train.py 4.2 KB
Newer Older
L
liaogang 已提交
1 2 3
import gzip
from PIL import Image
import numpy as np
L
Luo Tao 已提交
4 5 6 7
import paddle.v2 as paddle


def softmax_regression(img):
8 9
    predict = paddle.layer.fc(
        input=img, size=10, act=paddle.activation.Softmax())
L
Luo Tao 已提交
10 11 12 13 14 15 16
    return predict


def multilayer_perceptron(img):
    # The first fully-connected layer
    hidden1 = paddle.layer.fc(input=img, size=128, act=paddle.activation.Relu())
    # The second fully-connected layer and the according activation function
17 18
    hidden2 = paddle.layer.fc(
        input=hidden1, size=64, act=paddle.activation.Relu())
L
Luo Tao 已提交
19 20
    # The thrid fully-connected layer, note that the hidden size should be 10,
    # which is the number of unique digits
21 22
    predict = paddle.layer.fc(
        input=hidden2, size=10, act=paddle.activation.Softmax())
L
Luo Tao 已提交
23 24 25 26 27 28 29 30 31 32 33 34
    return predict


def convolutional_neural_network(img):
    # first conv layer
    conv_pool_1 = paddle.networks.simple_img_conv_pool(
        input=img,
        filter_size=5,
        num_filters=20,
        num_channel=1,
        pool_size=2,
        pool_stride=2,
L
liaogang 已提交
35
        act=paddle.activation.Relu())
L
Luo Tao 已提交
36 37 38 39 40 41 42 43
    # second conv layer
    conv_pool_2 = paddle.networks.simple_img_conv_pool(
        input=conv_pool_1,
        filter_size=5,
        num_filters=50,
        num_channel=20,
        pool_size=2,
        pool_stride=2,
L
liaogang 已提交
44 45
        act=paddle.activation.Relu())
    # fully-connected layer
46
    predict = paddle.layer.fc(
L
liaogang 已提交
47
        input=conv_pool_2, size=10, act=paddle.activation.Softmax())
L
Luo Tao 已提交
48 49 50
    return predict


Q
qijun 已提交
51 52 53 54 55 56
def main():
    paddle.init(use_gpu=False, trainer_count=1)

    # define network topology
    images = paddle.layer.data(
        name='pixel', type=paddle.data_type.dense_vector(784))
Q
qijun 已提交
57 58
    label = paddle.layer.data(
        name='label', type=paddle.data_type.integer_value(10))
Q
qijun 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85

    # Here we can build the prediction network in different ways. Please
    # choose one by uncomment corresponding line.
    # predict = softmax_regression(images)
    # predict = multilayer_perceptron(images)
    predict = convolutional_neural_network(images)

    cost = paddle.layer.classification_cost(input=predict, label=label)

    parameters = paddle.parameters.create(cost)

    optimizer = paddle.optimizer.Momentum(
        learning_rate=0.1 / 128.0,
        momentum=0.9,
        regularization=paddle.optimizer.L2Regularization(rate=0.0005 * 128))

    trainer = paddle.trainer.SGD(
        cost=cost, parameters=parameters, update_equation=optimizer)

    lists = []

    def event_handler(event):
        if isinstance(event, paddle.event.EndIteration):
            if event.batch_id % 100 == 0:
                print "Pass %d, Batch %d, Cost %f, %s" % (
                    event.pass_id, event.batch_id, event.cost, event.metrics)
        if isinstance(event, paddle.event.EndPass):
L
liaogang 已提交
86 87 88 89
            # save parameters
            with gzip.open('params_pass_%d.tar.gz' % event.pass_id, 'w') as f:
                parameters.to_tar(f)

Q
qijun 已提交
90 91
            result = trainer.test(reader=paddle.batch(
                paddle.dataset.mnist.test(), batch_size=128))
Q
qijun 已提交
92 93
            print "Test with Pass %d, Cost %f, %s\n" % (
                event.pass_id, result.cost, result.metrics)
Q
qijun 已提交
94
            lists.append((event.pass_id, result.cost,
Q
qijun 已提交
95
                          result.metrics['classification_error_evaluator']))
Q
qijun 已提交
96 97 98 99 100 101

    trainer.train(
        reader=paddle.batch(
            paddle.reader.shuffle(paddle.dataset.mnist.train(), buf_size=8192),
            batch_size=128),
        event_handler=event_handler,
L
liaogang 已提交
102
        num_passes=5)
Q
qijun 已提交
103 104 105 106 107 108

    # find the best pass
    best = sorted(lists, key=lambda list: float(list[1]))[0]
    print 'Best pass is %s, testing Avgcost is %s' % (best[0], best[1])
    print 'The classification accuracy is %.2f%%' % (100 - float(best[2]) * 100)

L
liaogang 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
    def load_image(file):
        im = Image.open(file).convert('L')
        im = im.resize((28, 28), Image.ANTIALIAS)
        im = np.array(im).astype(np.float32).flatten()
        im = im / 255.0
        return im

    test_data = []
    test_data.append((load_image('image/infer_3.png'), ))

    probs = paddle.infer(
        output_layer=predict, parameters=parameters, input=test_data)
    lab = np.argsort(-probs)  # probs and lab are the results of one batch data
    print "Label of image/infer_3.png is: %d" % lab[0][0]

Q
qijun 已提交
124

Q
qijun 已提交
125
if __name__ == '__main__':
Q
qijun 已提交
126
    main()