gan_conf.py 4.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer_config_helpers import *

mode = get_config_arg("mode", str, "generator")
assert mode in set([
    "generator", "discriminator", "generator_training", "discriminator_training"
])

is_generator_training = mode == "generator_training"
is_discriminator_training = mode == "discriminator_training"
is_generator = mode == "generator"
is_discriminator = mode == "discriminator"

# The network structure below follows the ref https://arxiv.org/abs/1406.2661
# Here we used two hidden layers and batch_norm

print('mode=%s' % mode)
# the dim of the noise (z) as the input of the generator network
noise_dim = 10
# the dim of the hidden layer
hidden_dim = 10
# the dim of the generated sample
sample_dim = 2

settings(
    batch_size=128,
    learning_rate=1e-4,
    learning_method=AdamOptimizer(beta1=0.5))


def discriminator(sample):
    """
    discriminator ouputs the probablity of a sample is from generator
    or real data.
    The output has two dimenstional: dimension 0 is the probablity
    of the sample is from generator and dimension 1 is the probabblity
    of the sample is from real data.
    """
    param_attr = ParamAttr(is_static=is_generator_training)
    bias_attr = ParamAttr(
        is_static=is_generator_training, initial_mean=1.0, initial_std=0)

    hidden = fc_layer(
        input=sample,
        name="dis_hidden",
        size=hidden_dim,
        bias_attr=bias_attr,
        param_attr=param_attr,
        act=ReluActivation())

    hidden2 = fc_layer(
        input=hidden,
        name="dis_hidden2",
        size=hidden_dim,
        bias_attr=bias_attr,
        param_attr=param_attr,
        act=LinearActivation())

    hidden_bn = batch_norm_layer(
        hidden2,
        act=ReluActivation(),
        name="dis_hidden_bn",
        bias_attr=bias_attr,
        param_attr=ParamAttr(
            is_static=is_generator_training, initial_mean=1.0,
            initial_std=0.02),
        use_global_stats=False)

    return fc_layer(
        input=hidden_bn,
        name="dis_prob",
        size=2,
        bias_attr=bias_attr,
        param_attr=param_attr,
        act=SoftmaxActivation())


def generator(noise):
    """
    generator generates a sample given noise
    """
    param_attr = ParamAttr(is_static=is_discriminator_training)
    bias_attr = ParamAttr(
        is_static=is_discriminator_training, initial_mean=1.0, initial_std=0)

    hidden = fc_layer(
        input=noise,
        name="gen_layer_hidden",
        size=hidden_dim,
        bias_attr=bias_attr,
        param_attr=param_attr,
        act=ReluActivation())

    hidden2 = fc_layer(
        input=hidden,
        name="gen_hidden2",
        size=hidden_dim,
        bias_attr=bias_attr,
        param_attr=param_attr,
        act=LinearActivation())

    hidden_bn = batch_norm_layer(
        hidden2,
        act=ReluActivation(),
        name="gen_layer_hidden_bn",
        bias_attr=bias_attr,
        param_attr=ParamAttr(
            is_static=is_discriminator_training,
            initial_mean=1.0,
            initial_std=0.02),
        use_global_stats=False)

    return fc_layer(
        input=hidden_bn,
        name="gen_layer1",
        size=sample_dim,
        bias_attr=bias_attr,
        param_attr=param_attr,
        act=LinearActivation())


if is_generator_training:
    noise = data_layer(name="noise", size=noise_dim)
    sample = generator(noise)

if is_discriminator_training:
    sample = data_layer(name="sample", size=sample_dim)

if is_generator_training or is_discriminator_training:
    label = data_layer(name="label", size=1)
    prob = discriminator(sample)
    cost = cross_entropy(input=prob, label=label)
    classification_error_evaluator(
        input=prob, label=label, name=mode + '_error')
    outputs(cost)

if is_generator:
    noise = data_layer(name="noise", size=noise_dim)
    outputs(generator(noise))