index.html 23.8 KB
Newer Older
1

Y
Yu Yang 已提交
2 3 4 5
<html>
<head>
  <script type="text/x-mathjax-config">
  MathJax.Hub.Config({
Y
Yu Yang 已提交
6
    extensions: ["tex2jax.js", "TeX/AMSsymbols.js", "TeX/AMSmath.js"],
Y
Yu Yang 已提交
7 8
    jax: ["input/TeX", "output/HTML-CSS"],
    tex2jax: {
9 10
      inlineMath: [ ['$','$'] ],
      displayMath: [ ['$$','$$'] ],
Y
Yu Yang 已提交
11 12 13 14
      processEscapes: true
    },
    "HTML-CSS": { availableFonts: ["TeX"] }
  });
Y
Yi Wang 已提交
15 16
  </script>
  <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js" async></script>
Y
Yu Yang 已提交
17
  <script type="text/javascript" src="../.tools/theme/marked.js">
Y
Yu Yang 已提交
18 19
  </script>
  <link href="http://cdn.bootcss.com/highlight.js/9.9.0/styles/darcula.min.css" rel="stylesheet">
Y
Yi Wang 已提交
20
  <script src="http://cdn.bootcss.com/highlight.js/9.9.0/highlight.min.js"></script>
Y
Yu Yang 已提交
21
  <link href="http://cdn.bootcss.com/bootstrap/4.0.0-alpha.6/css/bootstrap.min.css" rel="stylesheet">
Y
Yu Yang 已提交
22
  <link href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" rel="stylesheet">
Y
Yu Yang 已提交
23
  <link href="../.tools/theme/github-markdown.css" rel='stylesheet'>
Y
Yu Yang 已提交
24 25
</head>
<style type="text/css" >
Y
Yu Yang 已提交
26 27 28 29 30 31
.markdown-body {
    box-sizing: border-box;
    min-width: 200px;
    max-width: 980px;
    margin: 0 auto;
    padding: 45px;
Y
Yu Yang 已提交
32 33 34 35
}
</style>


Y
Yu Yang 已提交
36
<body>
Y
Yu Yang 已提交
37

Y
Yu Yang 已提交
38
<div id="context" class="container-fluid markdown-body">
Y
Yu Yang 已提交
39 40 41 42
</div>

<!-- This block will be replaced by each markdown file content. Please do not change lines below.-->
<div id="markdown" style='display:none'>
C
choijulie 已提交
43
# Recognize Digits
Y
Yu Yang 已提交
44

K
Kavya Srinet 已提交
45
The source code for this tutorial is here:  [book/recognize_digits](https://github.com/PaddlePaddle/book/tree/develop/02.recognize_digits). For instructions on getting started with Paddle, please refer to [installation instructions](https://github.com/PaddlePaddle/book/blob/develop/README.md#running-the-book).
Y
Yu Yang 已提交
46

C
choijulie 已提交
47
## Introduction
48
When one learns to program, the first task is usually to write a program that prints "Hello World!". In Machine Learning or Deep Learning, an equivalent task is to train a model to recognize hand-written digits using the [MNIST](http://yann.lecun.com/exdb/mnist/) dataset. Handwriting recognition is a classic image classification problem. The problem is relatively easy and MNIST is a complete dataset. As a simple Computer Vision dataset, MNIST contains images of handwritten digits and their corresponding labels (Fig. 1). The input image is a $28\times28$ matrix, and the label is one of the digits from $0$ to $9$. All images are normalized, meaning that they are both rescaled and centered.
Y
Yu Yang 已提交
49 50 51

<p align="center">
<img src="image/mnist_example_image.png" width="400"><br/>
C
choijulie 已提交
52
Fig. 1. Examples of MNIST images
Y
Yu Yang 已提交
53 54
</p>

Y
Yi Wang 已提交
55
The MNIST dataset is from the [NIST](https://www.nist.gov/srd/nist-special-database-19) Special Database 3 (SD-3) and the Special Database 1 (SD-1). The SD-3 is labeled by the staff of the U.S. Census Bureau, while SD-1 is labeled by high school students. Therefore the SD-3 is cleaner and easier to recognize than the SD-1 dataset. Yann LeCun et al. used half of the samples from each of SD-1 and SD-3 to create the MNIST training set of 60,000 samples and test set of 10,000 samples. 250 annotators labeled the training set, thus guaranteed that there wasn't a complete overlap of annotators of training set and test set.
Y
Yu Yang 已提交
56

57
The MNIST dataset has been used for evaluating many image recognition algorithms such as a single layer linear classifier, Multilayer Perceptron (MLP) and Multilayer CNN LeNet\[[1](#references)\], K-Nearest Neighbors (k-NN) \[[2](#references)\], Support Vector Machine (SVM) \[[3](#references)\], Neural Networks \[[4-7](#references)\], Boosting \[[8](#references)\] and preprocessing methods like distortion removal, noise removal, and blurring.  Among these algorithms, the *Convolutional Neural Network* (CNN) has achieved a series of impressive results in Image Classification tasks, including VGGNet, GoogLeNet, and ResNet (See [Image Classification](https://github.com/PaddlePaddle/book/tree/develop/03.image_classification) tutorial).
Y
Yu Yang 已提交
58

Y
Yi Wang 已提交
59
In this tutorial, we start with a simple **softmax** regression model and go on with MLP and CNN.  Readers will see how these methods improve the recognition accuracy step-by-step.
Y
Yu Yang 已提交
60 61


C
choijulie 已提交
62
## Model Overview
Y
Yu Yang 已提交
63

C
choijulie 已提交
64 65 66 67
Before introducing classification algorithms and training procedure, we define the following symbols:
- $X$ is the input: Input is a $28\times 28$ MNIST image. It is flattened to a $784$ dimensional vector. $X=\left (x_0, x_1, \dots, x_{783} \right )$.
- $Y$ is the output: Output of the classifier is 1 of the 10 classes (digits from 0 to 9). $Y=\left (y_0, y_1, \dots, y_9 \right )$. Each dimension $y_i$ represents the probability that the input image belongs to class $i$.
- $L$ is the ground truth label: $L=\left ( l_0, l_1, \dots, l_9 \right )$. It is also 10 dimensional, but only one entry is $1$ and all others are $0$s.
Y
Yu Yang 已提交
68

C
choijulie 已提交
69
### Softmax Regression
Y
Yu Yang 已提交
70

C
choijulie 已提交
71
In a simple softmax regression model, the input is first fed to fully connected layers. Then, a softmax function is applied to output probabilities of multiple output classes\[[9](#references)\].
Y
Yu Yang 已提交
72

C
choijulie 已提交
73
The input $X$ is multiplied by weights $W$ and then added to the bias $b$ to generate activations.
Y
Yu Yang 已提交
74

L
Luo Tao 已提交
75
$$ y_i = \text{softmax}(\sum_j W_{i,j}x_j + b_i) $$
Y
Yu Yang 已提交
76

C
choijulie 已提交
77
where $ \text{softmax}(x_i) = \frac{e^{x_i}}{\sum_j e^{x_j}} $
Y
Yu Yang 已提交
78

K
Kavya Srinet 已提交
79
For an $N$-class classification problem with $N$ output nodes, Softmax normalizes the resulting $N$ dimensional vector so that each of its entries falls in the range $[0,1]\in {R}$, representing the probability that the sample belongs to a certain class. Here $y_i$ denotes the predicted probability that an image is of digit $i$.
Y
Yu Yang 已提交
80

C
choijulie 已提交
81
In such a classification problem, we usually use the cross entropy loss function:
Y
Yu Yang 已提交
82

L
Luo Tao 已提交
83
$$  \text{crossentropy}(label, y) = -\sum_i label_ilog(y_i) $$
Y
Yu Yang 已提交
84

C
choijulie 已提交
85
Fig. 2 illustrates a softmax regression network, with the weights in blue, and the bias in red. `+1` indicates that the bias is $1$.
Y
Yu Yang 已提交
86

Y
Yu Yang 已提交
87
<p align="center">
C
choijulie 已提交
88 89
<img src="image/softmax_regression_en.png" width=400><br/>
Fig. 2. Softmax regression network architecture<br/>
Y
Yu Yang 已提交
90 91
</p>

C
choijulie 已提交
92
### Multilayer Perceptron
Y
Yu Yang 已提交
93

C
choijulie 已提交
94
The softmax regression model described above uses the simplest two-layer neural network. That is, it only contains an input layer and an output layer, with limited regression capability. To achieve better recognition results, consider adding several hidden layers\[[10](#references)\] between the input layer and the output layer.
Y
Yu Yang 已提交
95

C
choijulie 已提交
96 97 98
1.  After the first hidden layer, we get $ H_1 = \phi(W_1X + b_1) $, where $\phi$ denotes the activation function. Some [common ones](###list-of-common-activation-functions) are sigmoid, tanh and ReLU.
2.  After the second hidden layer, we get $ H_2 = \phi(W_2H_1 + b_2) $.
3.  Finally, the output layer outputs $Y=\text{softmax}(W_3H_2 + b_3)$, the vector denoting our classification result.
99

C
choijulie 已提交
100
Fig. 3. shows a Multilayer Perceptron network, with the weights in blue, and the bias in red. +1 indicates that the bias is $1$.
Y
Yu Yang 已提交
101

Y
Yu Yang 已提交
102
<p align="center">
C
choijulie 已提交
103 104
<img src="image/mlp_en.png" width=500><br/>
Fig. 3. Multilayer Perceptron network architecture<br/>
Y
Yu Yang 已提交
105

L
Luo Tao 已提交
106 107
</p>

C
choijulie 已提交
108
### Convolutional Neural Network
Y
Yu Yang 已提交
109

C
choijulie 已提交
110
#### Convolutional Layer
L
Luo Tao 已提交
111

Y
Yu Yang 已提交
112
<p align="center">
D
dangqingqing 已提交
113
<img src="image/conv_layer.png" width='750'><br/>
C
choijulie 已提交
114
Fig. 4. Convolutional layer<br/>
Y
Yu Yang 已提交
115
</p>
Y
Yu Yang 已提交
116

C
choijulie 已提交
117
The **convolutional layer** is the core of a Convolutional Neural Network. The parameters in this layer are composed of a set of filters, also called kernels. We could visualize the convolution step in the following fashion: Each kernel slides horizontally and vertically till it covers the whole image. At every window, we compute the dot product of the kernel and the input. Then, we add the bias and apply an activation function. The result is a two-dimensional activation map. For example, some kernel may recognize corners, and some may recognize circles. These convolution kernels may respond strongly to the corresponding features.
L
Luo Tao 已提交
118

Y
Yi Wang 已提交
119
Fig. 4 illustrates the dynamic programming of a convolutional layer, where depths are flattened for simplicity. The input is $W_1=5$, $H_1=5$, $D_1=3$. In fact, this is a common representation for colored images. $W_1$ and $H_1$ correspond to the width and height in a colored image. $D_1$ corresponds to the three color channels for RGB. The parameters of the convolutional layer are $K=2$, $F=3$, $S=2$, $P=1$. $K$ denotes the number of kernels; specifically, $Filter$ $W_0$ and $Filter$ $W_1$ are the kernels. $F$ is kernel size while $W0$ and $W1$ are both $F\timesF = 3\times3$ matrices in all depths. $S$ is the stride, which is the width of the sliding window; here, kernels move leftwards or downwards by two units each time. $P$ is the width of the padding, which denotes an extension of the input; here, the gray area shows zero padding with size 1.
L
Luo Tao 已提交
120

C
choijulie 已提交
121
#### Pooling Layer
Y
Yu Yang 已提交
122

C
choijulie 已提交
123 124 125 126
<p align="center">
<img src="image/max_pooling_en.png" width="400px"><br/>
Fig. 5 Pooling layer using max-pooling<br/>
</p>
L
Luo Tao 已提交
127

C
choijulie 已提交
128
A **pooling layer** performs downsampling. The main functionality of this layer is to reduce computation by reducing the network parameters. It also prevents over-fitting to some extent. Usually, a pooling layer is added after a convolutional layer. Pooling layer can use various techniques, such as max pooling and average pooling. As shown in Fig.5, max pooling uses rectangles to segment the input layer into several parts and computes the maximum value in each part as the output.
Y
Yu Yang 已提交
129

C
choijulie 已提交
130
#### LeNet-5 Network
Y
Yu Yang 已提交
131

Y
Yu Yang 已提交
132
<p align="center">
C
choijulie 已提交
133 134
<img src="image/cnn_en.png"><br/>
Fig. 6. LeNet-5 Convolutional Neural Network architecture<br/>
Y
Yu Yang 已提交
135
</p>
Y
Yu Yang 已提交
136

C
choijulie 已提交
137 138
[**LeNet-5**](http://yann.lecun.com/exdb/lenet/) is one of the simplest Convolutional Neural Networks. Fig. 6. shows its architecture: A 2-dimensional input image is fed into two sets of convolutional layers and pooling layers. This output is then fed to a fully connected layer and a softmax classifier. Compared to multilayer, fully connected perceptrons, the LeNet-5 can recognize images better. This is due to the following three properties of the convolution:

Y
Yi Wang 已提交
139
- The 3D nature of the neurons: a convolutional layer is organized by width, height, and depth. Neurons in each layer are connected to only a small region in the previous layer. This region is called the receptive field.
C
choijulie 已提交
140
- Local connectivity: A CNN utilizes the local space correlation by connecting local neurons. This design guarantees that the learned filter has a strong response to local input features. Stacking many such layers generates a non-linear filter that is more global. This enables the network to first obtain good representation for small parts of input and then combine them to represent a larger region.
Y
Yi Wang 已提交
141
- Weight sharing: In a CNN, computation is iterated on shared parameters (weights and bias) to form a feature map. This means that all the neurons in the same depth of the output response to the same feature. This allows the network to detect a feature regardless of its position in the input.
C
choijulie 已提交
142

K
Kavya Srinet 已提交
143
For more details on Convolutional Neural Networks, please refer to the tutorial on [Image Classification](https://github.com/PaddlePaddle/book/blob/develop/image_classification/README.md) and the [relevant lecture](http://cs231n.github.io/convolutional-networks/) from a Stanford course.
Y
Yu Yang 已提交
144

Y
Yi Wang 已提交
145
### List of Common Activation Functions
C
choijulie 已提交
146
- Sigmoid activation function: $ f(x) = sigmoid(x) = \frac{1}{1+e^{-x}} $
Y
Yu Yang 已提交
147

C
choijulie 已提交
148
- Tanh activation function: $ f(x) = tanh(x) = \frac{e^x-e^{-x}}{e^x+e^{-x}} $
Y
Yu Yang 已提交
149

C
choijulie 已提交
150
  In fact, tanh function is just a rescaled version of the sigmoid function. It is obtained by magnifying the value of the sigmoid function and moving it downwards by 1.
Y
Yu Yang 已提交
151

C
choijulie 已提交
152
- ReLU activation function: $ f(x) = max(0, x) $
Y
Yu Yang 已提交
153

C
choijulie 已提交
154
For more information, please refer to [Activation functions on Wikipedia](https://en.wikipedia.org/wiki/Activation_function).
Y
Yu Yang 已提交
155

C
choijulie 已提交
156
## Data Preparation
Y
Yu Yang 已提交
157

C
choijulie 已提交
158
PaddlePaddle provides a Python module, `paddle.dataset.mnist`, which downloads and caches the [MNIST dataset](http://yann.lecun.com/exdb/mnist/).  The cache is under `/home/username/.cache/paddle/dataset/mnist`:
Y
Yu Yang 已提交
159 160


C
choijulie 已提交
161 162 163 164 165 166
|    File name          |       Description | Size            |
|----------------------|--------------|-----------|
|train-images-idx3-ubyte|  Training images | 60,000 |
|train-labels-idx1-ubyte|  Training labels | 60,000 |
|t10k-images-idx3-ubyte |  Evaluation images | 10,000 |
|t10k-labels-idx1-ubyte |  Evaluation labels | 10,000 |
Y
Yu Yang 已提交
167 168


C
choijulie 已提交
169
## Model Configuration
Y
Yu Yang 已提交
170

C
choijulie 已提交
171
A PaddlePaddle program starts from importing the API package:
Y
Yu Yang 已提交
172 173

```python
174
import paddle.fluid as fluid
Y
Yu Yang 已提交
175 176
```

177 178
We want to use this program to demonstrate three different classifiers, each defined as a Python function. We need to feed image data to the classifier.
PaddlePaddle provides a special layer `layer.data` for reading data. Let us create a data layer for reading images and connect it to a classification network.
C
choijulie 已提交
179 180

- Softmax regression: the network has a fully-connection layer with softmax activation:
Y
Yu Yang 已提交
181 182

```python
183 184
def softmax_regression():
    img = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
Y
Yi Wang 已提交
185 186 187
    predict = paddle.layer.fc(input=img,
                              size=10,
                              act=paddle.activation.Softmax())
Y
Yu Yang 已提交
188 189
    return predict
```
C
choijulie 已提交
190 191

- Multi-Layer Perceptron: this network has two hidden fully-connected layers, one with ReLU and the other with softmax activation:
Y
Yu Yang 已提交
192 193

```python
194 195 196 197 198 199
def multilayer_perceptron():
    img = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
    hidden = fluid.layers.fc(input=img, size=200, act='relu')
    hidden = fluid.layers.fc(input=hidden, size=200, act='relu')
    prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
    return prediction
Y
Yu Yang 已提交
200
```
C
choijulie 已提交
201 202

- Convolution network LeNet-5: the input image is fed through two convolution-pooling layers, a fully-connected layer, and the softmax output layer:
Y
Yu Yang 已提交
203 204

```python
205 206 207
def convolutional_neural_network():
    img = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
    conv_pool_1 = fluid.nets.simple_img_conv_pool(
Y
Yu Yang 已提交
208 209 210 211 212
        input=img,
        filter_size=5,
        num_filters=20,
        pool_size=2,
        pool_stride=2,
213 214 215
        act="relu")
    conv_pool_1 = fluid.layers.batch_norm(conv_pool_1)
    conv_pool_2 = fluid.nets.simple_img_conv_pool(
Y
Yu Yang 已提交
216 217 218 219 220
        input=conv_pool_1,
        filter_size=5,
        num_filters=50,
        pool_size=2,
        pool_stride=2,
221 222 223
        act="relu")
    prediction = fluid.layers.fc(input=conv_pool_2, size=10, act='softmax')
    return prediction
Y
Yu Yang 已提交
224 225
```

226
Then we need to setup the the `train_program`. It takes the prediction from the classifier first. During the training, it will calculate the `avg_loss` from the prediction.
Y
Yu Yang 已提交
227

Y
Yi Wang 已提交
228
```python
229 230 231 232 233 234 235 236 237 238
def train_program():
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

    # predict = softmax_regression(images) # uncomment for Softmax
    # predict = multilayer_perceptron() # uncomment for MLP
    predict = convolutional_neural_network() # uncomment for LeNet5
    cost = fluid.layers.cross_entropy(input=predict, label=label)
    avg_cost = fluid.layers.mean(cost)
    acc = fluid.layers.accuracy(input=predict, label=label)
    return [avg_cost, acc]
Y
Yu Yang 已提交
239 240
```

241 242
Now, we need to setup the trainer. The trainer need to take in `train_program`, `place`, and `optimizer`.
In the following `Momentum` optimizer, `momentum=0.9` means that 90% of the current momentum comes from that of the previous iteration. The learning rate relates to the speed at which the network training converges. Regularization is meant to prevent over-fitting; here we use the L2 regularization.
Y
Yu Yang 已提交
243

244 245 246 247 248 249 250
 ```python
 use_cude = False # set to True if training with GPU
 place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
 optimizer = paddle.optimizer.Momentum(
     learning_rate=0.1 / 128.0,
     momentum=0.9,
     regularization=paddle.optimizer.L2Regularization(rate=0.0005 * 128))
Y
Yu Yang 已提交
251

252 253 254
trainer = fluid.Trainer(
    train_func=train_program, place=place, optimizer=optimizer)
 ```
Y
Yu Yang 已提交
255

256
Then we specify the training data `paddle.dataset.mnist.train()` and testing data `paddle.dataset.mnist.test()`. These two methods are *reader creators*. Once called, a reader creator returns a *reader*.  A reader is a Python method, which, once called, returns a Python generator, which yields instances of data.
Y
Yu Yang 已提交
257

Y
Yi Wang 已提交
258
`shuffle` is a reader decorator. It takes a reader A as input and returns a new reader B. Under the hood, B calls A to read data in the following fashion: it copies in `buffer_size` instances at a time into a buffer, shuffles the data, and yields the shuffled instances one at a time. A large buffer size would yield very shuffled data.
Y
Yu Yang 已提交
259

Y
Yi Wang 已提交
260
`batch` is a special decorator, which takes a reader and outputs a *batch reader*, which doesn't yield an instance, but a minibatch at a time.
Y
Yu Yang 已提交
261

Q
qiaolongfei 已提交
262
```python
263 264 265 266
train_reader = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.mnist.train(), buf_size=500),
        batch_size=64)
L
liaogang 已提交
267

268 269
test_reader = paddle.batch(
            paddle.dataset.mnist.test(), batch_size=64)
Q
qiaolongfei 已提交
270 271
```

C
choijulie 已提交
272 273
`event_handler` is used to plot some text data when training.

Y
Yi Wang 已提交
274
```python
L
Luo Tao 已提交
275 276
lists = []

277 278 279
# Save the parameter into a directory. The Inferencer can load the parameters from it to do infer
params_dirname = "recognize_digits_network.inference.model"

K
Kavya Srinet 已提交
280
# event handler to print the progress
L
Luo Tao 已提交
281 282 283 284 285 286
def event_handler(event):
    if isinstance(event, paddle.event.EndIteration):
        if event.batch_id % 100 == 0:
            print "Pass %d, Batch %d, Cost %f, %s" % (
                event.pass_id, event.batch_id, event.cost, event.metrics)
    if isinstance(event, paddle.event.EndPass):
L
liaogang 已提交
287
        # save parameters
288
        with open('params_pass_%d.tar' % event.pass_id, 'w') as f:
289
            trainer.save_parameter_to_tar(f)
L
liaogang 已提交
290

291
        result = trainer.test(reader=train_reader)
L
Luo Tao 已提交
292 293 294 295
        print "Test with Pass %d, Cost %f, %s\n" % (
            event.pass_id, result.cost, result.metrics)
        lists.append((event.pass_id, result.cost,
                      result.metrics['classification_error_evaluator']))
Q
qiaolongfei 已提交
296
```
L
Luo Tao 已提交
297

298
Now that we setup the event_handler and the reader, we can start training the model. `feed_order` is used to map the data dict to the train_program
Q
qiaolongfei 已提交
299
```python
K
Kavya Srinet 已提交
300
# Train the model now
L
Luo Tao 已提交
301
trainer.train(
302 303 304 305
    num_epochs=1,
    event_handler=event_handler,
    reader=train_reader,
    feed_order=['img', 'label'])
Y
Yu Yang 已提交
306 307
```

C
choijulie 已提交
308
During training, `trainer.train` invokes `event_handler` for certain events. This gives us a chance to print the training progress.
Y
Yu Yang 已提交
309

310 311 312 313 314 315 316 317
 ```
 # Pass 0, Batch 0, Cost 2.780790, {'classification_error_evaluator': 0.9453125}
 # Pass 0, Batch 100, Cost 0.635356, {'classification_error_evaluator': 0.2109375}
 # Pass 0, Batch 200, Cost 0.326094, {'classification_error_evaluator': 0.1328125}
 # Pass 0, Batch 300, Cost 0.361920, {'classification_error_evaluator': 0.1015625}
 # Pass 0, Batch 400, Cost 0.410101, {'classification_error_evaluator': 0.125}
 # Test with Pass 0, Cost 0.326659, {'classification_error_evaluator': 0.09470000118017197}
 ```
Y
Yu Yang 已提交
318

C
choijulie 已提交
319
After the training, we can check the model's prediction accuracy.
Y
Yu Yang 已提交
320

C
choijulie 已提交
321 322 323 324 325 326
```
# find the best pass
best = sorted(lists, key=lambda list: float(list[1]))[0]
print 'Best pass is %s, testing Avgcost is %s' % (best[0], best[1])
print 'The classification accuracy is %.2f%%' % (100 - float(best[2]) * 100)
```
L
liaogang 已提交
327

C
choijulie 已提交
328
Usually, with MNIST data, the softmax regression model achieves an accuracy around 92.34%, the MLP 97.66%, and the convolution network around 99.20%. Convolution layers have been widely considered a great invention for image processing.
L
liaogang 已提交
329

C
choijulie 已提交
330 331
## Application

332
After training, users can use the trained model to classify images. The following code shows how to inference MNIST images through `fluid.Inferencer`.
L
liaogang 已提交
333 334

```python
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
inferencer = fluid.Inferencer(
    # infer_func=softmax_regression, # uncomment for softmax regression
    # infer_func=multilayer_perceptron, # uncomment for MLP
    infer_func=convolutional_neural_network, # uncomment for LeNet5
    param_path=params_dirname,
    place=place)

batch_size = 1
import numpy
tensor_img = numpy.random.uniform(-1.0, 1.0,
                                  [batch_size, 1, 28, 28]).astype("float32")

results = inferencer.infer({'img': tensor_img})

print("infer results: ", results[0])

L
liaogang 已提交
351 352
```

Y
Yu Yang 已提交
353

C
choijulie 已提交
354 355 356 357
## Conclusion

This tutorial describes a few common deep learning models using **Softmax regression**, **Multilayer Perceptron Network**, and **Convolutional Neural Network**. Understanding these models is crucial for future learning; the subsequent tutorials derive more sophisticated networks by building on top of them.

K
Kavya Srinet 已提交
358
When our model evolves from a simple softmax regression to a slightly complex Convolutional Neural Network, the recognition accuracy on the MNIST dataset achieves a large improvement. This is due to the Convolutional layers' local connections and parameter sharing. While learning new models in the future, we encourage the readers to understand the key ideas that lead a new model to improve the results of an old one.
C
choijulie 已提交
359

Y
Yi Wang 已提交
360
Moreover, this tutorial introduces the basic flow of PaddlePaddle model design, which starts with a *data provider*, a model layer construction, and finally training and prediction. Motivated readers can leverage the flow used in this MNIST handwritten digit classification example and experiment with different data and network architectures to train models for classification tasks of their choice.
C
choijulie 已提交
361

Y
Yu Yang 已提交
362

C
choijulie 已提交
363
## References
Y
Yu Yang 已提交
364 365

1. LeCun, Yann, Léon Bottou, Yoshua Bengio, and Patrick Haffner. ["Gradient-based learning applied to document recognition."](http://ieeexplore.ieee.org/abstract/document/726791/) Proceedings of the IEEE 86, no. 11 (1998): 2278-2324.
Y
Yi Wang 已提交
366
2. Wejéus, Samuel. ["A Neural Network Approach to Arbitrary SymbolRecognition on Modern Smartphones."](http://www.diva-portal.org/smash/record.jsf?pid=diva2:753279&dswid=-434) (2014).
Y
Yu Yang 已提交
367 368 369 370 371 372 373
3. Decoste, Dennis, and Bernhard Schölkopf. ["Training invariant support vector machines."](http://link.springer.com/article/10.1023/A:1012454411458) Machine learning 46, no. 1-3 (2002): 161-190.
4. Simard, Patrice Y., David Steinkraus, and John C. Platt. ["Best Practices for Convolutional Neural Networks Applied to Visual Document Analysis."](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.160.8494&rep=rep1&type=pdf) In ICDAR, vol. 3, pp. 958-962. 2003.
5. Salakhutdinov, Ruslan, and Geoffrey E. Hinton. ["Learning a Nonlinear Embedding by Preserving Class Neighbourhood Structure."](http://www.jmlr.org/proceedings/papers/v2/salakhutdinov07a/salakhutdinov07a.pdf) In AISTATS, vol. 11. 2007.
6. Cireşan, Dan Claudiu, Ueli Meier, Luca Maria Gambardella, and Jürgen Schmidhuber. ["Deep, big, simple neural nets for handwritten digit recognition."](http://www.mitpressjournals.org/doi/abs/10.1162/NECO_a_00052) Neural computation 22, no. 12 (2010): 3207-3220.
7. Deng, Li, Michael L. Seltzer, Dong Yu, Alex Acero, Abdel-rahman Mohamed, and Geoffrey E. Hinton. ["Binary coding of speech spectrograms using a deep auto-encoder."](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.185.1908&rep=rep1&type=pdf) In Interspeech, pp. 1692-1695. 2010.
8. Kégl, Balázs, and Róbert Busa-Fekete. ["Boosting products of base classifiers."](http://dl.acm.org/citation.cfm?id=1553439) In Proceedings of the 26th Annual International Conference on Machine Learning, pp. 497-504. ACM, 2009.
9. Rosenblatt, Frank. ["The perceptron: A probabilistic model for information storage and organization in the brain."](http://psycnet.apa.org/journals/rev/65/6/386/) Psychological review 65, no. 6 (1958): 386.
374
10. Bishop, Christopher M. ["Pattern recognition."](http://users.isr.ist.utl.pt/~wurmd/Livros/school/Bishop%20-%20Pattern%20Recognition%20And%20Machine%20Learning%20-%20Springer%20%202006.pdf) Machine Learning 128 (2006): 1-58.
Y
Yu Yang 已提交
375 376

<br/>
L
Luo Tao 已提交
377
This tutorial is contributed by <a xmlns:cc="http://creativecommons.org/ns#" href="http://book.paddlepaddle.org" property="cc:attributionName" rel="cc:attributionURL">PaddlePaddle</a>, and licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/">Creative Commons Attribution-ShareAlike 4.0 International License</a>.
378

Y
Yu Yang 已提交
379 380 381 382 383 384 385
</div>
<!-- You can change the lines below now. -->

<script type="text/javascript">
marked.setOptions({
  renderer: new marked.Renderer(),
  gfm: true,
Y
Yu Yang 已提交
386 387 388
  breaks: false,
  smartypants: true,
  highlight: function(code, lang) {
Y
Yu Yang 已提交
389
    code = code.replace(/&amp;/g, "&")
Y
Yu Yang 已提交
390 391
    code = code.replace(/&gt;/g, ">")
    code = code.replace(/&lt;/g, "<")
392
    code = code.replace(/&nbsp;/g, " ")
Y
Yu Yang 已提交
393
    return hljs.highlightAuto(code, [lang]).value;
Y
Yu Yang 已提交
394 395 396
  }
});
document.getElementById("context").innerHTML = marked(
397
        document.getElementById("markdown").innerHTML)
Y
Yu Yang 已提交
398 399
</script>
</body>