{t-n+1},...w_{t-1}$ before $w_t$ to a D-dimensional vector though matrix of dimention $|V|\times D$ (D=32 in this example).

```python
def wordemb(inlayer):
    wordemb = paddle.layer.table_projection(
        input=inlayer,
        size=embsize,
        param_attr=paddle.attr.Param(
            name="_proj",
            initial_std=0.001,
            learning_rate=1,
            l2_rate=0, ))
    return wordemb
```

- Define name and type for input to data layer.

```python
paddle.init(use_gpu=False, trainer_count=3)
word_dict = paddle.dataset.imikolov.build_dict()
dict_size = len(word_dict)
# Every layer takes integer value of range [0, dict_size)
firstword = paddle.layer.data(
    name="firstw", type=paddle.data_type.integer_value(dict_size))
secondword = paddle.layer.data(
    name="secondw", type=paddle.data_type.integer_value(dict_size))
thirdword = paddle.layer.data(
    name="thirdw", type=paddle.data_type.integer_value(dict_size))
fourthword = paddle.layer.data(
    name="fourthw", type=paddle.data_type.integer_value(dict_size))
nextword = paddle.layer.data(
    name="fifthw", type=paddle.data_type.integer_value(dict_size))

Efirst = wordemb(firstword)
Esecond = wordemb(secondword)
Ethird = wordemb(thirdword)
Efourth = wordemb(fourthword)
```

H
Helin Wang 已提交
308
- Concatenate n-1 word embedding vectors into a single feature vector.
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387

```python
contextemb = paddle.layer.concat(input=[Efirst, Esecond, Ethird, Efourth])
```

- Feature vector will go through a fully connected layer which outputs a hidden feature vector.

```python
hidden1 = paddle.layer.fc(input=contextemb,
                          size=hiddensize,
                          act=paddle.activation.Sigmoid(),
                          layer_attr=paddle.attr.Extra(drop_rate=0.5),
                          bias_attr=paddle.attr.Param(learning_rate=2),
                          param_attr=paddle.attr.Param(
                                initial_std=1. / math.sqrt(embsize * 8),
                                learning_rate=1))
```

- Hidden feature vector will go through another fully conected layer, turn into a $|V|$ dimensional vector. At the same time softmax will be applied to get the probability of each word being generated.

```python
predictword = paddle.layer.fc(input=hidden1,
                              size=dict_size,
                              bias_attr=paddle.attr.Param(learning_rate=2),
                              act=paddle.activation.Softmax())
```

- We will use cross-entropy cost function.

```python
cost = paddle.layer.classification_cost(input=predictword, label=nextword)
```

- Create parameter, optimizer and trainer.

```python
parameters = paddle.parameters.create(cost)
adam_optimizer = paddle.optimizer.Adam(
    learning_rate=3e-3,
    regularization=paddle.optimizer.L2Regularization(8e-4))
trainer = paddle.trainer.SGD(cost, parameters, adam_optimizer)
```

Next, we will begin the training process. `paddle.dataset.imikolov.train()` and `paddle.dataset.imikolov.test()` is our training set and test set. Both of the function will return a **reader**: In PaddlePaddle, reader is a python function which returns a Python iterator which output a single data instance at a time.

`paddle.batch` takes reader as input, outputs a **batched reader**: In PaddlePaddle, a reader outputs a single data instance at a time but batched reader outputs a minibatch of data instances.

```python
import gzip

def event_handler(event):
    if isinstance(event, paddle.event.EndIteration):
        if event.batch_id % 100 == 0:
            print "Pass %d, Batch %d, Cost %f, %s" % (
                event.pass_id, event.batch_id, event.cost, event.metrics)

    if isinstance(event, paddle.event.EndPass):
        result = trainer.test(
                    paddle.batch(
                        paddle.dataset.imikolov.test(word_dict, N), 32))
        print "Pass %d, Testing metrics %s" % (event.pass_id, result.metrics)
        with gzip.open("model_%d.tar.gz"%event.pass_id, 'w') as f:
            parameters.to_tar(f)

trainer.train(
    paddle.batch(paddle.dataset.imikolov.train(word_dict, N), 32),
    num_passes=100,
    event_handler=event_handler)
```

`trainer.train` will start training, the output of `event_handler` will be similar to following:
```text
Pass 0, Batch 0, Cost 7.870579, {'classification_error_evaluator': 1.0}, Testing metrics {'classification_error_evaluator': 0.999591588973999}
Pass 0, Batch 100, Cost 6.136420, {'classification_error_evaluator': 0.84375}, Testing metrics {'classification_error_evaluator': 0.8328699469566345}
Pass 0, Batch 200, Cost 5.786797, {'classification_error_evaluator': 0.8125}, Testing metrics {'classification_error_evaluator': 0.8328542709350586}
...
```

After 30 passes, we can get average error rate around 0.735611.
388

Y
Yi Wang 已提交
389 390

## Model Application
391

392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
After the model is trained, we can load saved model parameters and uses it for other models. We can also use the parameters in applications.

### Viewing Word Vector

Parameters trained by PaddlePaddle can be viewed by `parameters.get()`. For example, we can check the word vector for word `apple`.

```python
embeddings = parameters.get("_proj").reshape(len(word_dict), embsize)

print embeddings[word_dict['apple']]
```

```text
[-0.38961065 -0.02392169 -0.00093231  0.36301503  0.13538605  0.16076435
-0.0678709   0.1090285   0.42014077 -0.24119169 -0.31847557  0.20410083
0.04910378  0.19021918 -0.0122014  -0.04099389 -0.16924137  0.1911236
-0.10917275  0.13068172 -0.23079982  0.42699069 -0.27679482 -0.01472992
0.2069038   0.09005053 -0.3282454   0.12717034 -0.24218646  0.25304323
0.19072419 -0.24286366]
```

### Modifying Word Vector

Word vectors (`embeddings`) that we get is a numpy array. We can modify this array and set it back to `parameters`.


```python
def modify_embedding(emb):
    # Add your modification here.
    pass

modify_embedding(embeddings)
parameters.set("_proj", embeddings)
```

### Calculating Cosine Similarity

Cosine similarity is one way of quantifying the similarity between two vectors. The range of result is $[-1, 1]$. The bigger the value, the similar two vectors are:


```python
from scipy import spatial

emb_1 = embeddings[word_dict['world']]
emb_2 = embeddings[word_dict['would']]

print spatial.distance.cosine(emb_1, emb_2)
```

```text
0.99375076448
```

Y
Yi Wang 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
## Conclusion

This chapter introduces word embedding, the relationship between language model and word embedding, and how to train neural networks to learn word embedding.

In information retrieval, the relevance between the query and document keyword can be computed through the cosine similarity of their word embeddings. In grammar analysis and semantic analysis, a previously trained word embedding can initialize models for better performance. In document classification, clustering the word embedding can group synonyms in the documents. We hope that readers can use word embedding models in their work after reading this chapter.


## Referenes
1. Bengio Y, Ducharme R, Vincent P, et al. [A neural probabilistic language model](http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf)[J]. journal of machine learning research, 2003, 3(Feb): 1137-1155.
2. Mikolov T, Kombrink S, Deoras A, et al. [Rnnlm-recurrent neural network language modeling toolkit](http://www.fit.vutbr.cz/~imikolov/rnnlm/rnnlm-demo.pdf)[C]//Proc. of the 2011 ASRU Workshop. 2011: 196-201.
3. Mikolov T, Chen K, Corrado G, et al. [Efficient estimation of word representations in vector space](https://arxiv.org/pdf/1301.3781.pdf)[J]. arXiv preprint arXiv:1301.3781, 2013.
4. Maaten L, Hinton G. [Visualizing data using t-SNE](https://lvdmaaten.github.io/publications/papers/JMLR_2008.pdf)[J]. Journal of Machine Learning Research, 2008, 9(Nov): 2579-2605.
5. https://en.wikipedia.org/wiki/Singular_value_decomposition

<br/>
460
This tutorial is contributed by <a xmlns:cc="http://creativecommons.org/ns#" href="http://book.paddlepaddle.org" property="cc:attributionName" rel="cc:attributionURL">PaddlePaddle</a>, and licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>.
461

Y
Yi Wang 已提交
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
</div>
<!-- You can change the lines below now. -->

<script type="text/javascript">
marked.setOptions({
  renderer: new marked.Renderer(),
  gfm: true,
  breaks: false,
  smartypants: true,
  highlight: function(code, lang) {
    code = code.replace(/&amp;/g, "&")
    code = code.replace(/&gt;/g, ">")
    code = code.replace(/&lt;/g, "<")
    code = code.replace(/&nbsp;/g, " ")
    return hljs.highlightAuto(code, [lang]).value;
  }
});
document.getElementById("context").innerHTML = marked(
480
        document.getElementById("markdown").innerHTML)
Y
Yi Wang 已提交
481 482
</script>
</body>