README.md 23.3 KB
Newer Older
C
choijulie 已提交
1
# Recognize Digits
Y
Yi Wang 已提交
2

W
Wang,Jeff 已提交
3 4
The source code for this tutorial is here:  [book/recognize_digits](https://github.com/PaddlePaddle/book/tree/develop/02.recognize_digits).
For instructions on getting started with Paddle, please refer to [installation instructions](https://github.com/PaddlePaddle/book/blob/develop/README.md#running-the-book).
Y
Yi Wang 已提交
5

C
choijulie 已提交
6
## Introduction
W
Wang,Jeff 已提交
7 8 9 10 11
When one learns to program, the first task is usually to write a program that prints "Hello World!".
In Machine Learning or Deep Learning, an equivalent task is to train a model to recognize hand-written digits using the [MNIST](http://yann.lecun.com/exdb/mnist/) dataset.
Handwriting recognition is a classic image classification problem. The problem is relatively easy and MNIST is a complete dataset.
As a simple Computer Vision dataset, MNIST contains images of handwritten digits and their corresponding labels (Fig. 1).
The input image is a $28\times28$ matrix, and the label is one of the digits from $0$ to $9$. All images are normalized, meaning that they are both rescaled and centered.
Y
Yi Wang 已提交
12 13 14

<p align="center">
<img src="image/mnist_example_image.png" width="400"><br/>
C
choijulie 已提交
15
Fig. 1. Examples of MNIST images
Y
Yi Wang 已提交
16 17
</p>

W
Wang,Jeff 已提交
18 19 20 21
The MNIST dataset is from the [NIST](https://www.nist.gov/srd/nist-special-database-19) Special Database 3 (SD-3) and the Special Database 1 (SD-1).
The SD-3 is labeled by the staff of the U.S. Census Bureau, while SD-1 is labeled by high school students. Therefore the SD-3 is cleaner and easier to recognize than the SD-1 dataset.
Yann LeCun et al. used half of the samples from each of SD-1 and SD-3 to create the MNIST training set of 60,000 samples and test set of 10,000 samples.
250 annotators labeled the training set, thus guaranteed that there wasn't a complete overlap of annotators of training set and test set.
Y
Yi Wang 已提交
22

W
Wang,Jeff 已提交
23 24 25 26 27
The MNIST dataset has been used for evaluating many image recognition algorithms such as a single layer linear classifier,
Multilayer Perceptron (MLP) and Multilayer CNN LeNet\[[1](#references)\], K-Nearest Neighbors (k-NN) \[[2](#references)\], Support Vector Machine (SVM) \[[3](#references)\],
Neural Networks \[[4-7](#references)\], Boosting \[[8](#references)\] and preprocessing methods like distortion removal, noise removal, and blurring.
Among these algorithms, the *Convolutional Neural Network* (CNN) has achieved a series of impressive results in Image Classification tasks, including VGGNet, GoogLeNet,
and ResNet (See [Image Classification](https://github.com/PaddlePaddle/book/tree/develop/03.image_classification) tutorial).
Y
Yi Wang 已提交
28

Y
Yi Wang 已提交
29
In this tutorial, we start with a simple **softmax** regression model and go on with MLP and CNN.  Readers will see how these methods improve the recognition accuracy step-by-step.
Y
Yi Wang 已提交
30 31


C
choijulie 已提交
32
## Model Overview
Y
Yi Wang 已提交
33

C
choijulie 已提交
34 35 36 37
Before introducing classification algorithms and training procedure, we define the following symbols:
- $X$ is the input: Input is a $28\times 28$ MNIST image. It is flattened to a $784$ dimensional vector. $X=\left (x_0, x_1, \dots, x_{783} \right )$.
- $Y$ is the output: Output of the classifier is 1 of the 10 classes (digits from 0 to 9). $Y=\left (y_0, y_1, \dots, y_9 \right )$. Each dimension $y_i$ represents the probability that the input image belongs to class $i$.
- $L$ is the ground truth label: $L=\left ( l_0, l_1, \dots, l_9 \right )$. It is also 10 dimensional, but only one entry is $1$ and all others are $0$s.
Y
Yi Wang 已提交
38

C
choijulie 已提交
39
### Softmax Regression
Y
Yi Wang 已提交
40

C
choijulie 已提交
41
In a simple softmax regression model, the input is first fed to fully connected layers. Then, a softmax function is applied to output probabilities of multiple output classes\[[9](#references)\].
Y
Yi Wang 已提交
42

C
choijulie 已提交
43
The input $X$ is multiplied by weights $W$ and then added to the bias $b$ to generate activations.
Y
Yi Wang 已提交
44

L
Luo Tao 已提交
45
$$ y_i = \text{softmax}(\sum_j W_{i,j}x_j + b_i) $$
Y
Yi Wang 已提交
46

C
choijulie 已提交
47
where $ \text{softmax}(x_i) = \frac{e^{x_i}}{\sum_j e^{x_j}} $
Y
Yi Wang 已提交
48

K
Kavya Srinet 已提交
49
For an $N$-class classification problem with $N$ output nodes, Softmax normalizes the resulting $N$ dimensional vector so that each of its entries falls in the range $[0,1]\in {R}$, representing the probability that the sample belongs to a certain class. Here $y_i$ denotes the predicted probability that an image is of digit $i$.
Y
Yi Wang 已提交
50

C
choijulie 已提交
51
In such a classification problem, we usually use the cross entropy loss function:
Y
Yi Wang 已提交
52

L
Luo Tao 已提交
53
$$  \text{crossentropy}(label, y) = -\sum_i label_ilog(y_i) $$
Y
Yi Wang 已提交
54

C
choijulie 已提交
55
Fig. 2 illustrates a softmax regression network, with the weights in blue, and the bias in red. `+1` indicates that the bias is $1$.
Y
Yi Wang 已提交
56 57

<p align="center">
C
choijulie 已提交
58 59
<img src="image/softmax_regression_en.png" width=400><br/>
Fig. 2. Softmax regression network architecture<br/>
Y
Yi Wang 已提交
60 61
</p>

C
choijulie 已提交
62
### Multilayer Perceptron
Y
Yi Wang 已提交
63

C
choijulie 已提交
64
The softmax regression model described above uses the simplest two-layer neural network. That is, it only contains an input layer and an output layer, with limited regression capability. To achieve better recognition results, consider adding several hidden layers\[[10](#references)\] between the input layer and the output layer.
Y
Yi Wang 已提交
65

C
choijulie 已提交
66 67 68
1.  After the first hidden layer, we get $ H_1 = \phi(W_1X + b_1) $, where $\phi$ denotes the activation function. Some [common ones](###list-of-common-activation-functions) are sigmoid, tanh and ReLU.
2.  After the second hidden layer, we get $ H_2 = \phi(W_2H_1 + b_2) $.
3.  Finally, the output layer outputs $Y=\text{softmax}(W_3H_2 + b_3)$, the vector denoting our classification result.
69

C
choijulie 已提交
70
Fig. 3. shows a Multilayer Perceptron network, with the weights in blue, and the bias in red. +1 indicates that the bias is $1$.
Y
Yi Wang 已提交
71 72

<p align="center">
C
choijulie 已提交
73 74
<img src="image/mlp_en.png" width=500><br/>
Fig. 3. Multilayer Perceptron network architecture<br/>
D
dangqingqing 已提交
75 76 77

</p>

C
choijulie 已提交
78
### Convolutional Neural Network
D
dangqingqing 已提交
79

C
choijulie 已提交
80
#### Convolutional Layer
D
dangqingqing 已提交
81 82

<p align="center">
D
dangqingqing 已提交
83
<img src="image/conv_layer.png" width='750'><br/>
C
choijulie 已提交
84
Fig. 4. Convolutional layer<br/>
D
dangqingqing 已提交
85 86
</p>

C
choijulie 已提交
87
The **convolutional layer** is the core of a Convolutional Neural Network. The parameters in this layer are composed of a set of filters, also called kernels. We could visualize the convolution step in the following fashion: Each kernel slides horizontally and vertically till it covers the whole image. At every window, we compute the dot product of the kernel and the input. Then, we add the bias and apply an activation function. The result is a two-dimensional activation map. For example, some kernel may recognize corners, and some may recognize circles. These convolution kernels may respond strongly to the corresponding features.
D
dangqingqing 已提交
88

Y
Yi Wang 已提交
89
Fig. 4 illustrates the dynamic programming of a convolutional layer, where depths are flattened for simplicity. The input is $W_1=5$, $H_1=5$, $D_1=3$. In fact, this is a common representation for colored images. $W_1$ and $H_1$ correspond to the width and height in a colored image. $D_1$ corresponds to the three color channels for RGB. The parameters of the convolutional layer are $K=2$, $F=3$, $S=2$, $P=1$. $K$ denotes the number of kernels; specifically, $Filter$ $W_0$ and $Filter$ $W_1$ are the kernels. $F$ is kernel size while $W0$ and $W1$ are both $F\timesF = 3\times3$ matrices in all depths. $S$ is the stride, which is the width of the sliding window; here, kernels move leftwards or downwards by two units each time. $P$ is the width of the padding, which denotes an extension of the input; here, the gray area shows zero padding with size 1.
D
dangqingqing 已提交
90

C
choijulie 已提交
91
#### Pooling Layer
D
dangqingqing 已提交
92

C
choijulie 已提交
93 94 95 96
<p align="center">
<img src="image/max_pooling_en.png" width="400px"><br/>
Fig. 5 Pooling layer using max-pooling<br/>
</p>
D
dangqingqing 已提交
97

C
choijulie 已提交
98
A **pooling layer** performs downsampling. The main functionality of this layer is to reduce computation by reducing the network parameters. It also prevents over-fitting to some extent. Usually, a pooling layer is added after a convolutional layer. Pooling layer can use various techniques, such as max pooling and average pooling. As shown in Fig.5, max pooling uses rectangles to segment the input layer into several parts and computes the maximum value in each part as the output.
D
dangqingqing 已提交
99

C
choijulie 已提交
100
#### LeNet-5 Network
Y
Yi Wang 已提交
101 102

<p align="center">
C
choijulie 已提交
103 104
<img src="image/cnn_en.png"><br/>
Fig. 6. LeNet-5 Convolutional Neural Network architecture<br/>
Y
Yi Wang 已提交
105 106
</p>

C
choijulie 已提交
107 108
[**LeNet-5**](http://yann.lecun.com/exdb/lenet/) is one of the simplest Convolutional Neural Networks. Fig. 6. shows its architecture: A 2-dimensional input image is fed into two sets of convolutional layers and pooling layers. This output is then fed to a fully connected layer and a softmax classifier. Compared to multilayer, fully connected perceptrons, the LeNet-5 can recognize images better. This is due to the following three properties of the convolution:

Y
Yi Wang 已提交
109
- The 3D nature of the neurons: a convolutional layer is organized by width, height, and depth. Neurons in each layer are connected to only a small region in the previous layer. This region is called the receptive field.
C
choijulie 已提交
110
- Local connectivity: A CNN utilizes the local space correlation by connecting local neurons. This design guarantees that the learned filter has a strong response to local input features. Stacking many such layers generates a non-linear filter that is more global. This enables the network to first obtain good representation for small parts of input and then combine them to represent a larger region.
Y
Yi Wang 已提交
111
- Weight sharing: In a CNN, computation is iterated on shared parameters (weights and bias) to form a feature map. This means that all the neurons in the same depth of the output response to the same feature. This allows the network to detect a feature regardless of its position in the input.
C
choijulie 已提交
112

K
Kavya Srinet 已提交
113
For more details on Convolutional Neural Networks, please refer to the tutorial on [Image Classification](https://github.com/PaddlePaddle/book/blob/develop/image_classification/README.md) and the [relevant lecture](http://cs231n.github.io/convolutional-networks/) from a Stanford course.
Y
Yi Wang 已提交
114

Y
Yi Wang 已提交
115
### List of Common Activation Functions
C
choijulie 已提交
116
- Sigmoid activation function: $ f(x) = sigmoid(x) = \frac{1}{1+e^{-x}} $
Y
Yi Wang 已提交
117

C
choijulie 已提交
118
- Tanh activation function: $ f(x) = tanh(x) = \frac{e^x-e^{-x}}{e^x+e^{-x}} $
Y
Yi Wang 已提交
119

C
choijulie 已提交
120
  In fact, tanh function is just a rescaled version of the sigmoid function. It is obtained by magnifying the value of the sigmoid function and moving it downwards by 1.
Y
Yi Wang 已提交
121

C
choijulie 已提交
122
- ReLU activation function: $ f(x) = max(0, x) $
Y
Yi Wang 已提交
123

C
choijulie 已提交
124
For more information, please refer to [Activation functions on Wikipedia](https://en.wikipedia.org/wiki/Activation_function).
Y
Yi Wang 已提交
125

C
choijulie 已提交
126
## Data Preparation
Y
Yi Wang 已提交
127

C
choijulie 已提交
128
PaddlePaddle provides a Python module, `paddle.dataset.mnist`, which downloads and caches the [MNIST dataset](http://yann.lecun.com/exdb/mnist/).  The cache is under `/home/username/.cache/paddle/dataset/mnist`:
Y
Yi Wang 已提交
129 130


C
choijulie 已提交
131 132 133 134 135 136
|    File name          |       Description | Size            |
|----------------------|--------------|-----------|
|train-images-idx3-ubyte|  Training images | 60,000 |
|train-labels-idx1-ubyte|  Training labels | 60,000 |
|t10k-images-idx3-ubyte |  Evaluation images | 10,000 |
|t10k-labels-idx1-ubyte |  Evaluation labels | 10,000 |
Y
Yi Wang 已提交
137 138


W
Wang,Jeff 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
## Fluid API Overview

The demo will be using the latest paddle fluid API. Fluid API is the latest Paddle API. It simplifies the model configurations without sacrifice the performance.
We recommend using Fluid API as it is much easier to pick up.
Here are the quick overview on the major fluid API complements.

1. `inference_program`: A function that specify how to get the prediction from the data input.
This is where you specify the network flow.
1. `train_program`: A function that specify how to get avg_cost from `inference_program` and labels.
This is where you specify the loss calculations.
1. `optimizer`: Configure how to minimize the loss. Paddle supports most major optimization methods.
1. `Trainer`: Fluid trainer manages the training process specified by the `train_program` and `optimizer`. Users can monitor the training
progress through the `event_handler` callback function.
1. `Inferencer`: Fluid inferencer loads the `inference_program` and the parameters trained by the Trainer.
It then can infer the data and return prediction

We will go though all of them and dig more on the configurations in this demo.

C
choijulie 已提交
157
## Model Configuration
Y
Yi Wang 已提交
158

C
choijulie 已提交
159
A PaddlePaddle program starts from importing the API package:
Y
Yi Wang 已提交
160 161

```python
162
import paddle.fluid as fluid
Y
Yi Wang 已提交
163 164
```

W
Wang,Jeff 已提交
165 166 167 168 169
### Program Functions Configuration

First, We need to setup the `inference_program` function. We want to use this program to demonstrate three different classifiers, each defined as a Python function.
We need to feed image data to the classifier. PaddlePaddle provides a special layer `layer.data` for reading data.
Let us create a data layer for reading images and connect it to the classification network.
C
choijulie 已提交
170 171

- Softmax regression: the network has a fully-connection layer with softmax activation:
Y
Yi Wang 已提交
172 173

```python
174 175
def softmax_regression():
    img = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
Y
Yi Wang 已提交
176 177 178 179 180
    predict = paddle.layer.fc(input=img,
                              size=10,
                              act=paddle.activation.Softmax())
    return predict
```
C
choijulie 已提交
181

W
Wang,Jeff 已提交
182
- Multi-Layer Perceptron: this network has two hidden fully-connected layers, both are using ReLU as activation functino. The output layer is using softmax activation:
Y
Yi Wang 已提交
183 184

```python
185 186
def multilayer_perceptron():
    img = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
W
Wang,Jeff 已提交
187
    # first fully-connected layer, using ReLu as its activation function
188
    hidden = fluid.layers.fc(input=img, size=200, act='relu')
W
Wang,Jeff 已提交
189
    # second fully-connected layer, using ReLu as its activation function
190 191 192
    hidden = fluid.layers.fc(input=hidden, size=200, act='relu')
    prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
    return prediction
Y
Yi Wang 已提交
193
```
C
choijulie 已提交
194 195

- Convolution network LeNet-5: the input image is fed through two convolution-pooling layers, a fully-connected layer, and the softmax output layer:
Y
Yi Wang 已提交
196 197

```python
198 199
def convolutional_neural_network():
    img = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
W
Wang,Jeff 已提交
200
    # first conv pool
201
    conv_pool_1 = fluid.nets.simple_img_conv_pool(
Y
Yi Wang 已提交
202 203 204 205 206
        input=img,
        filter_size=5,
        num_filters=20,
        pool_size=2,
        pool_stride=2,
207 208
        act="relu")
    conv_pool_1 = fluid.layers.batch_norm(conv_pool_1)
W
Wang,Jeff 已提交
209
    # second conv pool
210
    conv_pool_2 = fluid.nets.simple_img_conv_pool(
Y
Yi Wang 已提交
211 212 213 214 215
        input=conv_pool_1,
        filter_size=5,
        num_filters=50,
        pool_size=2,
        pool_stride=2,
216
        act="relu")
W
Wang,Jeff 已提交
217
    # output layer with softmax activation function. size = 10 since there are only 10 possible digits.
218 219
    prediction = fluid.layers.fc(input=conv_pool_2, size=10, act='softmax')
    return prediction
Y
Yi Wang 已提交
220 221
```

W
Wang,Jeff 已提交
222
#### Train Program Configuration
223
Then we need to setup the the `train_program`. It takes the prediction from the classifier first. During the training, it will calculate the `avg_loss` from the prediction.
W
Wang,Jeff 已提交
224
Please feel free to modify the code to test different results between `softmax regression`, `mlp`, and `convolutional neural network` classifier.
Y
Yi Wang 已提交
225 226

```python
227 228 229 230 231 232
def train_program():
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

    # predict = softmax_regression(images) # uncomment for Softmax
    # predict = multilayer_perceptron() # uncomment for MLP
    predict = convolutional_neural_network() # uncomment for LeNet5
W
Wang,Jeff 已提交
233 234

    # Calculate the cost from the prediction and label.
235 236 237 238
    cost = fluid.layers.cross_entropy(input=predict, label=label)
    avg_cost = fluid.layers.mean(cost)
    acc = fluid.layers.accuracy(input=predict, label=label)
    return [avg_cost, acc]
Y
Yi Wang 已提交
239 240
```

W
Wang,Jeff 已提交
241
### Data Feeders Configuration
Y
Yi Wang 已提交
242

243
Then we specify the training data `paddle.dataset.mnist.train()` and testing data `paddle.dataset.mnist.test()`. These two methods are *reader creators*. Once called, a reader creator returns a *reader*.  A reader is a Python method, which, once called, returns a Python generator, which yields instances of data.
Y
Yi Wang 已提交
244

Y
Yi Wang 已提交
245
`shuffle` is a reader decorator. It takes a reader A as input and returns a new reader B. Under the hood, B calls A to read data in the following fashion: it copies in `buffer_size` instances at a time into a buffer, shuffles the data, and yields the shuffled instances one at a time. A large buffer size would yield very shuffled data.
Y
Yi Wang 已提交
246

Y
Yi Wang 已提交
247
`batch` is a special decorator, which takes a reader and outputs a *batch reader*, which doesn't yield an instance, but a minibatch at a time.
Y
Yi Wang 已提交
248

Q
qiaolongfei 已提交
249
```python
250 251 252 253
train_reader = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.mnist.train(), buf_size=500),
        batch_size=64)
L
liaogang 已提交
254

255 256
test_reader = paddle.batch(
            paddle.dataset.mnist.test(), batch_size=64)
Q
qiaolongfei 已提交
257 258
```

W
Wang,Jeff 已提交
259 260 261 262
### Trainer Configuration

Now, we need to setup the trainer. The trainer need to take in `train_program`, `place`, and `optimizer`.
In the following `Momentum` optimizer, `momentum=0.9` means that 90% of the current momentum comes from that of the previous iteration. The learning rate relates to the speed at which the network training converges. Regularization is meant to prevent over-fitting; here we use the L2 regularization.
C
choijulie 已提交
263

Y
Yi Wang 已提交
264
```python
W
Wang,Jeff 已提交
265 266 267 268 269 270 271 272 273 274
 use_cude = False # set to True if training with GPU
 place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
 optimizer = paddle.optimizer.Momentum(
     learning_rate=0.1 / 128.0,
     momentum=0.9,
     regularization=paddle.optimizer.L2Regularization(rate=0.0005 * 128))

trainer = fluid.Trainer(
    train_func=train_program, place=place, optimizer=optimizer)
 ```
Y
Yi Wang 已提交
275

W
Wang,Jeff 已提交
276 277 278 279 280
#### Event Handler

`event_handler` is used to plot some text data when training.

```python
281 282 283
# Save the parameter into a directory. The Inferencer can load the parameters from it to do infer
params_dirname = "recognize_digits_network.inference.model"

Y
Yi Wang 已提交
284
def event_handler(event):
W
Wang,Jeff 已提交
285 286 287 288 289
    if isinstance(event, fluid.EndEpochEvent):
        avg_cost, acc = trainer.test(
            reader=test_reader, feed_order=['img', 'label'])
        print("avg_cost: %s, acc: %s" % (avg_cost, acc))
        trainer.save_params(params_dirname)
Q
qiaolongfei 已提交
290
```
Y
Yi Wang 已提交
291

292
Now that we setup the event_handler and the reader, we can start training the model. `feed_order` is used to map the data dict to the train_program
Q
qiaolongfei 已提交
293
```python
K
Kavya Srinet 已提交
294
# Train the model now
Y
Yi Wang 已提交
295
trainer.train(
296 297 298 299
    num_epochs=1,
    event_handler=event_handler,
    reader=train_reader,
    feed_order=['img', 'label'])
Y
Yi Wang 已提交
300 301
```

C
choijulie 已提交
302
During training, `trainer.train` invokes `event_handler` for certain events. This gives us a chance to print the training progress.
Y
Yi Wang 已提交
303

304 305 306 307 308 309 310 311
 ```
 # Pass 0, Batch 0, Cost 2.780790, {'classification_error_evaluator': 0.9453125}
 # Pass 0, Batch 100, Cost 0.635356, {'classification_error_evaluator': 0.2109375}
 # Pass 0, Batch 200, Cost 0.326094, {'classification_error_evaluator': 0.1328125}
 # Pass 0, Batch 300, Cost 0.361920, {'classification_error_evaluator': 0.1015625}
 # Pass 0, Batch 400, Cost 0.410101, {'classification_error_evaluator': 0.125}
 # Test with Pass 0, Cost 0.326659, {'classification_error_evaluator': 0.09470000118017197}
 ```
Y
Yi Wang 已提交
312

C
choijulie 已提交
313
After the training, we can check the model's prediction accuracy.
Y
Yi Wang 已提交
314

C
choijulie 已提交
315 316 317 318 319 320
```
# find the best pass
best = sorted(lists, key=lambda list: float(list[1]))[0]
print 'Best pass is %s, testing Avgcost is %s' % (best[0], best[1])
print 'The classification accuracy is %.2f%%' % (100 - float(best[2]) * 100)
```
L
liaogang 已提交
321

C
choijulie 已提交
322
Usually, with MNIST data, the softmax regression model achieves an accuracy around 92.34%, the MLP 97.66%, and the convolution network around 99.20%. Convolution layers have been widely considered a great invention for image processing.
L
liaogang 已提交
323

C
choijulie 已提交
324 325
## Application

326
After training, users can use the trained model to classify images. The following code shows how to inference MNIST images through `fluid.Inferencer`.
L
liaogang 已提交
327 328

```python
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
inferencer = fluid.Inferencer(
    # infer_func=softmax_regression, # uncomment for softmax regression
    # infer_func=multilayer_perceptron, # uncomment for MLP
    infer_func=convolutional_neural_network, # uncomment for LeNet5
    param_path=params_dirname,
    place=place)

batch_size = 1
import numpy
tensor_img = numpy.random.uniform(-1.0, 1.0,
                                  [batch_size, 1, 28, 28]).astype("float32")

results = inferencer.infer({'img': tensor_img})

print("infer results: ", results[0])

L
liaogang 已提交
345 346
```

Y
Yi Wang 已提交
347

C
choijulie 已提交
348 349 350 351
## Conclusion

This tutorial describes a few common deep learning models using **Softmax regression**, **Multilayer Perceptron Network**, and **Convolutional Neural Network**. Understanding these models is crucial for future learning; the subsequent tutorials derive more sophisticated networks by building on top of them.

K
Kavya Srinet 已提交
352
When our model evolves from a simple softmax regression to a slightly complex Convolutional Neural Network, the recognition accuracy on the MNIST dataset achieves a large improvement. This is due to the Convolutional layers' local connections and parameter sharing. While learning new models in the future, we encourage the readers to understand the key ideas that lead a new model to improve the results of an old one.
C
choijulie 已提交
353

Y
Yi Wang 已提交
354
Moreover, this tutorial introduces the basic flow of PaddlePaddle model design, which starts with a *data provider*, a model layer construction, and finally training and prediction. Motivated readers can leverage the flow used in this MNIST handwritten digit classification example and experiment with different data and network architectures to train models for classification tasks of their choice.
C
choijulie 已提交
355

Y
Yi Wang 已提交
356

C
choijulie 已提交
357
## References
Y
Yi Wang 已提交
358 359

1. LeCun, Yann, Léon Bottou, Yoshua Bengio, and Patrick Haffner. ["Gradient-based learning applied to document recognition."](http://ieeexplore.ieee.org/abstract/document/726791/) Proceedings of the IEEE 86, no. 11 (1998): 2278-2324.
Y
Yi Wang 已提交
360
2. Wejéus, Samuel. ["A Neural Network Approach to Arbitrary SymbolRecognition on Modern Smartphones."](http://www.diva-portal.org/smash/record.jsf?pid=diva2:753279&dswid=-434) (2014).
Y
Yi Wang 已提交
361 362 363 364 365 366 367
3. Decoste, Dennis, and Bernhard Schölkopf. ["Training invariant support vector machines."](http://link.springer.com/article/10.1023/A:1012454411458) Machine learning 46, no. 1-3 (2002): 161-190.
4. Simard, Patrice Y., David Steinkraus, and John C. Platt. ["Best Practices for Convolutional Neural Networks Applied to Visual Document Analysis."](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.160.8494&rep=rep1&type=pdf) In ICDAR, vol. 3, pp. 958-962. 2003.
5. Salakhutdinov, Ruslan, and Geoffrey E. Hinton. ["Learning a Nonlinear Embedding by Preserving Class Neighbourhood Structure."](http://www.jmlr.org/proceedings/papers/v2/salakhutdinov07a/salakhutdinov07a.pdf) In AISTATS, vol. 11. 2007.
6. Cireşan, Dan Claudiu, Ueli Meier, Luca Maria Gambardella, and Jürgen Schmidhuber. ["Deep, big, simple neural nets for handwritten digit recognition."](http://www.mitpressjournals.org/doi/abs/10.1162/NECO_a_00052) Neural computation 22, no. 12 (2010): 3207-3220.
7. Deng, Li, Michael L. Seltzer, Dong Yu, Alex Acero, Abdel-rahman Mohamed, and Geoffrey E. Hinton. ["Binary coding of speech spectrograms using a deep auto-encoder."](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.185.1908&rep=rep1&type=pdf) In Interspeech, pp. 1692-1695. 2010.
8. Kégl, Balázs, and Róbert Busa-Fekete. ["Boosting products of base classifiers."](http://dl.acm.org/citation.cfm?id=1553439) In Proceedings of the 26th Annual International Conference on Machine Learning, pp. 497-504. ACM, 2009.
9. Rosenblatt, Frank. ["The perceptron: A probabilistic model for information storage and organization in the brain."](http://psycnet.apa.org/journals/rev/65/6/386/) Psychological review 65, no. 6 (1958): 386.
368
10. Bishop, Christopher M. ["Pattern recognition."](http://users.isr.ist.utl.pt/~wurmd/Livros/school/Bishop%20-%20Pattern%20Recognition%20And%20Machine%20Learning%20-%20Springer%20%202006.pdf) Machine Learning 128 (2006): 1-58.
Y
Yi Wang 已提交
369 370

<br/>
L
Luo Tao 已提交
371
This tutorial is contributed by <a xmlns:cc="http://creativecommons.org/ns#" href="http://book.paddlepaddle.org" property="cc:attributionName" rel="cc:attributionURL">PaddlePaddle</a>, and licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/">Creative Commons Attribution-ShareAlike 4.0 International License</a>.