index.en.html 23.9 KB
Newer Older
1

Y
Yuanpeng 已提交
2 3 4 5 6 7 8
<html>
<head>
  <script type="text/x-mathjax-config">
  MathJax.Hub.Config({
    extensions: ["tex2jax.js", "TeX/AMSsymbols.js", "TeX/AMSmath.js"],
    jax: ["input/TeX", "output/HTML-CSS"],
    tex2jax: {
9 10
      inlineMath: [ ['$','$'] ],
      displayMath: [ ['$$','$$'] ],
Y
Yuanpeng 已提交
11 12 13 14 15 16
      processEscapes: true
    },
    "HTML-CSS": { availableFonts: ["TeX"] }
  });
  </script>
  <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js" async></script>
Y
Yu Yang 已提交
17
  <script type="text/javascript" src="../.tools/theme/marked.js">
Y
Yuanpeng 已提交
18 19 20 21 22
  </script>
  <link href="http://cdn.bootcss.com/highlight.js/9.9.0/styles/darcula.min.css" rel="stylesheet">
  <script src="http://cdn.bootcss.com/highlight.js/9.9.0/highlight.min.js"></script>
  <link href="http://cdn.bootcss.com/bootstrap/4.0.0-alpha.6/css/bootstrap.min.css" rel="stylesheet">
  <link href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" rel="stylesheet">
Y
Yu Yang 已提交
23
  <link href="../.tools/theme/github-markdown.css" rel='stylesheet'>
Y
Yuanpeng 已提交
24 25 26 27 28 29 30 31 32 33
</head>
<style type="text/css" >
.markdown-body {
    box-sizing: border-box;
    min-width: 200px;
    max-width: 980px;
    margin: 0 auto;
    padding: 45px;
}
</style>
34 35


Y
Yuanpeng 已提交
36
<body>
37

Y
Yu Yang 已提交
38
<div id="context" class="container-fluid markdown-body">
Y
Yuanpeng 已提交
39
</div>
40

Y
Yuanpeng 已提交
41 42 43 44
<!-- This block will be replaced by each markdown file content. Please do not change lines below.-->
<div id="markdown" style='display:none'>
# Recognize Digits

M
Mimee 已提交
45
The source code for this tutorial is live at [book/recognize_digits](https://github.com/PaddlePaddle/book/tree/develop/02.recognize_digits). For instructions on getting started with Paddle, please refer to [installation instructions](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst).
Y
Yuanpeng 已提交
46 47

## Introduction
M
Mimee 已提交
48
When one learns to program, the first task is usually to write a program that prints "Hello World!". In Machine Learning or Deep Learning, the equivalent task is to train a model to recognize hand-written digits on the dataset [MNIST](http://yann.lecun.com/exdb/mnist/). Handwriting recognition is a classic image classification problem. The problem is relatively easy and MNIST is a complete dataset. As a simple Computer Vision dataset, MNIST contains images of handwritten digits and their corresponding labels (Fig. 1). The input image is a $28\times28$ matrix, and the label is one of the digits from $0$ to $9$. All images are normalized, meaning that they are both rescaled and centered.
Y
Yuanpeng 已提交
49 50 51 52 53 54

<p align="center">
<img src="image/mnist_example_image.png" width="400"><br/>
Fig. 1. Examples of MNIST images
</p>

55 56
The MNIST dataset is created from the [NIST](https://www.nist.gov/srd/nist-special-database-19) Special Database 3 (SD-3) and the Special Database 1 (SD-1). The SD-3 is labeled by the staff of the U.S. Census Bureau, while SD-1 is labeled by high school students the in U.S. Therefore the SD-3 is cleaner and easier to recognize than the SD-1 dataset. Yann LeCun et al. used half of the samples from each of SD-1 and SD-3 to create the MNIST training set (60,000 samples) and test set (10,000 samples), where training set was labeled by 250 different annotators, and it was guaranteed that there wasn't a complete overlap of annotators of training set and test set.

M
Mimee 已提交
57
Yann LeCun, one of the founders of Deep Learning, have previously made tremendous contributions to handwritten character recognition and proposed the **Convolutional Neural Network** (CNN), which drastically improved recognition capability for handwritten characters. CNNs are now a critical concept in Deep Learning. From the LeNet proposal by Yann LeCun, to those winning models in ImageNet competitions, such as VGGNet, GoogLeNet, and ResNet (See [Image Classification](https://github.com/PaddlePaddle/book/tree/develop/03.image_classification) tutorial), CNNs have achieved a series of impressive results in Image Classification tasks.
Y
Yuanpeng 已提交
58

M
Mimee 已提交
59
Many algorithms are tested on MNIST. In 1998, LeCun experimented with single layer linear classifier, Multilayer Perceptron (MLP) and Multilayer CNN LeNet. These algorithms quickly reduced test error from 12% to 0.7% \[[1](#references)\]. Since then, researchers have worked on many algorithms such as **K-Nearest Neighbors** (k-NN) \[[2](#references)\], **Support Vector Machine** (SVM) \[[3](#references)\], **Neural Networks** \[[4-7](#references)\] and **Boosting** \[[8](#references)\]. Various preprocessing methods like distortion removal, noise removal, and blurring, have also been applied to increase recognition accuracy.
Y
Yuanpeng 已提交
60

M
Mimee 已提交
61
In this tutorial, we tackle the task of handwritten character recognition. We start with a simple **softmax** regression model and guide our readers step-by-step to improve this model's performance on the task of recognition.
Y
Yuanpeng 已提交
62 63 64 65


## Model Overview

M
Mimee 已提交
66 67 68 69
Before introducing classification algorithms and training procedure, we define the following symbols:
- $X$ is the input: Input is a $28\times 28$ MNIST image. It is flattened to a $784$ dimensional vector. $X=\left (x_0, x_1, \dots, x_{783} \right )$.
- $Y$ is the output: Output of the classifier is 1 of the 10 classes (digits from 0 to 9). $Y=\left (y_0, y_1, \dots, y_9 \right )$. Each dimension $y_i$ represents the probability that the input image belongs to class $i$.
- $L$ is the ground truth label: $L=\left ( l_0, l_1, \dots, l_9 \right )$. It is also 10 dimensional, but only one entry is $1$ and all others are $0$s.
Y
Yuanpeng 已提交
70 71 72

### Softmax Regression

M
Mimee 已提交
73
In a simple softmax regression model, the input is first fed to fully connected layers. Then, a softmax function is applied to output probabilities of multiple output classes\[[9](#references)\].
Y
Yuanpeng 已提交
74

M
Mimee 已提交
75
The input $X$ is multiplied by weights $W$ and then added to the bias $b$ to generate activations.
Y
Yuanpeng 已提交
76

L
Luo Tao 已提交
77
$$ y_i = \text{softmax}(\sum_j W_{i,j}x_j + b_i) $$
Y
Yuanpeng 已提交
78

L
Luo Tao 已提交
79
where $ \text{softmax}(x_i) = \frac{e^{x_i}}{\sum_j e^{x_j}} $
Y
Yuanpeng 已提交
80

M
Mimee 已提交
81
For an $N$-class classification problem with $N$ output nodes, Softmax normalizes the resulting $N$ dimensional vector so that each of its entries falls in the range $[0,1]\in\math{R}$, representing the probability that the sample belongs to a certain class. Here $y_i$ denotes the predicted probability that an image is of digit $i$.
Y
Yuanpeng 已提交
82

83
In such a classification problem, we usually use the cross entropy loss function:
Y
Yuanpeng 已提交
84

L
Luo Tao 已提交
85
$$  \text{crossentropy}(label, y) = -\sum_i label_ilog(y_i) $$
Y
Yuanpeng 已提交
86

M
Mimee 已提交
87
Fig. 2 illustrates a softmax regression network, with the weights in blue, and the bias in red. `+1` indicates that the bias is $1$.
Y
Yuanpeng 已提交
88 89

<p align="center">
Y
Yi Wang 已提交
90
<img src="image/softmax_regression_en.png" width=400><br/>
Y
Yuanpeng 已提交
91 92 93 94 95
Fig. 2. Softmax regression network architecture<br/>
</p>

### Multilayer Perceptron

M
Mimee 已提交
96
The softmax regression model described above uses the simplest two-layer neural network. That is, it only contains an input layer and an output layer, with limited regression capability. To achieve better recognition results, consider adding several hidden layers\[[10](#references)\] between the input layer and the output layer.
Y
Yuanpeng 已提交
97

M
Mimee 已提交
98
1.  After the first hidden layer, we get $ H_1 = \phi(W_1X + b_1) $, where $\phi$ denotes the activation function. Some [common ones](###list-of-common-activation-functions) are sigmoid, tanh and ReLU.
Y
Yuanpeng 已提交
99
2.  After the second hidden layer, we get $ H_2 = \phi(W_2H_1 + b_2) $.
M
Mimee 已提交
100
3.  Finally, the output layer outputs $Y=\text{softmax}(W_3H_2 + b_3)$, the vector denoting our classification result.
Y
Yuanpeng 已提交
101

M
Mimee 已提交
102
Fig. 3. shows a Multilayer Perceptron network, with the weights in blue, and the bias in red. +1 indicates that the bias is $1$.
Y
Yuanpeng 已提交
103 104

<p align="center">
Y
Yi Wang 已提交
105
<img src="image/mlp_en.png" width=500><br/>
Y
Yuanpeng 已提交
106
Fig. 3. Multilayer Perceptron network architecture<br/>
Y
Yi Wang 已提交
107

Y
Yuanpeng 已提交
108 109 110 111 112 113 114
</p>

### Convolutional Neural Network

#### Convolutional Layer

<p align="center">
D
dangqingqing 已提交
115
<img src="image/conv_layer.png" width='750'><br/>
Y
Yuanpeng 已提交
116 117 118
Fig. 4. Convolutional layer<br/>
</p>

M
Mimee 已提交
119
The **convolutional layer** is the core of a Convolutional Neural Network. The parameters in this layer are composed of a set of filters, also called kernels. We could visualize the convolution step in the following fashion: Each kernel slides horizontally and vertically till it covers the whole image. At every window, we compute the dot product of the kernel and the input. Then, we add the bias and apply an activation function. The result is a two-dimensional activation map. For example, some kernel may recognize corners, and some may recognize circles. These convolution kernels may respond strongly to the corresponding features.
Y
Yuanpeng 已提交
120

M
Mimee 已提交
121
Fig. 4 illustrates the dynamic programming of a convolutional layer, where depths are flattened for simplicity. The input is $W_1=5$, $H_1=5$, $D_1=3$. In fact, this is a common representation for colored images. $W_1$ and $H_1$ correspond to the width and height in a colored image. $D_1$ corresponds to the 3 color channels for RGB. The parameters of the convolutional layer are $K=2$, $F=3$, $S=2$, $P=1$. $K$ denotes the number of kernels; specifically, $Filter$ $W_0$ and $Filter$ $W_1$ are the kernels. $F$ is kernel size while $W0$ and $W1$ are both $F\timesF = 3\times3$ matrices in all depths. $S$ is the stride, which is the width of the sliding window; here, kernels move leftwards or downwards by 2 units each time. $P$ is the width of the padding, which denotes an extension of the input; here, the gray area shows zero padding with size 1.
Y
Yuanpeng 已提交
122 123 124 125

#### Pooling Layer

<p align="center">
Y
Yi Wang 已提交
126
<img src="image/max_pooling_en.png" width="400px"><br/>
M
Mimee 已提交
127
Fig. 5 Pooling layer using max-pooling<br/>
Y
Yuanpeng 已提交
128 129
</p>

M
Mimee 已提交
130
A **pooling layer** performs downsampling. The main functionality of this layer is to reduce computation by reducing the network parameters. It also prevents over-fitting to some extent. Usually, a pooling layer is added after a convolutional layer. Pooling layer can use various techniques, such as max pooling and average pooling. As shown in Fig.5, max pooling uses rectangles to segment the input layer into several parts and computes the maximum value in each part as the output.
Y
Yuanpeng 已提交
131

132
#### LeNet-5 Network
Y
Yuanpeng 已提交
133 134

<p align="center">
Y
Yi Wang 已提交
135
<img src="image/cnn_en.png"><br/>
Y
Yuanpeng 已提交
136 137 138
Fig. 6. LeNet-5 Convolutional Neural Network architecture<br/>
</p>

M
Mimee 已提交
139
[**LeNet-5**](http://yann.lecun.com/exdb/lenet/) is one of the simplest Convolutional Neural Networks. Fig. 6. shows its architecture: A 2-dimensional input image is fed into two sets of convolutional layers and pooling layers. This output is then fed to a fully connected layer and a softmax classifier. Compared to multilayer, fully connected perceptrons, the LeNet-5 can recognize images better. This is due to the following three properties of the convolution:
Y
Yuanpeng 已提交
140

M
Mimee 已提交
141 142 143
- The 3D nature of the neurons: a convolutional layer is organized by width, height and depth. Neurons in each layer are connected to only a small region in the previous layer. This region is called the receptive field.
- Local connectivity: A CNN utilizes the local space correlation by connecting local neurons. This design guarantees that the learned filter has a strong response to local input features. Stacking many such layers generates a non-linear filter that is more global. This enables the network to first obtain good representation for small parts of input and then combine them to represent a larger region.
- Weight sharing: In a CNN, computation is iterated on shared parameters (weights and bias) to form a feature map. This means that all the neurons in the same depth of the output respond to the same feature. This allows the network to detect a feature regardless of its position in the input. In other words, it is shift invariant.
Y
Yuanpeng 已提交
144

M
Mimee 已提交
145
For more details on Convolutional Neural Networks, please refer to the tutorial on [Image Classification](https://github.com/PaddlePaddle/book/blob/develop/image_classification/README.md) and the [relevant lecture](http://cs231n.github.io/convolutional-networks/) from a Stanford open course.
Y
Yuanpeng 已提交
146

Y
Update  
Yi Wang 已提交
147
### List of Common Activation Functions  
148
- Sigmoid activation function: $ f(x) = sigmoid(x) = \frac{1}{1+e^{-x}} $
Y
Yuanpeng 已提交
149

150
- Tanh activation function: $ f(x) = tanh(x) = \frac{e^x-e^{-x}}{e^x+e^{-x}} $
Y
Yuanpeng 已提交
151

152
  In fact, tanh function is just a rescaled version of the sigmoid function. It is obtained by magnifying the value of the sigmoid function and moving it downwards by 1.
Y
Yuanpeng 已提交
153

154
- ReLU activation function: $ f(x) = max(0, x) $
Y
Yuanpeng 已提交
155

156
For more information, please refer to [Activation functions on Wikipedia](https://en.wikipedia.org/wiki/Activation_function).
Y
Yuanpeng 已提交
157 158 159

## Data Preparation

L
Luo Tao 已提交
160
PaddlePaddle provides a Python module, `paddle.dataset.mnist`, which downloads and caches the [MNIST dataset](http://yann.lecun.com/exdb/mnist/).  The cache is under `/home/username/.cache/paddle/dataset/mnist`:
Y
Yuanpeng 已提交
161 162


M
Mimee 已提交
163 164 165 166 167 168
|    File name          |       Description | Size            |
|----------------------|--------------|-----------|
|train-images-idx3-ubyte|  Training images | 60,000 |
|train-labels-idx1-ubyte|  Training labels | 60,000 |
|t10k-images-idx3-ubyte |  Evaluation images | 10,000 |
|t10k-labels-idx1-ubyte |  Evaluation labels | 10,000 |
Y
Yuanpeng 已提交
169 170


L
Luo Tao 已提交
171
## Model Configuration
Y
Yuanpeng 已提交
172

L
Luo Tao 已提交
173
A PaddlePaddle program starts from importing the API package:
Y
Yuanpeng 已提交
174 175

```python
L
Luo Tao 已提交
176
import paddle.v2 as paddle
Y
Yuanpeng 已提交
177 178
```

M
Mimee 已提交
179
We want to use this program to demonstrate three different classifiers, each defined as a Python function:
Y
Yuanpeng 已提交
180

M
Mimee 已提交
181
- Softmax regression: the network has a fully-connection layer with softmax activation:
Y
Yuanpeng 已提交
182 183 184

```python
def softmax_regression(img):
L
Luo Tao 已提交
185 186 187
    predict = paddle.layer.fc(input=img,
                              size=10,
                              act=paddle.activation.Softmax())
Y
Yuanpeng 已提交
188 189 190
    return predict
```

M
Mimee 已提交
191
- Multi-Layer Perceptron: this network has two hidden fully-connected layers, one with ReLU and the other with softmax activation:
Y
Yuanpeng 已提交
192 193 194

```python
def multilayer_perceptron(img):
L
Luo Tao 已提交
195 196 197 198 199 200 201
    hidden1 = paddle.layer.fc(input=img, size=128, act=paddle.activation.Relu())
    hidden2 = paddle.layer.fc(input=hidden1,
                              size=64,
                              act=paddle.activation.Relu())
    predict = paddle.layer.fc(input=hidden2,
                              size=10,
                              act=paddle.activation.Softmax())
Y
Yuanpeng 已提交
202 203 204
    return predict
```

M
Mimee 已提交
205
- Convolution network LeNet-5: the input image is fed through two convolution-pooling layers, a fully-connected layer, and the softmax output layer:
Y
Yuanpeng 已提交
206 207 208

```python
def convolutional_neural_network(img):
L
Luo Tao 已提交
209 210

    conv_pool_1 = paddle.networks.simple_img_conv_pool(
Y
Yuanpeng 已提交
211 212 213 214 215 216
        input=img,
        filter_size=5,
        num_filters=20,
        num_channel=1,
        pool_size=2,
        pool_stride=2,
L
liaogang 已提交
217
        act=paddle.activation.Relu())
L
Luo Tao 已提交
218 219

    conv_pool_2 = paddle.networks.simple_img_conv_pool(
Y
Yuanpeng 已提交
220 221 222 223 224 225
        input=conv_pool_1,
        filter_size=5,
        num_filters=50,
        num_channel=20,
        pool_size=2,
        pool_stride=2,
L
liaogang 已提交
226
        act=paddle.activation.Relu())
Y
Yuanpeng 已提交
227

L
liaogang 已提交
228
    predict = paddle.layer.fc(input=conv_pool_2,
L
Luo Tao 已提交
229 230 231
                              size=10,
                              act=paddle.activation.Softmax())
    return predict
Y
Yuanpeng 已提交
232 233
```

L
Luo Tao 已提交
234
PaddlePaddle provides a special layer `layer.data` for reading data. Let us create a data layer for reading images and connect it to a classification network created using one of above three functions.  We also need a cost layer for training the model.
Y
Yuanpeng 已提交
235

L
Luo Tao 已提交
236 237
```python
paddle.init(use_gpu=False, trainer_count=1)
Y
Yuanpeng 已提交
238

L
Luo Tao 已提交
239 240 241 242
images = paddle.layer.data(
    name='pixel', type=paddle.data_type.dense_vector(784))
label = paddle.layer.data(
    name='label', type=paddle.data_type.integer_value(10))
Y
Yuanpeng 已提交
243

L
liaogang 已提交
244 245 246
# predict = softmax_regression(images)
# predict = multilayer_perceptron(images) # uncomment for MLP
predict = convolutional_neural_network(images) # uncomment for LeNet5
Y
Yuanpeng 已提交
247

L
Luo Tao 已提交
248
cost = paddle.layer.classification_cost(input=predict, label=label)
Y
Yuanpeng 已提交
249 250
```

M
Mimee 已提交
251
Now, it is time to specify training parameters. In the following `Momentum` optimizer, `momentum=0.9` means that 90% of the current momentum comes from that of the previous iteration. The learning rate relates to the speed at which the network training converges. Regularization is meant to prevent over-fitting; here we use the L2 regularization.
Y
Yuanpeng 已提交
252

L
Luo Tao 已提交
253 254
```python
parameters = paddle.parameters.create(cost)
Y
Yuanpeng 已提交
255

L
Luo Tao 已提交
256 257 258 259
optimizer = paddle.optimizer.Momentum(
    learning_rate=0.1 / 128.0,
    momentum=0.9,
    regularization=paddle.optimizer.L2Regularization(rate=0.0005 * 128))
Y
Yuanpeng 已提交
260

L
Luo Tao 已提交
261 262 263
trainer = paddle.trainer.SGD(cost=cost,
                             parameters=parameters,
                             update_equation=optimizer)
Y
Yuanpeng 已提交
264 265
```

M
Mimee 已提交
266
Then we specify the training data `paddle.dataset.movielens.train()` and testing data `paddle.dataset.movielens.test()`. These two methods are *reader creators*. Once called, a reader creator returns a *reader*.  A reader is a Python method, which, once called, returns a Python generator, which yields instances of data.
Y
Yuanpeng 已提交
267

M
Mimee 已提交
268
`shuffle` is a reader decorator. It takes in a reader A as input and returns a new reader B. Under the hood, B calls A to read data in the following fashion: it copies in `buffer_size` instances at a time into a buffer, shuffles the data, and yields the shuffled instances one at a time. A large buffer size would yield very shuffled data.
Y
Yuanpeng 已提交
269

M
Mimee 已提交
270
`batch` is a special decorator, which takes in reader and outputs a *batch reader*, which doesn't yield an instance, but a minibatch at a time.
Y
Yuanpeng 已提交
271

Q
qiaolongfei 已提交
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
`event_handler_plot` is used to plot a figure like below:

![png](./image/train_and_test.png)

```python
from paddle.v2.plot import Ploter

train_title = "Train cost"
test_title = "Test cost"
cost_ploter = Ploter(train_title, test_title)

step = 0

# event_handler to plot a figure
def event_handler_plot(event):
    global step
    if isinstance(event, paddle.event.EndIteration):
        if step % 100 == 0:
            cost_ploter.append(train_title, step, event.cost)
            cost_ploter.plot()
        step += 1
    if isinstance(event, paddle.event.EndPass):
        result = trainer.test(reader=paddle.batch(
            paddle.dataset.mnist.test(), batch_size=128))
        cost_ploter.append(test_title, step, result.cost)
```

`event_handler` is used to plot some text data when training.
300

L
Luo Tao 已提交
301 302 303 304 305 306 307 308 309
```python
lists = []

def event_handler(event):
    if isinstance(event, paddle.event.EndIteration):
        if event.batch_id % 100 == 0:
            print "Pass %d, Batch %d, Cost %f, %s" % (
                event.pass_id, event.batch_id, event.cost, event.metrics)
    if isinstance(event, paddle.event.EndPass):
310
        result = trainer.test(reader=paddle.batch(
L
Luo Tao 已提交
311 312 313 314 315
            paddle.dataset.mnist.test(), batch_size=128))
        print "Test with Pass %d, Cost %f, %s\n" % (
            event.pass_id, result.cost, result.metrics)
        lists.append((event.pass_id, result.cost,
                      result.metrics['classification_error_evaluator']))
Q
qiaolongfei 已提交
316
```
L
Luo Tao 已提交
317

Q
qiaolongfei 已提交
318
```python
L
Luo Tao 已提交
319
trainer.train(
320
    reader=paddle.batch(
L
Luo Tao 已提交
321 322 323
        paddle.reader.shuffle(
            paddle.dataset.mnist.train(), buf_size=8192),
        batch_size=128),
Q
qiaolongfei 已提交
324
    event_handler=event_handler_plot,
L
Luo Tao 已提交
325
    num_passes=100)
Y
Yuanpeng 已提交
326 327
```

L
Luo Tao 已提交
328
During training, `trainer.train` invokes `event_handler` for certain events. This gives us a chance to print the training progress.
Y
Yuanpeng 已提交
329 330

```
L
Luo Tao 已提交
331 332 333 334 335 336
# Pass 0, Batch 0, Cost 2.780790, {'classification_error_evaluator': 0.9453125}
# Pass 0, Batch 100, Cost 0.635356, {'classification_error_evaluator': 0.2109375}
# Pass 0, Batch 200, Cost 0.326094, {'classification_error_evaluator': 0.1328125}
# Pass 0, Batch 300, Cost 0.361920, {'classification_error_evaluator': 0.1015625}
# Pass 0, Batch 400, Cost 0.410101, {'classification_error_evaluator': 0.125}
# Test with Pass 0, Cost 0.326659, {'classification_error_evaluator': 0.09470000118017197}
Y
Yuanpeng 已提交
337 338
```

L
Luo Tao 已提交
339
After the training, we can check the model's prediction accuracy.
Y
Yuanpeng 已提交
340 341

```
L
Luo Tao 已提交
342 343 344 345
# find the best pass
best = sorted(lists, key=lambda list: float(list[1]))[0]
print 'Best pass is %s, testing Avgcost is %s' % (best[0], best[1])
print 'The classification accuracy is %.2f%%' % (100 - float(best[2]) * 100)
Y
Yuanpeng 已提交
346 347
```

M
Mimee 已提交
348
Usually, with MNIST data, the softmax regression model achieves an accuracy around 92.34%, the MLP 97.66%, and the convolution network around 99.20%. Convolution layers have been widely considered a great invention for image processing.
L
Luo Tao 已提交
349

Y
Yuanpeng 已提交
350 351

## Conclusion
M
Mimee 已提交
352 353 354 355 356
This tutorial describes a few common deep learning models using **Softmax regression**, **Multilayer Perceptron Network**, and **Convolutional Neural Network**. Understanding these models is crucial for future learning; the subsequent tutorials derive more sophisticated networks by building on top of them.

When our model evolves from a simple softmax regression to a slightly complex Convolutional Neural Network, the recognition accuracy on the MNIST data set achieves a large improvement in accuracy. This is due to the Convolutional layers' local connections and parameter sharing. While learning new models in the future, we encourage the readers to understand the key ideas that lead a new model to improve the results of an old one.

Moreover, this tutorial introduces the basic flow of PaddlePaddle model design, which starts with a *dataprovider*, a model layer construction, and finally training and prediction. Motivated readers can leverage the flow used in this MNIST handwritten digit classification example and experiment with different data and network architectures to train models for classification tasks of their choice.
Y
Yuanpeng 已提交
357 358 359 360 361 362 363 364 365 366 367 368

## References

1. LeCun, Yann, Léon Bottou, Yoshua Bengio, and Patrick Haffner. ["Gradient-based learning applied to document recognition."](http://ieeexplore.ieee.org/abstract/document/726791/) Proceedings of the IEEE 86, no. 11 (1998): 2278-2324.
2. Wejéus, Samuel. ["A Neural Network Approach to Arbitrary SymbolRecognition on Modern Smartphones."](http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A753279&dswid=-434) (2014).
3. Decoste, Dennis, and Bernhard Schölkopf. ["Training invariant support vector machines."](http://link.springer.com/article/10.1023/A:1012454411458) Machine learning 46, no. 1-3 (2002): 161-190.
4. Simard, Patrice Y., David Steinkraus, and John C. Platt. ["Best Practices for Convolutional Neural Networks Applied to Visual Document Analysis."](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.160.8494&rep=rep1&type=pdf) In ICDAR, vol. 3, pp. 958-962. 2003.
5. Salakhutdinov, Ruslan, and Geoffrey E. Hinton. ["Learning a Nonlinear Embedding by Preserving Class Neighbourhood Structure."](http://www.jmlr.org/proceedings/papers/v2/salakhutdinov07a/salakhutdinov07a.pdf) In AISTATS, vol. 11. 2007.
6. Cireşan, Dan Claudiu, Ueli Meier, Luca Maria Gambardella, and Jürgen Schmidhuber. ["Deep, big, simple neural nets for handwritten digit recognition."](http://www.mitpressjournals.org/doi/abs/10.1162/NECO_a_00052) Neural computation 22, no. 12 (2010): 3207-3220.
7. Deng, Li, Michael L. Seltzer, Dong Yu, Alex Acero, Abdel-rahman Mohamed, and Geoffrey E. Hinton. ["Binary coding of speech spectrograms using a deep auto-encoder."](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.185.1908&rep=rep1&type=pdf) In Interspeech, pp. 1692-1695. 2010.
8. Kégl, Balázs, and Róbert Busa-Fekete. ["Boosting products of base classifiers."](http://dl.acm.org/citation.cfm?id=1553439) In Proceedings of the 26th Annual International Conference on Machine Learning, pp. 497-504. ACM, 2009.
9. Rosenblatt, Frank. ["The perceptron: A probabilistic model for information storage and organization in the brain."](http://psycnet.apa.org/journals/rev/65/6/386/) Psychological review 65, no. 6 (1958): 386.
369
10. Bishop, Christopher M. ["Pattern recognition."](http://users.isr.ist.utl.pt/~wurmd/Livros/school/Bishop%20-%20Pattern%20Recognition%20And%20Machine%20Learning%20-%20Springer%20%202006.pdf) Machine Learning 128 (2006): 1-58.
Y
Yuanpeng 已提交
370 371

<br/>
372
This tutorial is contributed by <a xmlns:cc="http://creativecommons.org/ns#" href="http://book.paddlepaddle.org" property="cc:attributionName" rel="cc:attributionURL">PaddlePaddle</a>, and licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>.
373

Y
Yuanpeng 已提交
374 375
</div>
<!-- You can change the lines below now. -->
376

Y
Yuanpeng 已提交
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
<script type="text/javascript">
marked.setOptions({
  renderer: new marked.Renderer(),
  gfm: true,
  breaks: false,
  smartypants: true,
  highlight: function(code, lang) {
    code = code.replace(/&amp;/g, "&")
    code = code.replace(/&gt;/g, ">")
    code = code.replace(/&lt;/g, "<")
    code = code.replace(/&nbsp;/g, " ")
    return hljs.highlightAuto(code, [lang]).value;
  }
});
document.getElementById("context").innerHTML = marked(
392
        document.getElementById("markdown").innerHTML)
Y
Yuanpeng 已提交
393 394
</script>
</body>