README.en.md 20.9 KB
Newer Older
Z
Zhuoyuan 已提交
1 2
# Sentiment Analysis

3
The source codes of this section can be located at [book/understand_sentiment](https://github.com/PaddlePaddle/book/tree/develop/understand_sentiment). First-time users may refer to PaddlePaddle for [Installation guide](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst).
Z
Zhuoyuan 已提交
4

L
liaogang 已提交
5 6
## Background

Z
Zhuoyuan 已提交
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
In natural language processing, sentiment analysis refers to describing emotion status in texts. The texts may refer to a sentence, a paragraph or a document. Emotion status can be a binary classification problem (positive/negative or happy/sad), or a three-class problem (positive/neutral/negative). Sentiment analysis can be applied widely in various situations, such as online shopping (Amazon, Taobao), travel and movie websites. It can be used to grasp from the reviews how the customers feel about the product. Table 1 is an example of sentiment analysis in movie reviews:

| Movie Review       | Category  |
| --------     | -----  |
| Best movie of Xiaogang Feng in recent years!| Positive |
| Pretty bad. Feels like a tv-series from a local TV-channel     | Negative |
| Politically correct version of Taken ... and boring as Heck| Negative|
|delightful, mesmerizing, and completely unexpected. The plot is nicely designed.|Positive|

<p align="center">Table 1 Sentiment Analysis in Movie Reviews</p>

In natural language processing, sentiment analysis can be categorized as a **Text Classification problem**, i.e., to categorize a piece of text to a specific class. It involves two related tasks: text representation and classification. Before deep learning becomes heated, the main-stream methods for the former include BOW (bag of words) and topic modeling, while the latter contain SVM(support vector machine), LR(logistic regression).

For a piece of text, BOW model ignores its word order, grammar and syntax, and regard it as a set of words, so BOW does not capture all the information in the text. For example, “this movie is extremely bad“ and “boring, dull and empty work” describe very similar semantic with low similarity in sense of BOW. Also, “the movie is bad“ and “the movie is not bad“ have high similarity with BOW feature, but they express completely opposite semantics.


In this chapter, we introduce our deep learning model which handles these issues in BOW. Our model embeds texts into a low-dimensional space and takes word order into consideration. It is an end-to-end framework, and has large performance improvement over traditional methods \[[1](#Reference)\].

## Model Overview
L
liaogang 已提交
26

27
The model we used in this chapter is the CNN (Convolutional Neural Networks) and RNN (Recurrent Neural Networks) with some specific extension.
Z
Zhuoyuan 已提交
28 29 30


### Convolutional Neural Networks for Texts (CNN)
L
liaogang 已提交
31

Z
Zhuoyuan 已提交
32 33 34 35 36 37
Convolutional Neural Networks are always applied in data with grid-like topology, such as 2-d images and 1-d texts. CNN can combine extracted multiple local features to produce higher-level abstract semantics. Experimentally, CNN is very efficient for image and text modeling.

CNN mainly contains convolution and pooling operation, with various extensions. We briefly describe CNN here with an example \[[1](#Refernce)\]. As shown in Figure 1:


<p align="center">
38
<img src="image/text_cnn_en.png" width = "80%" align="center"/><br/>
39
Figure 1. CNN for text modeling.
Z
Zhuoyuan 已提交
40
</p>
41

42
Assuming the length of the sentence is $n$, where the $i$-th word has embedding as $x_i\in\mathbb{R}^k$,where $k$ is the embedding dimensionality.
Z
Zhuoyuan 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

First, we concatenate the words together: we piece every $h$ words as a window of length $h$: $x_{i:i+h-1}$. It refers to $x_{i},x_{i+1},\ldots,x_{i+h-1}$, where $i$ is the first word in the window, ranging from $1$ to $n-h+1$: $x_{i:i+h-1}\in\mathbb{R}^{hk}$.

Next, we apply the convolution operation: we apply the kernel $w\in\mathbb{R}^{hk}$ in each window, extracting features $c_i=f(w\cdot x_{i:i+h-1}+b)$,
where $b\in\mathbb{R}$ is the bias and $f$ is a non-linear activation function such as $sigmoid$. Applying CNN on every window ${x_{1:h},x_{2:h+1},\ldots,x_{n-h+1:n}}$ produces a feature map as:

$$c=[c_1,c_2,\ldots,c_{n-h+1}], c \in \mathbb{R}^{n-h+1}$$

Next, we apply max pooling over time to represent the whole sentence $\hat c$, which is the maximum element across the feature map:

$$\hat c=max(c)$$

In real applications, we will apply multiple CNN kernels on the sentences. It can be implemented efficiently by concatenating the kernels together as a matrix. Also, we can use CNN kernels with different kernel size (as shown in Figure 1 in different colors).

Finally, the CNN features are concatenated together to produce a fixed-length representation, which can be combined with a softmax for sentiment analysis problem.

For short texts, above CNN model can achieve high accuracy \[[1](#Reference)\]. If we want to extract more abstract representation, we may apply a deeper CNN model \[[2](#Reference),[3](#Reference)\].

L
liaogang 已提交
61 62
### Recurrent Neural Network (RNN)

Z
Zhuoyuan 已提交
63 64 65 66
RNN is an effective model for sequential data. Theoretical, the  computational ability of RNN is Turing-complete \[[4](#Reference)\]. NLP is a classical sequential data, and RNN (especially its variant LSTM\[[5](#Reference)\]) achieves State-of-the-Art performance on various tasks in NLP, such as language modeling, syntax parsing, POS-tagging, image captioning, dialog, machine translation and so forth.

<p align="center">
<img src="image/rnn.png" width = "60%" align="center"/><br/>
67
Figure 2. An illustration of an unrolled RNN across “time”.
Z
Zhuoyuan 已提交
68 69 70 71 72 73 74 75 76
</p>
As shown in Figure 2, we unroll an RNN: at $t$-th time step, the network takes the $t$-th input vector and the latent state from last time-step $h_{t-1}$ as inputs and compute the latent state of current step. The whole process is repeated until all inputs are consumed. If we regard the RNN as a function $f$, it can be formulated as:

$$h_t=f(x_t,h_{t-1})=\sigma(W_{xh}x_t+W_{hh}h_{h-1}+b_h)$$

where $W_{xh}$ is the weight matrix from input to latent; $W_{hh}$ is the latent-to-latent matrix; $b_h$ is the latent bias and $\sigma$ refers to the $sigmoid$function.

In NLP, words are first represented as a one-hot vector and then mapped to an embedding. The embedded feature goes through an RNN as input $x_t$ at every time step. Moreover, we can add other layers on top of RNN. e.g., a deep or stacked RNN. Also, the last latent state can be used as a feature for sentence classification.

L
liaogang 已提交
77 78 79
### Long-Short Term Memory (LSTM)

For data of long sequence, training RNN sometimes has gradient vanishing and explosion problem \[[6](#)\]. To solve this problem Hochreiter S, Schmidhuber J. (1997) proposed the LSTM(long short term memory\[[5](#Reference)\]).  
Z
Zhuoyuan 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94

Compared with simple RNN, the structrue of LSTM has included memory cell $c$, input gate $i$, forget gate $f$ and output gate $o$. These gates and memory cells largely improves the ability of handling long sequences. We can formulate LSTM-RNN as a function $F$ as:

$$ h_t=F(x_t,h_{t-1})$$

$F$ contains following formulations\[[7](#Reference)\]
\begin{align}
i_t & = \sigma(W_{xi}x_t+W_{hi}h_{h-1}+W_{ci}c_{t-1}+b_i)\\\\
f_t & = \sigma(W_{xf}x_t+W_{hf}h_{h-1}+W_{cf}c_{t-1}+b_f)\\\\
c_t & = f_t\odot c_{t-1}+i_t\odot tanh(W_{xc}x_t+W_{hc}h_{h-1}+b_c)\\\\
o_t & = \sigma(W_{xo}x_t+W_{ho}h_{h-1}+W_{co}c_{t}+b_o)\\\\
h_t & = o_t\odot tanh(c_t)\\\\
\end{align}

In the equation,$i_t, f_t, c_t, o_t$ stand for input gate, forget gate, memory cell and output gate separately; $W$ and $b$ are model parameters. The $tanh$ is a hyperbolic tangent, and $\odot$ denotes an element-wise product operation. Input gate controls the magnitude of new input into the memory cell $c$; forget gate controls memory propagated from the last time step; output gate controls output magnitude. The three gates are computed similarly with different parameters, and they influence memory cell $c$ separately, as shown in Figure 3:
95

Z
Zhuoyuan 已提交
96
<p align="center">
97 98
<img src="image/lstm_en.png" width = "65%" align="center"/><br/>
Figure 3. LSTM at time step $t$ [7].
Z
Zhuoyuan 已提交
99
</p>
100

Z
Zhuoyuan 已提交
101
LSTM enhances the ability of considering long-term reliance, with the help of memory cell and gate. Similar structures are also proposed in Gated Recurrent Unit (GRU)\[[8](Reference)\] with simpler design. **The structures are still similar to RNN, though with some modifications (As shown in Figure 2), i.e., latent status depends on input as well as the latent status of last time-step, and the process goes on recurrently until all input are consumed:**
Z
Zhuoyuan 已提交
102 103 104 105 106

$$ h_t=Recrurent(x_t,h_{t-1})$$
where $Recrurent$ is a simple RNN, GRU or LSTM.

### Stacked Bidirectional LSTM
L
liaogang 已提交
107

Z
Zhuoyuan 已提交
108 109 110 111 112
For vanilla LSTM, $h_t$ contains input information from previous time-step $1..t-1$ context. We can also apply an RNN with reverse-direction to take successive context $t+1…n$ into consideration. Combining constructing deep RNN (deeper RNN can contain more abstract and higher level semantic), we can design structures with deep stacked bidirectional LSTM to model sequential data\[[9](#Reference)\].

As shown in Figure 4 (3-layer RNN), odd/even layers are forward/reverse LSTM. Higher layers of LSTM take lower-layers LSTM as input, and the top-layer LSTM produces a fixed length vector by max-pooling (this representation considers contexts from previous and successive words for higher-level abstractions). Finally, we concatenate the output to a softmax layer for classification.

<p align="center">
113 114
<img src="image/stacked_lstm_en.png" width=450><br/>
Figure 4. Stacked Bidirectional LSTM for NLP modeling.
Z
Zhuoyuan 已提交
115 116
</p>

L
liaogang 已提交
117
## Dataset
Z
Zhuoyuan 已提交
118

L
liaogang 已提交
119
We use [IMDB](http://ai.stanford.edu/%7Eamaas/data/sentiment/) dataset for sentiment analysis in this tutorial, which consists of 50,000 movie reviews split evenly into 25k train and 25k test sets. In the labeled train/test sets, a negative review has a score <= 4 out of 10, and a positive review has a score >= 7 out of 10.
Z
Zhuoyuan 已提交
120

121
`paddle.datasets` package encapsulates multiple public datasets, including `cifar`, `imdb`, `mnist`, `moivelens`, and `wmt14`, etc. There's no need for us to manually download and preprocess IMDB.
Z
Zhuoyuan 已提交
122

123
After issuing a command `python train.py`, training will start immediately. The details will be unpacked by the following sessions to see how it works.
Z
Zhuoyuan 已提交
124 125


L
liaogang 已提交
126
## Model Structure
Z
Zhuoyuan 已提交
127

L
liaogang 已提交
128
### Initialize PaddlePaddle
Z
Zhuoyuan 已提交
129

L
liaogang 已提交
130
We must import and initialize PaddlePaddle (enable/disable GPU, set the number of trainers, etc).
Z
Zhuoyuan 已提交
131

L
liaogang 已提交
132 133 134 135 136 137
```python
import sys
import paddle.v2 as paddle

# PaddlePaddle init
paddle.init(use_gpu=False, trainer_count=1)
Z
Zhuoyuan 已提交
138 139
```

L
liaogang 已提交
140
As alluded to in section [Model Overview](#model-overview), here we provide the implementations of both Text CNN and Stacked-bidirectional LSTM models.
Z
Zhuoyuan 已提交
141

L
liaogang 已提交
142
### Text Convolution Neural Network (Text CNN)
Z
Zhuoyuan 已提交
143

L
liaogang 已提交
144
We create a neural network `convolution_net` as the following snippet code.
Z
Zhuoyuan 已提交
145

L
liaogang 已提交
146
Note: `paddle.networks.sequence_conv_pool` includes both convolution and pooling layer operations.
Z
Zhuoyuan 已提交
147 148

```python
L
liaogang 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162
def convolution_net(input_dim, class_dim=2, emb_dim=128, hid_dim=128):
    data = paddle.layer.data("word",
                             paddle.data_type.integer_value_sequence(input_dim))
    emb = paddle.layer.embedding(input=data, size=emb_dim)
    conv_3 = paddle.networks.sequence_conv_pool(
        input=emb, context_len=3, hidden_size=hid_dim)
    conv_4 = paddle.networks.sequence_conv_pool(
        input=emb, context_len=4, hidden_size=hid_dim)
    output = paddle.layer.fc(input=[conv_3, conv_4],
                             size=class_dim,
                             act=paddle.activation.Softmax())
    lbl = paddle.layer.data("label", paddle.data_type.integer_value(2))
    cost = paddle.layer.classification_cost(input=output, label=lbl)
    return cost
Z
Zhuoyuan 已提交
163 164
```

L
liaogang 已提交
165
1. Define input data and its dimension
Z
Zhuoyuan 已提交
166

L
liaogang 已提交
167
    Parameter `input_dim` denotes the dictionary size, and `class_dim` is the number of categories. In `convolution_net`, the input to the network is defined in `paddle.layer.data`.
Z
Zhuoyuan 已提交
168

L
liaogang 已提交
169
1. Define Classifier
Z
Zhuoyuan 已提交
170

L
liaogang 已提交
171
    The above Text CNN network extracts high-level features and maps them to a vector of the same size as the categories. `paddle.activation.Softmax` function or classifier is then used for calculating the probability of the sentence belonging to each category.
Z
Zhuoyuan 已提交
172

L
liaogang 已提交
173
1. Define Loss Function
Z
Zhuoyuan 已提交
174

175
    In the context of supervised learning, labels of the training set are defined in `paddle.layer.data`, too. During training, cross-entropy is used as loss function in `paddle.layer.classification_cost` and as the output of the network; During testing, the outputs are the probabilities calculated in the classifier.
L
liaogang 已提交
176 177 178 179

#### Stacked bidirectional LSTM

We create a neural network `stacked_lstm_net` as below.
Z
Zhuoyuan 已提交
180 181 182

```python
def stacked_lstm_net(input_dim,
L
liaogang 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
                     class_dim=2,
                     emb_dim=128,
                     hid_dim=512,
                     stacked_num=3):
    """
    A Wrapper for sentiment classification task.
    This network uses bi-directional recurrent network,
    consisting three LSTM layers. This configure is referred to
    the paper as following url, but use fewer layrs.
        http://www.aclweb.org/anthology/P15-1109
    input_dim: here is word dictionary dimension.
    class_dim: number of categories.
    emb_dim: dimension of word embedding.
    hid_dim: dimension of hidden layer.
    stacked_num: number of stacked lstm-hidden layer.
    """
    assert stacked_num % 2 == 1

    layer_attr = paddle.attr.Extra(drop_rate=0.5)
    fc_para_attr = paddle.attr.Param(learning_rate=1e-3)
    lstm_para_attr = paddle.attr.Param(initial_std=0., learning_rate=1.)
    para_attr = [fc_para_attr, lstm_para_attr]
    bias_attr = paddle.attr.Param(initial_std=0., l2_rate=0.)
    relu = paddle.activation.Relu()
    linear = paddle.activation.Linear()

    data = paddle.layer.data("word",
                             paddle.data_type.integer_value_sequence(input_dim))
    emb = paddle.layer.embedding(input=data, size=emb_dim)

    fc1 = paddle.layer.fc(input=emb,
                          size=hid_dim,
                          act=linear,
                          bias_attr=bias_attr)
    lstm1 = paddle.layer.lstmemory(
        input=fc1, act=relu, bias_attr=bias_attr, layer_attr=layer_attr)

    inputs = [fc1, lstm1]
    for i in range(2, stacked_num + 1):
        fc = paddle.layer.fc(input=inputs,
                             size=hid_dim,
                             act=linear,
                             param_attr=para_attr,
                             bias_attr=bias_attr)
        lstm = paddle.layer.lstmemory(
            input=fc,
            reverse=(i % 2) == 0,
            act=relu,
            bias_attr=bias_attr,
            layer_attr=layer_attr)
        inputs = [fc, lstm]

    fc_last = paddle.layer.pooling(
        input=inputs[0], pooling_type=paddle.pooling.Max())
    lstm_last = paddle.layer.pooling(
        input=inputs[1], pooling_type=paddle.pooling.Max())
    output = paddle.layer.fc(input=[fc_last, lstm_last],
                             size=class_dim,
                             act=paddle.activation.Softmax(),
                             bias_attr=bias_attr,
                             param_attr=para_attr)

    lbl = paddle.layer.data("label", paddle.data_type.integer_value(2))
    cost = paddle.layer.classification_cost(input=output, label=lbl)
    return cost
Z
Zhuoyuan 已提交
248 249
```

L
liaogang 已提交
250
1. Define input data and its dimension
251

L
liaogang 已提交
252
    Parameter `input_dim` denotes the dictionary size, and `class_dim` is the number of categories. In `stacked_lstm_net`, the input to the network is defined in `paddle.layer.data`.
Z
Zhuoyuan 已提交
253

L
liaogang 已提交
254
1. Define Classifier
Z
Zhuoyuan 已提交
255

L
liaogang 已提交
256
    The above stacked bidirectional LSTM network extracts high-level features and maps them to a vector of the same size as the categories. `paddle.activation.Softmax` function or classifier is then used for calculating the probability of the sentence belonging to each category.
Z
Zhuoyuan 已提交
257

L
liaogang 已提交
258
1. Define Loss Function
Z
Zhuoyuan 已提交
259

260
    In the context of supervised learning, labels of the training set are defined in `paddle.layer.data`, too. During training, cross-entropy is used as loss function in `paddle.layer.classification_cost` and as the output of the network; During testing, the outputs are the probabilities calculated in the classifier.
Z
Zhuoyuan 已提交
261 262


L
liaogang 已提交
263
To reiterate, we can either invoke `convolution_net` or `stacked_lstm_net`.
264

Z
Zhuoyuan 已提交
265
```python
L
liaogang 已提交
266 267 268 269 270 271 272 273
word_dict = paddle.dataset.imdb.word_dict()
dict_dim = len(word_dict)
class_dim = 2

# option 1
cost = convolution_net(dict_dim, class_dim=class_dim)
# option 2
# cost = stacked_lstm_net(dict_dim, class_dim=class_dim, stacked_num=3)
Z
Zhuoyuan 已提交
274 275 276 277
```

## Model Training

L
liaogang 已提交
278
### Define Parameters
Z
Zhuoyuan 已提交
279

L
liaogang 已提交
280
First, we create the model parameters according to the previous model configuration `cost`.
Z
Zhuoyuan 已提交
281

L
liaogang 已提交
282 283 284
```python
# create parameters
parameters = paddle.parameters.create(cost)
Z
Zhuoyuan 已提交
285 286
```

L
liaogang 已提交
287
### Create Trainer
Z
Zhuoyuan 已提交
288

L
liaogang 已提交
289 290
Before jumping into creating a training module, algorithm setting is also necessary.
Here we specified `Adam` optimization algorithm via `paddle.optimizer`.
Z
Zhuoyuan 已提交
291

L
liaogang 已提交
292 293 294 295 296 297 298 299 300 301 302
```python
# create optimizer
adam_optimizer = paddle.optimizer.Adam(
    learning_rate=2e-3,
    regularization=paddle.optimizer.L2Regularization(rate=8e-4),
    model_average=paddle.optimizer.ModelAverage(average_window=0.5))

# create trainer
trainer = paddle.trainer.SGD(cost=cost,
                                parameters=parameters,
                                update_equation=adam_optimizer)
Z
Zhuoyuan 已提交
303 304
```

L
liaogang 已提交
305
### Training
Z
Zhuoyuan 已提交
306

L
liaogang 已提交
307
`paddle.dataset.imdb.train()` will yield records during each pass, after shuffling, a batch input is generated for training.
Z
Zhuoyuan 已提交
308

L
liaogang 已提交
309 310 311 312 313
```python
train_reader = paddle.batch(
    paddle.reader.shuffle(
        lambda: paddle.dataset.imdb.train(word_dict), buf_size=1000),
    batch_size=100)
Z
Zhuoyuan 已提交
314

L
liaogang 已提交
315 316
test_reader = paddle.batch(
    lambda: paddle.dataset.imdb.test(word_dict), batch_size=100)
Z
Zhuoyuan 已提交
317 318
```

L
liaogang 已提交
319
`feeding` is devoted to specifying the correspondence between each yield record and `paddle.layer.data`. For instance, the first column of data generated by `paddle.dataset.imdb.train()` corresponds to `word` feature.
Z
Zhuoyuan 已提交
320

L
liaogang 已提交
321 322
```python
feeding = {'word': 0, 'label': 1}
Z
Zhuoyuan 已提交
323 324
```

325
Callback function `event_handler` will be invoked to track training progress when a pre-defined event happens.
Z
Zhuoyuan 已提交
326

L
liaogang 已提交
327 328 329 330 331 332 333 334 335 336
```python
def event_handler(event):
    if isinstance(event, paddle.event.EndIteration):
        if event.batch_id % 100 == 0:
            print "\nPass %d, Batch %d, Cost %f, %s" % (
                event.pass_id, event.batch_id, event.cost, event.metrics)
        else:
            sys.stdout.write('.')
            sys.stdout.flush()
    if isinstance(event, paddle.event.EndPass):
G
gongweibao 已提交
337
        result = trainer.test(reader=test_reader, feeding=feeding)
L
liaogang 已提交
338
        print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)
Z
Zhuoyuan 已提交
339 340
```

L
liaogang 已提交
341
Finally, we can invoke `trainer.train` to start training:
Z
Zhuoyuan 已提交
342

L
liaogang 已提交
343 344 345 346
```python
trainer.train(
    reader=train_reader,
    event_handler=event_handler,
H
Helin Wang 已提交
347
    feeding=feeding,
L
liaogang 已提交
348
    num_passes=10)
Z
Zhuoyuan 已提交
349 350 351
```


L
liaogang 已提交
352
## Conclusion
Z
Zhuoyuan 已提交
353

354
In this chapter, we use sentiment analysis as an example to introduce applying deep learning models on end-to-end short text classification, as well as how to use PaddlePaddle to implement the model. Meanwhile, we briefly introduce two models for text processing: CNN and RNN. In following chapters, we will see how these models can be applied in other tasks.
L
liaogang 已提交
355

Z
Zhuoyuan 已提交
356
## Reference
L
liaogang 已提交
357

Z
Zhuoyuan 已提交
358 359 360 361 362 363 364 365 366 367 368
1. Kim Y. [Convolutional neural networks for sentence classification](http://arxiv.org/pdf/1408.5882)[J]. arXiv preprint arXiv:1408.5882, 2014.
2. Kalchbrenner N, Grefenstette E, Blunsom P. [A convolutional neural network for modelling sentences](http://arxiv.org/pdf/1404.2188.pdf?utm_medium=App.net&utm_source=PourOver)[J]. arXiv preprint arXiv:1404.2188, 2014.
3. Yann N. Dauphin, et al. [Language Modeling with Gated Convolutional Networks](https://arxiv.org/pdf/1612.08083v1.pdf)[J] arXiv preprint arXiv:1612.08083, 2016.
4. Siegelmann H T, Sontag E D. [On the computational power of neural nets](http://research.cs.queensu.ca/home/akl/cisc879/papers/SELECTED_PAPERS_FROM_VARIOUS_SOURCES/05070215382317071.pdf)[C]//Proceedings of the fifth annual workshop on Computational learning theory. ACM, 1992: 440-449.
5. Hochreiter S, Schmidhuber J. [Long short-term memory](http://web.eecs.utk.edu/~itamar/courses/ECE-692/Bobby_paper1.pdf)[J]. Neural computation, 1997, 9(8): 1735-1780.
6. Bengio Y, Simard P, Frasconi P. [Learning long-term dependencies with gradient descent is difficult](http://www-dsi.ing.unifi.it/~paolo/ps/tnn-94-gradient.pdf)[J]. IEEE transactions on neural networks, 1994, 5(2): 157-166.
7. Graves A. [Generating sequences with recurrent neural networks](http://arxiv.org/pdf/1308.0850)[J]. arXiv preprint arXiv:1308.0850, 2013.
8. Cho K, Van Merriënboer B, Gulcehre C, et al. [Learning phrase representations using RNN encoder-decoder for statistical machine translation](http://arxiv.org/pdf/1406.1078)[J]. arXiv preprint arXiv:1406.1078, 2014.
9. Zhou J, Xu W. [End-to-end learning of semantic role labeling using recurrent neural networks](http://www.aclweb.org/anthology/P/P15/P15-1109.pdf)[C]//Proceedings of the Annual Meeting of the Association for Computational Linguistics. 2015.

<br/>
369
This tutorial is contributed by <a xmlns:cc="http://creativecommons.org/ns#" href="http://book.paddlepaddle.org" property="cc:attributionName" rel="cc:attributionURL">PaddlePaddle</a>, and licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>.