README.md 32.3 KB
Newer Older
C
choijulie 已提交
1
# Machine Translation
Y
Yu Yang 已提交
2

C
choijulie 已提交
3
The source codes is located at [book/machine_translation](https://github.com/PaddlePaddle/book/tree/develop/08.machine_translation). Please refer to the PaddlePaddle [installation tutorial](https://github.com/PaddlePaddle/book/blob/develop/README.en.md#running-the-book) if you are a first time user.
Y
Yu Yang 已提交
4

C
choijulie 已提交
5
## Background
Y
Yu Yang 已提交
6

C
choijulie 已提交
7
Machine translation (MT) leverages computers to translate from one language to another. The language to be translated is referred to as the source language, while the language to be translated into is referred to as the target language. Thus, Machine translation is the process of translating from the source language to the target language. It is one of the most important research topics in the field of natural language processing.
Y
Yu Yang 已提交
8

C
choijulie 已提交
9
Early machine translation systems are mainly rule-based i.e. they rely on a language expert to specify the translation rules between the two languages. It is quite difficult to cover all the rules used in one languge. So it is quite a challenge for language experts to specify all possible rules in two or more different languages. Hence, a major challenge in conventional machine translation has been the difficulty in obtaining a complete rule set \[[1](#References)\]
Y
Yu Yang 已提交
10 11


C
choijulie 已提交
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
To address the aforementioned problems, statistical machine translation techniques have been developed. These techniques learn the translation rules from a large corpus, instead of being designed by a language expert. While these techniques overcome the bottleneck of knowledge acquisition, there are still quite a lot of challenges, for example:

1. human designed features cannot cover all possible linguistic variations;

2. it is difficult to use global features;

3. the techniques heavily rely on pre-processing techniques like word alignment, word segmentation and tokenization, rule-extraction and syntactic parsing etc. The error introduced in any of these steps could accumulate and impact translation quality.



The recent development of deep learning provides new solutions to these challenges. The two main categories for deep learning based machine translation techniques are:

1. techniques based on the statistical machine translation system but with some key components improved with neural networks, e.g., language model, reordering model (please refer to the left part of Figure 1);

2. techniques mapping from source language to target language directly using a neural network, or end-to-end neural machine translation (NMT).

Y
Yu Yang 已提交
28
<p align="center">
C
choijulie 已提交
29 30
<img src="image/nmt_en.png" width=400><br/>
Figure 1. Neural Network based Machine Translation
Y
Yu Yang 已提交
31 32 33
</p>


C
choijulie 已提交
34 35 36
This tutorial will mainly introduce an NMT model and how to use PaddlePaddle to train it.

## Illustrative Results
Y
Yu Yang 已提交
37

C
choijulie 已提交
38
Let's consider an example of Chinese-to-English translation. The model is given the following segmented sentence in Chinese
Y
Yu Yang 已提交
39 40 41
```text
这些 是 希望 的 曙光 和 解脱 的 迹象 .
```
C
choijulie 已提交
42
After training and with a beam-search size of 3, the generated translations are as follows:
Y
Yu Yang 已提交
43
```text
L
Luo Tao 已提交
44 45 46
0 -5.36816   These are signs of hope and relief . <e>
1 -6.23177   These are the light of hope and relief . <e>
2 -7.7914  These are the light of hope and the relief of hope . <e>
Y
Yu Yang 已提交
47
```
C
choijulie 已提交
48 49
- The first column corresponds to the id of the generated sentence; the second column corresponds to the score of the generated sentence (in descending order), where a larger value indicates better quality; the last column corresponds to the generated sentence.
- There are two special tokens: `<e>` denotes the end of a sentence while `<unk>` denotes unknown word, i.e., a word not in the training dictionary.
Y
Yu Yang 已提交
50

C
choijulie 已提交
51
## Overview of the Model
Y
Yu Yang 已提交
52

C
choijulie 已提交
53
This section will introduce Gated Recurrent Unit (GRU), Bi-directional Recurrent Neural Network, the Encoder-Decoder framework used in NMT, attention mechanism, as well as the beam search algorithm.
Y
Yu Yang 已提交
54

C
choijulie 已提交
55
### Gated Recurrent Unit (GRU)
Y
Yu Yang 已提交
56

C
choijulie 已提交
57 58 59 60 61 62 63
We already introduced RNN and LSTM in the [Sentiment Analysis](https://github.com/PaddlePaddle/book/blob/develop/understand_sentiment/README.md) chapter.
Compared to a simple RNN, the LSTM added memory cell, input gate, forget gate and output gate. These gates combined with the memory cell greatly improve the ability to handle long-term dependencies.

GRU\[[2](#References)\] proposed by Cho et al is a simplified LSTM and an extension of a simple RNN. It is shown in the figure below.
A GRU unit has only two gates:
- reset gate: when this gate is closed, the history information is discarded, i.e., the irrelevant historical information has no effect on the future output.
- update gate: it combines the input gate and the forget gate and is used to control the impact of historical information on the hidden output. The historical information is passed over when the update gate is close to 1.
Y
Yu Yang 已提交
64 65

<p align="center">
C
choijulie 已提交
66 67
<img src="image/gru_en.png" width=700><br/>
Figure 2. A GRU Gate
Y
Yu Yang 已提交
68 69
</p>

C
choijulie 已提交
70 71
Generally speaking, sequences with short distance dependencies will have an active reset gate while sequences with long distance dependency will have an active update date.
In addition, Chung et al.\[[3](#References)\] have empirically shown that although GRU has less parameters, it has similar performance to LSTM on several different tasks.
Y
Yu Yang 已提交
72

C
choijulie 已提交
73
### Bi-directional Recurrent Neural Network
Y
Yu Yang 已提交
74

C
choijulie 已提交
75
We already introduced an instance of bi-directional RNN in the [Semantic Role Labeling](https://github.com/PaddlePaddle/book/blob/develop/label_semantic_roles/README.md) chapter. Here we present another bi-directional RNN model with a different architecture proposed by Bengio et al. in \[[2](#References),[4](#References)\]. This model takes a sequence as input and outputs a fixed dimensional feature vector at each step, encoding the context information at the corresponding time step.
Y
Yu Yang 已提交
76

C
choijulie 已提交
77
Specifically, this bi-directional RNN processes the input sequence in the original and reverse order respectively, and then concatenates the output feature vectors at each time step as the final output. Thus the output node at each time step contains information from the past and future as context. The figure below shows an unrolled bi-directional RNN. This network contains a forward RNN and backward RNN with six weight matrices: weight matrices from input to forward hidden layer and backward hidden ($W_1, W_3$), weight matrices from hidden to itself ($W_2, W_5$), matrices from forward hidden and backward hidden to output layer ($W_4, W_6$). Note that there are no connections between forward hidden and backward hidden layers.
Y
Yu Yang 已提交
78 79

<p align="center">
C
choijulie 已提交
80 81
<img src="image/bi_rnn_en.png" width=450><br/>
Figure 3. Temporally unrolled bi-directional RNN
Y
Yu Yang 已提交
82 83
</p>

C
choijulie 已提交
84 85 86
### Encoder-Decoder Framework

The Encoder-Decoder\[[2](#References)\] framework aims to solve the mapping of a sequence to another sequence, for sequences with arbitrary lengths. The source sequence is encoded into a vector via an encoder, which is then decoded to a target sequence via a decoder by maximizing the predictive probability. Both the encoder and the decoder are typically implemented via RNN.
Y
Yu Yang 已提交
87 88

<p align="center">
C
choijulie 已提交
89 90
<img src="image/encoder_decoder_en.png" width=700><br/>
Figure 4. Encoder-Decoder Framework
Y
Yu Yang 已提交
91 92
</p>

C
choijulie 已提交
93 94 95
#### Encoder

There are three steps for encoding a sentence:
Y
Yu Yang 已提交
96

C
choijulie 已提交
97
1. One-hot vector representation of a word: Each word $x_i$ in the source sentence $x=\left \{ x_1,x_2,...,x_T \right \}$ is represented as a vector $w_i\epsilon \left \{ 0,1 \right \}^{\left | V \right |},i=1,2,...,T$   where $w_i$ has the same dimensionality as the size of the dictionary, i.e., $\left | V \right |$, and has an element of one at the location corresponding to the location of the word in the dictionary and zero elsewhere.
Y
Yu Yang 已提交
98

C
choijulie 已提交
99
2. Word embedding as a representation in the low-dimensional semantic space: There are two problems with one-hot vector representation
Y
Yu Yang 已提交
100

C
choijulie 已提交
101
  * the dimensionality of the vector is typically large, leading to the curse of dimensionality;
Y
Yu Yang 已提交
102

C
choijulie 已提交
103
  * it is hard to capture the relationships between words, i.e., semantic similarities. Therefore, it is useful to project the one-hot vector into a low-dimensional semantic space as a dense vector with fixed dimensions, i.e., $s_i=Cw_i$ for the $i$-th word, with $C\epsilon R^{K\times \left | V \right |}$ as the projection matrix and $K$ is the dimensionality of the word embedding vector.
Y
Yu Yang 已提交
104

C
choijulie 已提交
105 106 107 108 109 110 111 112 113 114 115 116
3. Encoding of the source sequence via RNN: This can be described mathematically as:

    $$h_i=\varnothing _\theta \left ( h_{i-1}, s_i \right )$$

    where
    $h_0$ is a zero vector,
    $\varnothing _\theta$ is a non-linear activation function, and
    $\mathbf{h}=\left \{ h_1,..., h_T \right \}$
    is the sequential encoding of the first $T$ words from the source sequence. The vector representation of the whole sentence can be represented as the encoding vector at the last time step $T$ from $\mathbf{h}$, or by temporal pooling over $\mathbf{h}$.


Bi-directional RNN can also be used in step (3) for more a complicated sentence encoding. This can be implemented using a bi-directional GRU. Forward GRU encodes the source sequence in its original order $(x_1,x_2,...,x_T)$, and generates a sequence of hidden states $(\overrightarrow{h_1},\overrightarrow{h_2},...,\overrightarrow{h_T})$. The backward GRU encodes the source sequence in reverse order, i.e., $(x_T,x_T-1,...,x_1)$ and generates $(\overleftarrow{h_1},\overleftarrow{h_2},...,\overleftarrow{h_T})$. Then for each word $x_i$, its complete hidden state is the concatenation of the corresponding hidden states from the two GRUs, i.e., $h_i=\left [ \overrightarrow{h_i^T},\overleftarrow{h_i^T} \right ]^{T}$.
Y
Yu Yang 已提交
117 118

<p align="center">
C
choijulie 已提交
119 120
<img src="image/encoder_attention_en.png" width=500><br/>
Figure 5. Encoder using bi-directional GRU
Y
Yu Yang 已提交
121 122
</p>

C
choijulie 已提交
123
#### Decoder
Y
Yu Yang 已提交
124

C
choijulie 已提交
125
The goal of the decoder is to maximize the probability of the next correct word in the target language. The main idea is as follows:
Y
Yu Yang 已提交
126

C
choijulie 已提交
127
1. At each time step $i$, given the encoding vector (or context vector) $c$ of the source sentence, the $i$-th word $u_i$ from the ground-truth target language and the RNN hidden state $z_i$, the next hidden state $z_{i+1}$ is computed as:
128

Y
Yu Yang 已提交
129
   $$z_{i+1}=\phi _{\theta '}\left ( c,u_i,z_i \right )$$
C
choijulie 已提交
130
   where $\phi _{\theta '}$ is a non-linear activation function and $c=q\mathbf{h}$ is the context vector of the source sentence. Without using [attention](#Attention Mechanism), if the output of the [encoder](#Encoder) is the encoding vector at the last time step of the source sentence, then $c$ can be defined as $c=h_T$. $u_i$ denotes the $i$-th word from the target language sentence and $u_0$ denotes the beginning of the target language sentence (i.e., `<s>`), indicating the beginning of decoding. $z_i$ is the RNN hidden state at time step $i$ and $z_0$ is an all zero vector.
Y
Yu Yang 已提交
131

C
choijulie 已提交
132
2. Calculate the probability $p_{i+1}$ for the $i+1$-th word in the target language sequence by normalizing $z_{i+1}$ using `softmax` as follows
Y
Yu Yang 已提交
133 134 135

   $$p\left ( u_{i+1}|u_{&lt;i+1},\mathbf{x} \right )=softmax(W_sz_{i+1}+b_z)$$

C
choijulie 已提交
136
   where $W_sz_{i+1}+b_z$ scores each possible words and is then normalized via softmax to produce the probability $p_{i+1}$ for the $i+1$-th word.
Y
Yu Yang 已提交
137

C
choijulie 已提交
138 139
3. Compute the cost accoding to $p_{i+1}$ and $u_{i+1}$.
4. Repeat Steps 1-3, until all the words in the target language sentence have been processed.
Y
Yu Yang 已提交
140

C
choijulie 已提交
141
The generation process of machine translation is to translate the source sentence into a sentence in the target language according to a pre-trained model. There are some differences between the decoding step in generation and training. Please refer to [Beam Search Algorithm](#Beam Search Algorithm) for details.
Y
Yu Yang 已提交
142

C
choijulie 已提交
143
### Attention Mechanism
Y
Yu Yang 已提交
144

C
choijulie 已提交
145 146 147
There are a few problems with the fixed dimensional vector representation from the encoding stage:
  * It is very challenging to encode both the semantic and syntactic information a sentence with a fixed dimensional vector regardless of the length of the sentence.
  * Intuitively, when translating a sentence, we typically pay more attention to the parts in the source sentence more relevant to the current translation. Moreover, the focus changes along the process of the translation. With a fixed dimensional vector, all the information from the source sentence is treated equally in terms of attention. This is not reasonable. Therefore, Bahdanau et al. \[[4](#References)\] introduced attention mechanism, which can decode based on different fragments of the context sequence in order to address the difficulty of feature learning for long sentences. Decoder with attention will be explained in the following.
Y
Yu Yang 已提交
148

C
choijulie 已提交
149
Different from the simple decoder, $z_i$ is computed as:
Y
Yu Yang 已提交
150 151 152

$$z_{i+1}=\phi _{\theta '}\left ( c_i,u_i,z_i \right )$$

C
choijulie 已提交
153
It is observed that for each word $u_i$ in the target language sentence, there is a corresponding context vector $c_i$ as the encoding of the source sentence, which is computed as:
Y
Yu Yang 已提交
154 155 156

$$c_i=\sum _{j=1}^{T}a_{ij}h_j, a_i=\left[ a_{i1},a_{i2},...,a_{iT}\right ]$$

C
choijulie 已提交
157
It is noted that the attention mechanism is achieved by a weighted average over the RNN hidden states $h_j$. The weight $a_{ij}$ denotes the strength of attention of the $i$-th word in the target language sentence to the $j$-th word in the source sentence and is calculated as
Y
Yu Yang 已提交
158 159 160 161 162 163

\begin{align}
a_{ij}&=\frac{exp(e_{ij})}{\sum_{k=1}^{T}exp(e_{ik})}\\\\
e_{ij}&=align(z_i,h_j)\\\\
\end{align}

C
choijulie 已提交
164
where $align$ is an alignment model that measures the fitness between the $i$-th word in the target language sentence and the $j$-th word in the source sentence. More concretely, the fitness is computed with the $i$-th hidden state $z_i$ of the decoder RNN and the $j$-th context vector $h_j$ of the source sentence. Hard alignment is used in the conventional alignment model, which means each word in the target language explicitly corresponds to one or more words from the target language sentence. In an attention model, soft alignment is used, where any word in source sentence is related to any word in the target language sentence, where the strength of the relation is a real number computed via the model, thus can be incorporated into the NMT framework and can be trained via back-propagation.
Y
Yu Yang 已提交
165 166

<p align="center">
C
choijulie 已提交
167 168
<img src="image/decoder_attention_en.png" width=500><br/>
Figure 6. Decoder with Attention Mechanism
Y
Yu Yang 已提交
169 170
</p>

C
choijulie 已提交
171 172 173
### Beam Search Algorithm

[Beam Search](http://en.wikipedia.org/wiki/Beam_search) is a heuristic search algorithm that explores a graph by expanding the most promising node in a limited set. It is typically used when the solution space is huge  (e.g., for machine translation, speech recognition), and there is not enough memory for all the possible solutions. For example, if we want to translate “`<s>你好<e>`” into English, even if there are only three words in the dictionary (`<s>`, `<e>`, `hello`), it is still possible to generate an infinite number of sentences, where the word `hello` can appear different number of times. Beam search could be used to find a good translation among them.
Y
Yu Yang 已提交
174

C
choijulie 已提交
175
Beam search builds a search tree using breadth first search and sorts the nodes according to a heuristic cost (sum of the log probability of the generated words) at each level of the tree. Only a fixed number of nodes according to the pre-specified beam size (or beam width) are considered. Thus, only nodes with highest scores are expanded in the next level. This reduces the space and time requirements significantly. However, a globally optimal solution is not guaranteed.
Y
Yu Yang 已提交
176

C
choijulie 已提交
177
The goal is to maximize the probability of the generated sequence when using beam search in decoding, The procedure is as follows:
Y
Yu Yang 已提交
178

C
choijulie 已提交
179 180 181 182
1. At each time step $i$, compute the hidden state $z_{i+1}$ of the next time step according to the context vector $c$ of the source sentence, the $i$-th word $u_i$ generated for the target language sentence and the RNN hidden state $z_i$.
2. Normalize $z_{i+1}$ using `softmax` to get the probability $p_{i+1}$ for the $i+1$-th word for the target language sentence.
3. Sample the word $u_{i+1}$ according to $p_{i+1}$.
4. Repeat Steps 1-3, until end-of-sentence token `<e>` is generated or the maximum length of the sentence is reached.
Y
Yu Yang 已提交
183

C
choijulie 已提交
184
Note: $z_{i+1}$ and $p_{i+1}$ are computed the same way as in [Decoder](#Decoder). In generation mode, each step is greedy in so there is no guarantee of a global optimum.
Y
Yu Yang 已提交
185

C
choijulie 已提交
186
## Data Preparation
Y
Yu Yang 已提交
187

C
choijulie 已提交
188
This tutorial uses a dataset from [WMT-14](http://www-lium.univ-lemans.fr/~schwenk/cslm_joint_paper/), where [bitexts (after selection)](http://www-lium.univ-lemans.fr/~schwenk/cslm_joint_paper/data/bitexts.tgz) is used as the training set, and [dev+test data](http://www-lium.univ-lemans.fr/~schwenk/cslm_joint_paper/data/dev+test.tgz) is used as test and generation set.
Y
Yu Yang 已提交
189 190


C
choijulie 已提交
191
### Data Preprocessing
Y
Yu Yang 已提交
192

C
choijulie 已提交
193 194 195 196
There are two steps for pre-processing:
- Merge the source and target parallel corpus files into one file
  - Merge `XXX.src` and `XXX.trg` file pair as `XXX`
  - The $i$-th row in `XXX` is the concatenation of the $i$-th row from `XXX.src` with the $i$-th row from `XXX.trg`, separated with '\t'.
Y
Yu Yang 已提交
197

C
choijulie 已提交
198
- Create source dictionary and target dictionary, each containing **DICTSIZE** number of words, including the most frequent (DICTSIZE - 3) fo word from the corpus and 3 special token `<s>` (begin of sequence), `<e>` (end of sequence)  and `<unk>` (unknown words that are not in the vocabulary).
Q
qiaolongfei 已提交
199

C
choijulie 已提交
200
### A Subset of Dataset
Y
Yu Yang 已提交
201

C
choijulie 已提交
202
Because the full dataset is very big, to reduce the time for downloading the full dataset. PadddlePaddle package `paddle.dataset.wmt14` provides a preprocessed `subset of dataset`(http://paddlepaddle.bj.bcebos.com/demo/wmt_shrinked_data/wmt14.tgz).
Y
Yu Yang 已提交
203

C
choijulie 已提交
204
This subset has 193319 instances of training data and 6003 instances of test data. Dictionary size is 30000. Because of the limitation of size of the subset, the effectiveness of trained model from this subset is not guaranteed.
Y
Yu Yang 已提交
205

C
choijulie 已提交
206 207 208
## Training Instructions

### Initialize PaddlePaddle
209 210

```python
211
import sys
212 213
import paddle.v2 as paddle

C
choijulie 已提交
214
# train with a single CPU
215
paddle.init(use_gpu=False, trainer_count=1)
C
choijulie 已提交
216
# False: training, True: generating
L
Luo Tao 已提交
217
is_generating = False
Q
qiaolongfei 已提交
218
```
Y
Yu Yang 已提交
219

C
choijulie 已提交
220 221 222
### Model Configuration

1. Define some global variables
Y
Yu Yang 已提交
223 224

   ```python
C
choijulie 已提交
225 226 227 228 229 230 231 232
   dict_size = 30000 # dict dim
   source_dict_dim = dict_size # source language dictionary size
   target_dict_dim = dict_size # destination language dictionary size
   word_vector_dim = 512 # word embedding dimension
   encoder_size = 512 # hidden layer size of GRU in encoder
   decoder_size = 512 # hidden layer size of GRU in decoder
   beam_size = 3 # expand width in beam search
   max_length = 250 # a stop condition of sequence generation
Y
Yu Yang 已提交
233 234
  ```

C
choijulie 已提交
235 236
2. Implement Encoder as follows:
   - Input is a sequence of words represented by an integer word index sequence. So we define data layer of data type `integer_value_sequence`. The value range of each element in the sequence is `[0, source_dict_dim)`
Y
Yu Yang 已提交
237 238

   ```python
Q
qiaolongfei 已提交
239 240 241
    src_word_id = paddle.layer.data(
        name='source_language_word',
        type=paddle.data_type.integer_value_sequence(source_dict_dim))
Y
Yu Yang 已提交
242
   ```
C
choijulie 已提交
243 244

   - Map the one-hot vector (represented by word index) into a word vector $\mathbf{s}$ in a low-dimensional semantic space
Y
Yu Yang 已提交
245 246

   ```python
Q
qiaolongfei 已提交
247 248 249 250
    src_embedding = paddle.layer.embedding(
        input=src_word_id,
        size=word_vector_dim,
        param_attr=paddle.attr.ParamAttr(name='_source_language_embedding'))
Y
Yu Yang 已提交
251
   ```
C
choijulie 已提交
252 253

   - Use bi-direcitonal GRU to encode the source language sequence, and concatenate the encoding outputs from the two GRUs to get $\mathbf{h}$
254

Y
Yu Yang 已提交
255
   ```python
Q
qiaolongfei 已提交
256 257 258 259 260
    src_forward = paddle.networks.simple_gru(
        input=src_embedding, size=encoder_size)
    src_backward = paddle.networks.simple_gru(
        input=src_embedding, size=encoder_size, reverse=True)
    encoded_vector = paddle.layer.concat(input=[src_forward, src_backward])
Y
Yu Yang 已提交
261 262
   ```

C
choijulie 已提交
263
3. Implement Attention-based Decoder as follows:
Y
Yu Yang 已提交
264

C
choijulie 已提交
265
   - Get a projection of the encoding (c.f. 2.3) of the source language sequence by passing it into a feed forward neural network
266

Y
Yu Yang 已提交
267
   ```python
Q
qiaolongfei 已提交
268 269 270
    with paddle.layer.mixed(size=decoder_size) as encoded_proj:
        encoded_proj += paddle.layer.full_matrix_projection(
            input=encoded_vector)
Y
Yu Yang 已提交
271
   ```
272

C
choijulie 已提交
273
   - Use a non-linear transformation of the last hidden state of the backward GRU on the source language sentence as the initial state of the decoder RNN $c_0=h_T$
Y
Yu Yang 已提交
274 275

   ```python
Q
qiaolongfei 已提交
276 277 278 279 280
    backward_first = paddle.layer.first_seq(input=src_backward)
    with paddle.layer.mixed(
            size=decoder_size, act=paddle.activation.Tanh()) as decoder_boot:
        decoder_boot += paddle.layer.full_matrix_projection(
            input=backward_first)
Y
Yu Yang 已提交
281
   ```
282

C
choijulie 已提交
283 284 285 286 287 288 289
   - Define the computation in each time step for the decoder RNN, i.e., according to the current context vector $c_i$, hidden state for the decoder $z_i$ and the $i$-th word $u_i$ in the target language to predict the probability $p_{i+1}$ for the $i+1$-th word.

      - decoder_mem records the hidden state $z_i$ from the previous time step, with an initial state as decoder_boot.
      - context is computed via `simple_attention` as $c_i=\sum {j=1}^{T}a_{ij}h_j$, where enc_vec is the projection of $h_j$ and enc_proj is the projection of $h_j$ (c.f. 3.1). $a_{ij}$ is calculated within `simple_attention`.
      - decoder_inputs fuse $c_i$ with the representation of the current_word (i.e., $u_i$).
      - gru_step uses `gru_step_layer` function to compute $z_{i+1}=\phi _{\theta '}\left ( c_i,u_i,z_i \right )$.
      - Softmax normalization is used in the end to computed the probability of words, i.e., $p\left ( u_i|u_{&lt;i},\mathbf{x} \right )=softmax(W_sz_i+b_z)$. The output is returned.
Q
qiaolongfei 已提交
290

Y
Yu Yang 已提交
291
   ```python
Q
qiaolongfei 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
    def gru_decoder_with_attention(enc_vec, enc_proj, current_word):

        decoder_mem = paddle.layer.memory(
            name='gru_decoder', size=decoder_size, boot_layer=decoder_boot)

        context = paddle.networks.simple_attention(
            encoded_sequence=enc_vec,
            encoded_proj=enc_proj,
            decoder_state=decoder_mem)

        with paddle.layer.mixed(size=decoder_size * 3) as decoder_inputs:
            decoder_inputs += paddle.layer.full_matrix_projection(input=context)
            decoder_inputs += paddle.layer.full_matrix_projection(
                input=current_word)

        gru_step = paddle.layer.gru_step(
            name='gru_decoder',
            input=decoder_inputs,
            output_mem=decoder_mem,
            size=decoder_size)

        with paddle.layer.mixed(
                size=target_dict_dim,
                bias_attr=True,
                act=paddle.activation.Softmax()) as out:
            out += paddle.layer.full_matrix_projection(input=gru_step)
        return out
Y
Yu Yang 已提交
319
    ```
D
dangqingqing 已提交
320

C
choijulie 已提交
321
4. Define the name for the decoder and the first two input for `gru_decoder_with_attention`. Note that `StaticInput` is used for the two inputs. Please refer to [StaticInput Document](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/deep_model/rnn/recurrent_group_cn.md#输入) for more details.
Y
Yu Yang 已提交
322

323
    ```python
Q
qiaolongfei 已提交
324 325 326 327
    decoder_group_name = "decoder_group"
    group_input1 = paddle.layer.StaticInputV2(input=encoded_vector, is_seq=True)
    group_input2 = paddle.layer.StaticInputV2(input=encoded_proj, is_seq=True)
    group_inputs = [group_input1, group_input2]
328
    ```
Y
Yu Yang 已提交
329

C
choijulie 已提交
330
5. Training mode:
Y
Yu Yang 已提交
331

C
choijulie 已提交
332 333 334 335
   - word embedding from the target language trg_embedding is passed to `gru_decoder_with_attention` as current_word.
   - `recurrent_group` calls `gru_decoder_with_attention` in a recurrent way
   - the sequence of next words from the target language is used as label (lbl)
   - multi-class cross-entropy (`classification_cost`) is used to calculate the cost
336

L
Luo Tao 已提交
337 338 339 340
   ```python
   if not is_generating:
       trg_embedding = paddle.layer.embedding(
           input=paddle.layer.data(
C
choijulie 已提交
341
               name='target_language_word',
L
Luo Tao 已提交
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
               type=paddle.data_type.integer_value_sequence(target_dict_dim)),
           size=word_vector_dim,
           param_attr=paddle.attr.ParamAttr(name='_target_language_embedding'))
       group_inputs.append(trg_embedding)

       # For decoder equipped with attention mechanism, in training,
       # target embeding (the groudtruth) is the data input,
       # while encoded source sequence is accessed to as an unbounded memory.
       # Here, the StaticInput defines a read-only memory
       # for the recurrent_group.
       decoder = paddle.layer.recurrent_group(
           name=decoder_group_name,
           step=gru_decoder_with_attention,
           input=group_inputs)

       lbl = paddle.layer.data(
           name='target_language_next_word',
           type=paddle.data_type.integer_value_sequence(target_dict_dim))
       cost = paddle.layer.classification_cost(input=decoder, label=lbl)
C
choijulie 已提交
361
   ```
362

C
choijulie 已提交
363
6. Generating mode:
L
Luo Tao 已提交
364

C
choijulie 已提交
365 366
   - the decoder predicts a next target word based on the the last generated target word. Embedding of the last generated word is automatically gotten by GeneratedInputs.
   - `beam_search` calls `gru_decoder_with_attention` in a recurrent way, to predict sequence id.
L
Luo Tao 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394

   ```python
   if is_generating:
       # In generation, the decoder predicts a next target word based on
       # the encoded source sequence and the last generated target word.

       # The encoded source sequence (encoder's output) must be specified by
       # StaticInput, which is a read-only memory.
       # Embedding of the last generated word is automatically gotten by
       # GeneratedInputs, which is initialized by a start mark, such as <s>,
       # and must be included in generation.

       trg_embedding = paddle.layer.GeneratedInputV2(
           size=target_dict_dim,
           embedding_name='_target_language_embedding',
           embedding_size=word_vector_dim)
       group_inputs.append(trg_embedding)

       beam_gen = paddle.layer.beam_search(
           name=decoder_group_name,
           step=gru_decoder_with_attention,
           input=group_inputs,
           bos_id=0,
           eos_id=1,
           beam_size=beam_size,
           max_length=max_length)
   ```

C
choijulie 已提交
395
Note: Our configuration is based on Bahdanau et al. \[[4](#Reference)\] but with a few simplifications. Please refer to [issue #1133](https://github.com/PaddlePaddle/Paddle/issues/1133) for more details.
Y
Yu Yang 已提交
396

C
choijulie 已提交
397
## Model Training
Q
qiaolongfei 已提交
398

C
choijulie 已提交
399
1. Create Parameters
400

C
choijulie 已提交
401
    Create every parameter that `cost` layer needs. And we can get parameter names. If the parameter name is not specified during model configuration, it will be generated.
402

L
Luo Tao 已提交
403 404 405 406 407 408
    ```python
    if not is_generating:
        parameters = paddle.parameters.create(cost)
        for param in parameters.keys():
            print param
    ```
409

C
choijulie 已提交
410
2. Define DataSet
Y
Yu Yang 已提交
411

C
choijulie 已提交
412
    Create [**data reader**](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/design/reader#python-data-reader-design-doc) for WMT-14 dataset.
L
Luo Tao 已提交
413 414 415 416 417 418 419 420

    ```python
    if not is_generating:
        wmt14_reader = paddle.batch(
            paddle.reader.shuffle(
                paddle.dataset.wmt14.train(dict_size=dict_size), buf_size=8192),
            batch_size=5)
    ```
C
choijulie 已提交
421
3. Create trainer
D
dangqingqing 已提交
422

C
choijulie 已提交
423
    We need to tell trainer what to optimize, and how to optimize. Here trainer will optimize `cost` layer using stochastic gradient descent (SDG).
424

Q
qiaolongfei 已提交
425
    ```python
L
Luo Tao 已提交
426 427 428 429 430 431 432
    if not is_generating:
        optimizer = paddle.optimizer.Adam(
            learning_rate=5e-5,
            regularization=paddle.optimizer.L2Regularization(rate=8e-4))
        trainer = paddle.trainer.SGD(cost=cost,
                                     parameters=parameters,
                                     update_equation=optimizer)
D
dangqingqing 已提交
433
    ```
Q
qiaolongfei 已提交
434

C
choijulie 已提交
435
4. Define event handler
Q
qiaolongfei 已提交
436

C
choijulie 已提交
437
    The event handler is a callback function invoked by trainer when an event happens. Here we will print log in event handler.
438

Q
qiaolongfei 已提交
439
    ```python
L
Luo Tao 已提交
440 441 442 443 444 445
    if not is_generating:
        def event_handler(event):
            if isinstance(event, paddle.event.EndIteration):
                if event.batch_id % 2 == 0:
                    print "\nPass %d, Batch %d, Cost %f, %s" % (
                        event.pass_id, event.batch_id, event.cost, event.metrics)
Q
qiaolongfei 已提交
446
    ```
D
dangqingqing 已提交
447

C
choijulie 已提交
448
5. Start training
Q
qiaolongfei 已提交
449

Q
qiaolongfei 已提交
450
    ```python
L
Luo Tao 已提交
451 452 453
    if not is_generating:
        trainer.train(
                reader=wmt14_reader, event_handler=event_handler, num_passes=2)
Q
qiaolongfei 已提交
454
    ```
455

C
choijulie 已提交
456 457 458 459 460 461
  The training log is as follows:
  ```text
  Pass 0, Batch 0, Cost 247.408008, {'classification_error_evaluator': 1.0}
  Pass 0, Batch 10, Cost 212.058789, {'classification_error_evaluator': 0.8737863898277283}
  ...
  ```
Y
Yu Yang 已提交
462

C
choijulie 已提交
463
## Model Usage
Y
Yu Yang 已提交
464

C
choijulie 已提交
465
1. Download Pre-trained Model
Y
Yu Yang 已提交
466

C
choijulie 已提交
467
    As the training of an NMT model is very time consuming, we provide a pre-trained model. The model is trained with a cluster of 50 physical nodes (each node has two 6-core CPU) over 5 days. The provided model has the [BLEU Score](#BLEU Score) of 26.92, and the size of 205M.
468

L
Luo Tao 已提交
469 470 471 472
    ```python
    if is_generating:
        parameters = paddle.dataset.wmt14.model()
    ```
C
choijulie 已提交
473
2. Define DataSet
Y
Yu Yang 已提交
474

C
choijulie 已提交
475
    Get the first 3 samples of wmt14 generating set as the source language sequences.
Y
Yu Yang 已提交
476

C
choijulie 已提交
477 478
   ```python
   if is_generating:
L
Luo Tao 已提交
479 480 481 482 483 484 485
        gen_creator = paddle.dataset.wmt14.gen(dict_size)
        gen_data = []
        gen_num = 3
        for item in gen_creator():
            gen_data.append((item[0], ))
            if len(gen_data) == gen_num:
                break
C
choijulie 已提交
486
   ```
Y
Yu Yang 已提交
487

C
choijulie 已提交
488
3. Create infer
L
Luo Tao 已提交
489

C
choijulie 已提交
490 491 492 493
    Use inference interface `paddle.infer` return the prediction probability (see field `prob`) and labels (see field `id`) of each generated sequence.

   ```python
   if is_generating:
L
Luo Tao 已提交
494 495 496 497 498
        beam_result = paddle.infer(
            output_layer=beam_gen,
            parameters=parameters,
            input=gen_data,
            field=['prob', 'id'])
C
choijulie 已提交
499 500
   ```
4. Print generated translation
L
Luo Tao 已提交
501

C
choijulie 已提交
502
    Print sequence and its `beam_size` generated translation results based on the dictionary.
L
Luo Tao 已提交
503

C
choijulie 已提交
504 505
   ```python
   if is_generating:
L
Luo Tao 已提交
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
        # get the dictionary
        src_dict, trg_dict = paddle.dataset.wmt14.get_dict(dict_size)

        # the delimited element of generated sequences is -1,
        # the first element of each generated sequence is the sequence length
        seq_list = []
        seq = []
        for w in beam_result[1]:
            if w != -1:
                seq.append(w)
            else:
                seq_list.append(' '.join([trg_dict.get(w) for w in seq[1:]]))
                seq = []

        prob = beam_result[0]
        for i in xrange(gen_num):
            print "\n*******************************************************\n"
            print "src:", ' '.join(
                [src_dict.get(w) for w in gen_data[i][0]]), "\n"
            for j in xrange(beam_size):
                print "prob = %f:" % (prob[i][j]), seq_list[i * beam_size + j]
C
choijulie 已提交
527
   ```
L
Luo Tao 已提交
528

C
choijulie 已提交
529
  The generating log is as follows:
L
Luo Tao 已提交
530 531
  ```text
  src: <s> Les <unk> se <unk> au sujet de la largeur des sièges alors que de grosses commandes sont en jeu <e>
L
Luo Tao 已提交
532

L
Luo Tao 已提交
533 534 535 536
  prob = -19.019573: The <unk> will be rotated about the width of the seats , while large orders are at stake . <e>
  prob = -19.113066: The <unk> will be rotated about the width of the seats , while large commands are at stake . <e>
  prob = -19.512890: The <unk> will be rotated about the width of the seats , while large commands are at play . <e>
  ```
Y
Yu Yang 已提交
537

C
choijulie 已提交
538
## Summary
Y
Yu Yang 已提交
539

C
choijulie 已提交
540
End-to-end neural machine translation is a recently developed way to perform machine translations. In this chapter, we introduced the typical "Encoder-Decoder" framework and "attention" mechanism. Since NMT is a typical Sequence-to-Sequence (Seq2Seq) learning problem, tasks such as query rewriting, abstraction generation, and single-turn dialogues can all be solved with the model presented in this chapter.
Y
Yu Yang 已提交
541

C
choijulie 已提交
542
## References
Y
Yu Yang 已提交
543 544 545 546 547 548 549 550

1. Koehn P. [Statistical machine translation](https://books.google.com.hk/books?id=4v_Cx1wIMLkC&printsec=frontcover&hl=zh-CN&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false)[M]. Cambridge University Press, 2009.
2. Cho K, Van Merriënboer B, Gulcehre C, et al. [Learning phrase representations using RNN encoder-decoder for statistical machine translation](http://www.aclweb.org/anthology/D/D14/D14-1179.pdf)[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014: 1724-1734.
3. Chung J, Gulcehre C, Cho K H, et al. [Empirical evaluation of gated recurrent neural networks on sequence modeling](https://arxiv.org/abs/1412.3555)[J]. arXiv preprint arXiv:1412.3555, 2014.
4.  Bahdanau D, Cho K, Bengio Y. [Neural machine translation by jointly learning to align and translate](https://arxiv.org/abs/1409.0473)[C]//Proceedings of ICLR 2015, 2015.
5. Papineni K, Roukos S, Ward T, et al. [BLEU: a method for automatic evaluation of machine translation](http://dl.acm.org/citation.cfm?id=1073135)[C]//Proceedings of the 40th annual meeting on association for computational linguistics. Association for Computational Linguistics, 2002: 311-318.

<br/>
C
choijulie 已提交
551
This tutorial is contributed by <a xmlns:cc="http://creativecommons.org/ns#" href="http://book.paddlepaddle.org" property="cc:attributionName" rel="cc:attributionURL">PaddlePaddle</a>, and licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>.