train.py 5.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
import math
import numpy as np
import paddle.v2 as paddle
import paddle.v2.dataset.conll05 as conll05


def db_lstm():
    word_dict, verb_dict, label_dict = conll05.get_dict()
    word_dict_len = len(word_dict)
    label_dict_len = len(label_dict)
    pred_len = len(verb_dict)

    mark_dict_len = 2
    word_dim = 32
    mark_dim = 5
    hidden_dim = 512
    depth = 8

    #8 features
    def d_type(size):
        return paddle.data_type.integer_value_sequence(size)

    word = paddle.layer.data(name='word_data', type=d_type(word_dict_len))
    predicate = paddle.layer.data(name='verb_data', type=d_type(pred_len))

    ctx_n2 = paddle.layer.data(name='ctx_n2_data', type=d_type(word_dict_len))
    ctx_n1 = paddle.layer.data(name='ctx_n1_data', type=d_type(word_dict_len))
    ctx_0 = paddle.layer.data(name='ctx_0_data', type=d_type(word_dict_len))
    ctx_p1 = paddle.layer.data(name='ctx_p1_data', type=d_type(word_dict_len))
    ctx_p2 = paddle.layer.data(name='ctx_p2_data', type=d_type(word_dict_len))
    mark = paddle.layer.data(name='mark_data', type=d_type(mark_dict_len))

    target = paddle.layer.data(name='target', type=d_type(label_dict_len))

    emb_para = paddle.attr.Param(name='emb', initial_std=0., is_static=True)
    std_0 = paddle.attr.Param(initial_std=0.)
    default_std = 1 / math.sqrt(hidden_dim) / 3.0
    std_default = paddle.attr.Param(initial_std=default_std)

    predicate_embedding = paddle.layer.embedding(
        size=word_dim,
        input=predicate,
43
        param_attr=paddle.attr.Param(name='vemb', initial_std=default_std))
44 45 46 47 48
    mark_embedding = paddle.layer.embedding(
        size=mark_dim, input=mark, param_attr=std_0)

    word_input = [word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2]
    emb_layers = [
49 50
        paddle.layer.embedding(size=word_dim, input=x, param_attr=emb_para)
        for x in word_input
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
    ]
    emb_layers.append(predicate_embedding)
    emb_layers.append(mark_embedding)

    hidden_0 = paddle.layer.mixed(
        size=hidden_dim,
        bias_attr=std_default,
        input=[
            paddle.layer.full_matrix_projection(
                input=emb, param_attr=std_default) for emb in emb_layers
        ])

    mix_hidden_lr = 1e-3
    lstm_para_attr = paddle.attr.Param(initial_std=0.0, learning_rate=1.0)
    hidden_para_attr = paddle.attr.Param(
        initial_std=default_std, learning_rate=mix_hidden_lr)

    lstm_0 = paddle.layer.lstmemory(
        input=hidden_0,
        act=paddle.activation.Relu(),
        gate_act=paddle.activation.Sigmoid(),
        state_act=paddle.activation.Sigmoid(),
        bias_attr=std_0,
        param_attr=lstm_para_attr)

    #stack L-LSTM and R-LSTM with direct edges
    input_tmp = [hidden_0, lstm_0]

    for i in range(1, depth):
        mix_hidden = paddle.layer.mixed(
            size=hidden_dim,
            bias_attr=std_default,
            input=[
                paddle.layer.full_matrix_projection(
                    input=input_tmp[0], param_attr=hidden_para_attr),
                paddle.layer.full_matrix_projection(
                    input=input_tmp[1], param_attr=lstm_para_attr)
            ])

        lstm = paddle.layer.lstmemory(
            input=mix_hidden,
            act=paddle.activation.Relu(),
            gate_act=paddle.activation.Sigmoid(),
            state_act=paddle.activation.Sigmoid(),
            reverse=((i % 2) == 1),
            bias_attr=std_0,
            param_attr=lstm_para_attr)

        input_tmp = [mix_hidden, lstm]

    feature_out = paddle.layer.mixed(
        size=label_dict_len,
        bias_attr=std_default,
        input=[
            paddle.layer.full_matrix_projection(
                input=input_tmp[0], param_attr=hidden_para_attr),
            paddle.layer.full_matrix_projection(
                input=input_tmp[1], param_attr=lstm_para_attr)
        ], )

111 112 113 114 115 116
    crf_cost = paddle.layer.crf(
        size=label_dict_len,
        input=feature_out,
        label=target,
        param_attr=paddle.attr.Param(
            name='crfw', initial_std=default_std, learning_rate=mix_hidden_lr))
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151

    crf_dec = paddle.layer.crf_decoding(
        name='crf_dec_l',
        size=label_dict_len,
        input=feature_out,
        label=target,
        param_attr=paddle.attr.Param(name='crfw'))

    return crf_cost, crf_dec


def load_parameter(file_name, h, w):
    with open(file_name, 'rb') as f:
        f.read(16)  # skip header.
        return np.fromfile(f, dtype=np.float32).reshape(h, w)


def main():
    paddle.init(use_gpu=False, trainer_count=1)

    # define network topology
    crf_cost, crf_dec = db_lstm()

    # create parameters
    parameters = paddle.parameters.create([crf_cost, crf_dec])
    parameters.set('emb', load_parameter(conll05.get_embedding(), 44068, 32))

    # create optimizer
    optimizer = paddle.optimizer.Momentum(
        momentum=0,
        learning_rate=2e-2,
        regularization=paddle.optimizer.L2Regularization(rate=8e-4),
        model_average=paddle.optimizer.ModelAverage(
            average_window=0.5, max_average_window=10000), )

152 153
    trainer = paddle.trainer.SGD(
        cost=crf_cost, parameters=parameters, update_equation=optimizer)
154

D
dangqingqing 已提交
155
    reader = paddle.batch(
156
        paddle.reader.shuffle(conll05.test(), buf_size=8192), batch_size=10)
157

D
dangqingqing 已提交
158
    feeding = {
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
        'word_data': 0,
        'ctx_n2_data': 1,
        'ctx_n1_data': 2,
        'ctx_0_data': 3,
        'ctx_p1_data': 4,
        'ctx_p2_data': 5,
        'verb_data': 6,
        'mark_data': 7,
        'target': 8
    }

    def event_handler(event):
        if isinstance(event, paddle.event.EndIteration):
            if event.batch_id % 100 == 0:
                print "Pass %d, Batch %d, Cost %f" % (
                    event.pass_id, event.batch_id, event.cost)

    trainer.train(
        reader=reader,
        event_handler=event_handler,
        num_passes=10000,
D
dangqingqing 已提交
180
        feeding=feeding)
181 182 183 184


if __name__ == '__main__':
    main()