README.cn.md 22.4 KB
Newer Older
C
choijulie 已提交
1 2 3

# 词向量

L
Luo Tao 已提交
4
本教程源代码目录在[book/word2vec](https://github.com/PaddlePaddle/book/tree/develop/04.word2vec), 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/book/blob/develop/README.cn.md#运行这本书),更多内容请参考本教程的[视频课堂](http://bit.baidu.com/course/detail/id/175.html)
C
choijulie 已提交
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209

## 背景介绍

本章我们介绍词的向量表征,也称为word embedding。词向量是自然语言处理中常见的一个操作,是搜索引擎、广告系统、推荐系统等互联网服务背后常见的基础技术。

在这些互联网服务里,我们经常要比较两个词或者两段文本之间的相关性。为了做这样的比较,我们往往先要把词表示成计算机适合处理的方式。最自然的方式恐怕莫过于向量空间模型(vector space model)。
在这种方式里,每个词被表示成一个实数向量(one-hot vector),其长度为字典大小,每个维度对应一个字典里的每个词,除了这个词对应维度上的值是1,其他元素都是0。

One-hot vector虽然自然,但是用处有限。比如,在互联网广告系统里,如果用户输入的query是“母亲节”,而有一个广告的关键词是“康乃馨”。虽然按照常理,我们知道这两个词之间是有联系的——母亲节通常应该送给母亲一束康乃馨;但是这两个词对应的one-hot vectors之间的距离度量,无论是欧氏距离还是余弦相似度(cosine similarity),由于其向量正交,都认为这两个词毫无相关性。 得出这种与我们相悖的结论的根本原因是:每个词本身的信息量都太小。所以,仅仅给定两个词,不足以让我们准确判别它们是否相关。要想精确计算相关性,我们还需要更多的信息——从大量数据里通过机器学习方法归纳出来的知识。

在机器学习领域里,各种“知识”被各种模型表示,词向量模型(word embedding model)就是其中的一类。通过词向量模型可将一个 one-hot vector映射到一个维度更低的实数向量(embedding vector),如$embedding(母亲节) = [0.3, 4.2, -1.5, ...], embedding(康乃馨) = [0.2, 5.6, -2.3, ...]$。在这个映射到的实数向量表示中,希望两个语义(或用法)上相似的词对应的词向量“更像”,这样如“母亲节”和“康乃馨”的对应词向量的余弦相似度就不再为零了。

词向量模型可以是概率模型、共生矩阵(co-occurrence matrix)模型或神经元网络模型。在用神经网络求词向量之前,传统做法是统计一个词语的共生矩阵$X$。$X$是一个$|V| \times |V|$ 大小的矩阵,$X_{ij}$表示在所有语料中,词汇表`V`(vocabulary)中第i个词和第j个词同时出现的词数,$|V|$为词汇表的大小。对$X$做矩阵分解(如奇异值分解,Singular Value Decomposition \[[5](#参考文献)\]),得到的$U$即视为所有词的词向量:

$$X = USV^T$$

但这样的传统做法有很多问题:<br/>
1) 由于很多词没有出现,导致矩阵极其稀疏,因此需要对词频做额外处理来达到好的矩阵分解效果;<br/>
2) 矩阵非常大,维度太高(通常达到$10^6*10^6$的数量级);<br/>
3) 需要手动去掉停用词(如although, a,...),不然这些频繁出现的词也会影响矩阵分解的效果。


基于神经网络的模型不需要计算存储一个在全语料上统计的大表,而是通过学习语义信息得到词向量,因此能很好地解决以上问题。在本章里,我们将展示基于神经网络训练词向量的细节,以及如何用PaddlePaddle训练一个词向量模型。


## 效果展示

本章中,当词向量训练好后,我们可以用数据可视化算法t-SNE\[[4](#参考文献)\]画出词语特征在二维上的投影(如下图所示)。从图中可以看出,语义相关的词语(如a, the, these; big, huge)在投影上距离很近,语意无关的词(如say, business; decision, japan)在投影上的距离很远。

<p align="center">
    <img src = "image/2d_similarity.png" width=400><br/>
    图1. 词向量的二维投影
</p>

另一方面,我们知道两个向量的余弦值在$[-1,1]$的区间内:两个完全相同的向量余弦值为1, 两个相互垂直的向量之间余弦值为0,两个方向完全相反的向量余弦值为-1,即相关性和余弦值大小成正比。因此我们还可以计算两个词向量的余弦相似度:

```
similarity: 0.899180685161
please input two words: big huge

please input two words: from company
similarity: -0.0997506977351
```

以上结果可以通过运行`calculate_dis.py`, 加载字典里的单词和对应训练特征结果得到,我们将在[应用模型](#应用模型)中详细描述用法。


## 模型概览

在这里我们介绍三个训练词向量的模型:N-gram模型,CBOW模型和Skip-gram模型,它们的中心思想都是通过上下文得到一个词出现的概率。对于N-gram模型,我们会先介绍语言模型的概念,并在之后的[训练模型](#训练模型)中,带大家用PaddlePaddle实现它。而后两个模型,是近年来最有名的神经元词向量模型,由 Tomas Mikolov 在Google 研发\[[3](#参考文献)\],虽然它们很浅很简单,但训练效果很好。

### 语言模型

在介绍词向量模型之前,我们先来引入一个概念:语言模型。
语言模型旨在为语句的联合概率函数$P(w_1, ..., w_T)$建模, 其中$w_i$表示句子中的第i个词。语言模型的目标是,希望模型对有意义的句子赋予大概率,对没意义的句子赋予小概率。
这样的模型可以应用于很多领域,如机器翻译、语音识别、信息检索、词性标注、手写识别等,它们都希望能得到一个连续序列的概率。 以信息检索为例,当你在搜索“how long is a football bame”时(bame是一个医学名词),搜索引擎会提示你是否希望搜索"how long is a football game", 这是因为根据语言模型计算出“how long is a football bame”的概率很低,而与bame近似的,可能引起错误的词中,game会使该句生成的概率最大。

对语言模型的目标概率$P(w_1, ..., w_T)$,如果假设文本中每个词都是相互独立的,则整句话的联合概率可以表示为其中所有词语条件概率的乘积,即:

$$P(w_1, ..., w_T) = \prod_{t=1}^TP(w_t)$$

然而我们知道语句中的每个词出现的概率都与其前面的词紧密相关, 所以实际上通常用条件概率表示语言模型:

$$P(w_1, ..., w_T) = \prod_{t=1}^TP(w_t | w_1, ... , w_{t-1})$$



### N-gram neural model

在计算语言学中,n-gram是一种重要的文本表示方法,表示一个文本中连续的n个项。基于具体的应用场景,每一项可以是一个字母、单词或者音节。 n-gram模型也是统计语言模型中的一种重要方法,用n-gram训练语言模型时,一般用每个n-gram的历史n-1个词语组成的内容来预测第n个词。

Yoshua Bengio等科学家就于2003年在著名论文 Neural Probabilistic Language Models \[[1](#参考文献)\] 中介绍如何学习一个神经元网络表示的词向量模型。文中的神经概率语言模型(Neural Network Language Model,NNLM)通过一个线性映射和一个非线性隐层连接,同时学习了语言模型和词向量,即通过学习大量语料得到词语的向量表达,通过这些向量得到整个句子的概率。用这种方法学习语言模型可以克服维度灾难(curse of dimensionality),即训练和测试数据不同导致的模型不准。注意:由于“神经概率语言模型”说法较为泛泛,我们在这里不用其NNLM的本名,考虑到其具体做法,本文中称该模型为N-gram neural model。

我们在上文中已经讲到用条件概率建模语言模型,即一句话中第$t$个词的概率和该句话的前$t-1$个词相关。可实际上越远的词语其实对该词的影响越小,那么如果考虑一个n-gram, 每个词都只受其前面`n-1`个词的影响,则有:

$$P(w_1, ..., w_T) = \prod_{t=n}^TP(w_t|w_{t-1}, w_{t-2}, ..., w_{t-n+1})$$

给定一些真实语料,这些语料中都是有意义的句子,N-gram模型的优化目标则是最大化目标函数:

$$\frac{1}{T}\sum_t f(w_t, w_{t-1}, ..., w_{t-n+1};\theta) + R(\theta)$$

其中$f(w_t, w_{t-1}, ..., w_{t-n+1})$表示根据历史n-1个词得到当前词$w_t$的条件概率,$R(\theta)$表示参数正则项。

<p align="center">
       <img src="image/nnlm.png" width=500><br/>
       图2. N-gram神经网络模型
</p>

图2展示了N-gram神经网络模型,从下往上看,该模型分为以下几个部分:
 - 对于每个样本,模型输入$w_{t-n+1},...w_{t-1}$, 输出句子第t个词为字典中`|V|`个词的概率。

   每个输入词$w_{t-n+1},...w_{t-1}$首先通过映射矩阵映射到词向量$C(w_{t-n+1}),...C(w_{t-1})$。

 - 然后所有词语的词向量连接成一个大向量,并经过一个非线性映射得到历史词语的隐层表示:

    $$g=Utanh(\theta^Tx + b_1) + Wx + b_2$$

    其中,$x$为所有词语的词向量连接成的大向量,表示文本历史特征;$\theta$、$U$、$b_1$、$b_2$和$W$分别为词向量层到隐层连接的参数。$g$表示未经归一化的所有输出单词概率,$g_i$表示未经归一化的字典中第$i$个单词的输出概率。

 - 根据softmax的定义,通过归一化$g_i$, 生成目标词$w_t$的概率为:

  $$P(w_t | w_1, ..., w_{t-n+1}) = \frac{e^{g_{w_t}}}{\sum_i^{|V|} e^{g_i}}$$

 - 整个网络的损失值(cost)为多类分类交叉熵,用公式表示为

   $$J(\theta) = -\sum_{i=1}^N\sum_{c=1}^{|V|}y_k^{i}log(softmax(g_k^i))$$

   其中$y_k^i$表示第$i$个样本第$k$类的真实标签(0或1),$softmax(g_k^i)$表示第i个样本第k类softmax输出的概率。



### Continuous Bag-of-Words model(CBOW)

CBOW模型通过一个词的上下文(各N个词)预测当前词。当N=2时,模型如下图所示:

<p align="center">
    <img src="image/cbow.png" width=250><br/>
    图3. CBOW模型
</p>

具体来说,不考虑上下文的词语输入顺序,CBOW是用上下文词语的词向量的均值来预测当前词。即:

$$context = \frac{x_{t-1} + x_{t-2} + x_{t+1} + x_{t+2}}{4}$$

其中$x_t$为第$t$个词的词向量,分类分数(score)向量 $z=U*context$,最终的分类$y$采用softmax,损失函数采用多类分类交叉熵。

### Skip-gram model

CBOW的好处是对上下文词语的分布在词向量上进行了平滑,去掉了噪声,因此在小数据集上很有效。而Skip-gram的方法中,用一个词预测其上下文,得到了当前词上下文的很多样本,因此可用于更大的数据集。

<p align="center">
    <img src="image/skipgram.png" width=250><br/>
    图4. Skip-gram模型
</p>

如上图所示,Skip-gram模型的具体做法是,将一个词的词向量映射到$2n$个词的词向量($2n$表示当前输入词的前后各$n$个词),然后分别通过softmax得到这$2n$个词的分类损失值之和。


## 数据准备

### 数据介绍

本教程使用Penn Treebank (PTB)(经Tomas Mikolov预处理过的版本)数据集。PTB数据集较小,训练速度快,应用于Mikolov的公开语言模型训练工具\[[2](#参考文献)\]中。其统计情况如下:

<p align="center">
<table>
    <tr>
        <td>训练数据</td>
        <td>验证数据</td>
        <td>测试数据</td>
    </tr>
    <tr>
        <td>ptb.train.txt</td>
        <td>ptb.valid.txt</td>
        <td>ptb.test.txt</td>
    </tr>
    <tr>
        <td>42068句</td>
        <td>3370句</td>
        <td>3761句</td>
    </tr>
</table>
</p>


### 数据预处理

本章训练的是5-gram模型,表示在PaddlePaddle训练时,每条数据的前4个词用来预测第5个词。PaddlePaddle提供了对应PTB数据集的python包`paddle.dataset.imikolov`,自动做数据的下载与预处理,方便大家使用。

预处理会把数据集中的每一句话前后加上开始符号`<s>`以及结束符号`<e>`。然后依据窗口大小(本教程中为5),从头到尾每次向右滑动窗口并生成一条数据。

如"I have a dream that one day" 一句提供了5条数据:

```text
<s> I have a dream
I have a dream that
have a dream that one
a dream that one day
dream that one day <e>
```

最后,每个输入会按其单词次在字典里的位置,转化成整数的索引序列,作为PaddlePaddle的输入。
## 编程实现

本配置的模型结构如下图所示:

<p align="center">
    <img src="image/ngram.png" width=400><br/>
    图5. 模型配置中的N-gram神经网络模型
</p>

首先,加载所需要的包:

```python
import math
import paddle.v2 as paddle
```

然后,定义参数:
```python
embsize = 32 # 词向量维度
hiddensize = 256 # 隐层维度
N = 5 # 训练5-Gram
```

210 211 212 213 214 215 216 217 218
用于保存和加载word_dict和embedding table的函数
```python
# save and load word dict and embedding table
def save_dict_and_embedding(word_dict, embeddings):
    with open("word_dict", "w") as f:
        for key in word_dict:
            f.write(key + " " + str(word_dict[key]) + "\n")
    with open("embedding_table", "w") as f:
        numpy.savetxt(f, embeddings, delimiter=',', newline='\n')
Q
typo  
qiaolongfei 已提交
219 220 221 222 223 224 225


def load_dict_and_embedding():
    word_dict = dict()
    with open("word_dict", "r") as f:
        for line in f:
            key, value = line.strip().split(" ")
Q
qiaolongfei 已提交
226
            word_dict[key] = int(value)
Q
typo  
qiaolongfei 已提交
227 228 229

    embeddings = numpy.loadtxt("embedding_table", delimiter=",")
    return word_dict, embeddings
230 231
```

C
choijulie 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
接着,定义网络结构:

- 将$w_t$之前的$n-1$个词 $w_{t-n+1},...w_{t-1}$,通过$|V|\times D$的矩阵映射到D维词向量(本例中取D=32)。

```python
def wordemb(inlayer):
    wordemb = paddle.layer.table_projection(
        input=inlayer,
        size=embsize,
        param_attr=paddle.attr.Param(
            name="_proj",
            initial_std=0.001,
            learning_rate=1,
            l2_rate=0,
            sparse_update=True))
    return wordemb
```

- 定义输入层接受的数据类型以及名字。

```python
paddle.init(use_gpu=False, trainer_count=3) # 初始化PaddlePaddle
word_dict = paddle.dataset.imikolov.build_dict()
dict_size = len(word_dict)
# 每个输入层都接受整形数据,这些数据的范围是[0, dict_size)
firstword = paddle.layer.data(
    name="firstw", type=paddle.data_type.integer_value(dict_size))
secondword = paddle.layer.data(
    name="secondw", type=paddle.data_type.integer_value(dict_size))
thirdword = paddle.layer.data(
    name="thirdw", type=paddle.data_type.integer_value(dict_size))
fourthword = paddle.layer.data(
    name="fourthw", type=paddle.data_type.integer_value(dict_size))
nextword = paddle.layer.data(
    name="fifthw", type=paddle.data_type.integer_value(dict_size))

Efirst = wordemb(firstword)
Esecond = wordemb(secondword)
Ethird = wordemb(thirdword)
Efourth = wordemb(fourthword)
```

- 将这n-1个词向量经过concat_layer连接成一个大向量作为历史文本特征。

```python
contextemb = paddle.layer.concat(input=[Efirst, Esecond, Ethird, Efourth])
```

- 将历史文本特征经过一个全连接得到文本隐层特征。

```python
hidden1 = paddle.layer.fc(input=contextemb,
                          size=hiddensize,
                          act=paddle.activation.Sigmoid(),
                          layer_attr=paddle.attr.Extra(drop_rate=0.5),
                          bias_attr=paddle.attr.Param(learning_rate=2),
                          param_attr=paddle.attr.Param(
                                initial_std=1. / math.sqrt(embsize * 8),
                                learning_rate=1))
```

- 将文本隐层特征,再经过一个全连接,映射成一个$|V|$维向量,同时通过softmax归一化得到这`|V|`个词的生成概率。

```python
predictword = paddle.layer.fc(input=hidden1,
                              size=dict_size,
                              bias_attr=paddle.attr.Param(learning_rate=2),
                              act=paddle.activation.Softmax())
```

- 网络的损失函数为多分类交叉熵,可直接调用`classification_cost`函数。

```python
cost = paddle.layer.classification_cost(input=predictword, label=nextword)
```

然后,指定训练相关的参数:

- 训练方法(optimizer): 代表训练过程在更新权重时采用动量优化器,本教程使用Adam优化器。
- 训练速度(learning_rate): 迭代的速度,与网络的训练收敛速度有关系。
- 正则化(regularization): 是防止网络过拟合的一种手段,此处采用L2正则化。

```python
parameters = paddle.parameters.create(cost)
adagrad = paddle.optimizer.AdaGrad(
    learning_rate=3e-3,
    regularization=paddle.optimizer.L2Regularization(8e-4))
trainer = paddle.trainer.SGD(cost, parameters, adagrad)
```

下一步,我们开始训练过程。`paddle.dataset.imikolov.train()``paddle.dataset.imikolov.test()`分别做训练和测试数据集。这两个函数各自返回一个reader——PaddlePaddle中的reader是一个Python函数,每次调用的时候返回一个Python generator。

`paddle.batch`的输入是一个reader,输出是一个batched reader —— 在PaddlePaddle里,一个reader每次yield一条训练数据,而一个batched reader每次yield一个minbatch。

```python
def event_handler(event):
    if isinstance(event, paddle.event.EndIteration):
        if event.batch_id % 100 == 0:
            print "Pass %d, Batch %d, Cost %f, %s" % (
                event.pass_id, event.batch_id, event.cost, event.metrics)

    if isinstance(event, paddle.event.EndPass):
        result = trainer.test(
                    paddle.batch(
                        paddle.dataset.imikolov.test(word_dict, N), 32))
        print "Pass %d, Testing metrics %s" % (event.pass_id, result.metrics)
338
        with open("model_%d.tar"%event.pass_id, 'w') as f:
C
choijulie 已提交
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
            parameters.to_tar(f)

trainer.train(
    paddle.batch(paddle.dataset.imikolov.train(word_dict, N), 32),
    num_passes=100,
    event_handler=event_handler)
```

```text
Pass 0, Batch 0, Cost 7.870579, {'classification_error_evaluator': 1.0}, Testing metrics {'classification_error_evaluator': 0.999591588973999}
Pass 0, Batch 100, Cost 6.136420, {'classification_error_evaluator': 0.84375}, Testing metrics {'classification_error_evaluator': 0.8328699469566345}
Pass 0, Batch 200, Cost 5.786797, {'classification_error_evaluator': 0.8125}, Testing metrics {'classification_error_evaluator': 0.8328542709350586}
...
```

训练过程是完全自动的,event_handler里打印的日志类似如上所示:

经过30个pass,我们将得到平均错误率为classification_error_evaluator=0.735611。

358 359 360 361 362 363 364 365 366 367
## 保存词典和embedding

训练完成之后,我们可以把词典和embedding table单独保存下来,后面可以直接使用

```python
# save word dict and embedding table
embeddings = parameters.get("_proj").reshape(len(word_dict), embsize)
save_dict_and_embedding(word_dict, embeddings)
```

C
choijulie 已提交
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438

## 应用模型
训练模型后,我们可以加载模型参数,用训练出来的词向量初始化其他模型,也可以将模型查看参数用来做后续应用。


### 查看词向量

PaddlePaddle训练出来的参数可以直接使用`parameters.get()`获取出来。例如查看单词`apple`的词向量,即为


```python
embeddings = parameters.get("_proj").reshape(len(word_dict), embsize)

print embeddings[word_dict['apple']]
```

```text
[-0.38961065 -0.02392169 -0.00093231  0.36301503  0.13538605  0.16076435
-0.0678709   0.1090285   0.42014077 -0.24119169 -0.31847557  0.20410083
0.04910378  0.19021918 -0.0122014  -0.04099389 -0.16924137  0.1911236
-0.10917275  0.13068172 -0.23079982  0.42699069 -0.27679482 -0.01472992
0.2069038   0.09005053 -0.3282454   0.12717034 -0.24218646  0.25304323
0.19072419 -0.24286366]
```


### 修改词向量

获得到的embedding为一个标准的numpy矩阵。我们可以对这个numpy矩阵进行修改,然后赋值回去。


```python
def modify_embedding(emb):
    # Add your modification here.
    pass

modify_embedding(embeddings)
parameters.set("_proj", embeddings)
```

### 计算词语之间的余弦距离

两个向量之间的距离可以用余弦值来表示,余弦值在$[-1,1]$的区间内,向量间余弦值越大,其距离越近。这里我们在`calculate_dis.py`中实现不同词语的距离度量。
用法如下:


```python
from scipy import spatial

emb_1 = embeddings[word_dict['world']]
emb_2 = embeddings[word_dict['would']]

print spatial.distance.cosine(emb_1, emb_2)
```

```text
0.99375076448
```

## 总结
本章中,我们介绍了词向量、语言模型和词向量的关系、以及如何通过训练神经网络模型获得词向量。在信息检索中,我们可以根据向量间的余弦夹角,来判断query和文档关键词这二者间的相关性。在句法分析和语义分析中,训练好的词向量可以用来初始化模型,以得到更好的效果。在文档分类中,有了词向量之后,可以用聚类的方法将文档中同义词进行分组。希望大家在本章后能够自行运用词向量进行相关领域的研究。


## 参考文献
1. Bengio Y, Ducharme R, Vincent P, et al. [A neural probabilistic language model](http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf)[J]. journal of machine learning research, 2003, 3(Feb): 1137-1155.
2. Mikolov T, Kombrink S, Deoras A, et al. [Rnnlm-recurrent neural network language modeling toolkit](http://www.fit.vutbr.cz/~imikolov/rnnlm/rnnlm-demo.pdf)[C]//Proc. of the 2011 ASRU Workshop. 2011: 196-201.
3. Mikolov T, Chen K, Corrado G, et al. [Efficient estimation of word representations in vector space](https://arxiv.org/pdf/1301.3781.pdf)[J]. arXiv preprint arXiv:1301.3781, 2013.
4. Maaten L, Hinton G. [Visualizing data using t-SNE](https://lvdmaaten.github.io/publications/papers/JMLR_2008.pdf)[J]. Journal of Machine Learning Research, 2008, 9(Nov): 2579-2605.
5. https://en.wikipedia.org/wiki/Singular_value_decomposition

<br/>
L
Luo Tao 已提交
439
<a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/"><img alt="知识共享许可协议" style="border-width:0" src="https://i.creativecommons.org/l/by-sa/4.0/88x31.png" /></a><br /><span xmlns:dct="http://purl.org/dc/terms/" href="http://purl.org/dc/dcmitype/Text" property="dct:title" rel="dct:type">本教程</span><a xmlns:cc="http://creativecommons.org/ns#" href="http://book.paddlepaddle.org" property="cc:attributionName" rel="cc:attributionURL">PaddlePaddle</a> 创作,采用 <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/">知识共享 署名-相同方式共享 4.0 国际 许可协议</a>进行许可。