README.en.md 28.6 KB
Newer Older
Y
Yi Wang 已提交
1 2
# Semantic Role Labeling

H
Helin Wang 已提交
3
Source code of this chapter is in [book/label_semantic_roles](https://github.com/PaddlePaddle/book/tree/develop/label_semantic_roles).
Y
Yi Wang 已提交
4 5 6

## Background

7
Natural Language Analysis contains three components: Lexical Analysis, Syntactic Analysis, and Semantic Analysis. Semantic Role Labelling (SRL) is one way for Shallow Semantic Analysis. A predicate of a sentence is a property that a subject possesses or is characterized, such as what it does, what it is or how it is, which mostly corresponds to the core of an event. The noun associated with a predicate is called Argument. Semantic roles express the abstract roles that arguments of a predicate can take in the event, such as Agent, Patient, Theme, Experiencer, Beneficiary, Instrument, Location, Goal and Source, etc.
Y
Yi Wang 已提交
8

9
In the following example, “遇到” (encounters) is a Predicate (“Pred”),“小明” (Ming) is an Agent,“小红” (Hong) is a Patient,“昨天” (yesterday) indicates the Time, and “公园” (park) is the Location.
Y
Yi Wang 已提交
10 11 12

$$\mbox{[小明]}_{\mbox{Agent}}\mbox{[昨天]}_{\mbox{Time}}\mbox{[晚上]}_\mbox{Time}\mbox{在[公园]}_{\mbox{Location}}\mbox{[遇到]}_{\mbox{Predicate}}\mbox{了[小红]}_{\mbox{Patient}}\mbox{。}$$

13
Instead of in-depth analysis on semantic information, the goal of Semantic Role Labeling is to identify the relation of predicate and other constituents, e.g., predicate-argument structure, as specific semantic roles, which is an important intermediate step in a wide range of natural language understanding tasks (Information Extraction, Discourse Analysis, DeepQA etc). Predicates are always assumed to be given; the only thing is to identify arguments and their semantic roles.
Y
Yi Wang 已提交
14

15
Standard SRL system mostly builds on top of Syntactic Analysis and contains five steps:
Y
Yi Wang 已提交
16 17 18 19

1. Construct a syntactic parse tree, as shown in Fig. 1
2. Identity candidate arguments of given predicate from constructed syntactic parse tree.
3. Prune most unlikely candidate arguments.
20
4. Identify arguments, often by a binary classifier.
Y
Yi Wang 已提交
21 22 23 24
5. Multi-class semantic role labeling. Steps 2-3 usually introduce hand-designed features based on Syntactic Analysis (step 1).


<div  align="center">
25
<img src="image/dependency_parsing_en.png" width = "80%" align=center /><br>
Y
Yi Wang 已提交
26 27 28 29
Fig 1. Syntactic parse tree
</div>


30
However, complete syntactic analysis requires identifying the relation among all constitutes and the performance of SRL is sensitive to the precision of syntactic analysis, which makes SRL a very challenging task. To reduce the complexity and obtain some syntactic structure information, we often use shallow syntactic analysis. Shallow Syntactic Analysis is also called partial parsing or chunking. Unlike complete syntactic analysis which requires the construction of the complete parsing tree, Shallow Syntactic Analysis only need to identify some independent components with relatively simple structure, such as verb phrases (chunk). To avoid difficulties in constructing a syntactic tree with high accuracy, some work\[[1](#Reference)\] proposed semantic chunking based SRL methods, which convert SRL as a sequence tagging problem. Sequence tagging tasks classify syntactic chunks using BIO representation. For syntactic chunks forming a chunk of type A, the first chunk receives the B-A tag (Begin), the remaining ones receive the tag I-A (Inside), and all chunks outside receive the tag O-A.
Y
Yi Wang 已提交
31 32 33 34

The BIO representation of above example is shown in Fig.1.

<div  align="center">
35
<img src="image/bio_example_en.png" width = "90%"  align=center /><br>
Y
Yi Wang 已提交
36 37 38
Fig 2. BIO represention
</div>

H
Helin Wang 已提交
39
This example illustrates the simplicity of sequence tagging because (1) shallow syntactic analysis reduces the precision requirement of syntactic analysis; (2) pruning candidate arguments is removed; 3) argument identification and tagging are finished at the same time. Such unified methods simplify the procedure, reduce the risk of accumulating errors and boost the performance further.
Y
Yi Wang 已提交
40

Y
Yi Wang 已提交
41
In this tutorial, our SRL system is built as an end-to-end system via a neural network. We take only text sequences, without using any syntactic parsing results or complex hand-designed features. We give public dataset [CoNLL-2004 and CoNLL-2005 Shared Tasks](http://www.cs.upc.edu/~srlconll/) as an example to illustrate: given a sentence with predicates marked, identify the corresponding arguments and their semantic roles by sequence tagging method.
Y
Yi Wang 已提交
42 43 44

## Model

H
Helin Wang 已提交
45
Recurrent Neural Networks are important tools for sequence modeling and have been successfully used in some natural language processing tasks. Unlike Feed-forward neural networks, RNNs can model the dependency between elements of sequences. LSTMs as variants of RNNs aim to model long-term dependency in long sequences. We have introduced this in [understand_sentiment](https://github.com/PaddlePaddle/book/tree/develop/understand_sentiment). In this chapter, we continue to use LSTMs to solve SRL problems.
Y
Yi Wang 已提交
46 47 48

### Stacked Recurrent Neural Network

49
Deep Neural Networks allows extracting hierarchical representations. Higher layers can form more abstract/complex representations on top of lower layers. LSTMs, when unfolded in time, is a deep feed-forward neural network, because a computational path between the input at time $k < t$ to the output at time $t$ crosses several nonlinear layers. However, the computation carried out at each time-step is only linear transformation, which makes LSTMs a shallow model. Deep LSTMs are typically constructed by stacking multiple LSTM layers on top of each other and taking the output from lower LSTM layer at time $t$ as the input of upper LSTM layer at time $t$. Deep, hierarchical neural networks can be much efficient at representing some functions and modeling varying-length dependencies\[[2](#Reference)\].
Y
Yi Wang 已提交
50 51


52
However, deep LSTMs increases the number of nonlinear steps the gradient has to traverse when propagated back in depth. For example, four layer LSTMs can be trained properly, but the performance becomes worse as the number of layers up to 4-8. Conventional LSTMs prevent backpropagated errors from vanishing and exploding by introducing shortcut connections to skip the intermediate nonlinear layers. Therefore, deep LSTMs can consider shortcut connections in depth as well.
Y
Yi Wang 已提交
53 54


55
The operation of a single LSTM cell contain 3 parts: (1) input-to-hidden: map input $x$ to the input of the forget gates, input gates, memory cells and output gates by linear transformation (i.e., matrix mapping); (2) hidden-to-hidden: calculate forget gates, input gates, output gates and update memory cell, this is the main part of LSTMs; (3)hidden-to-output: this part typically involves an activation operation on hidden states. Based on the stacked LSTMs, we add a shortcut connection: take the input-to-hidden from the previous layer as a new input and learn another linear transformation.
Y
Yi Wang 已提交
56 57 58

Fig.3 illustrate the final stacked recurrent neural networks.

59
<p align="center">  
60
<img src="./image/stacked_lstm_en.png" width = "40%"  align=center><br>
Y
Yi Wang 已提交
61 62 63 64 65
Fig 3. Stacked Recurrent Neural Networks
</p>

### Bidirectional Recurrent Neural Network

66
LSTMs can summarize the history of previous inputs seen up to now, but can not see the future. In most of NLP (natural language processing) tasks, the entire sentences are ready to use. Therefore, sequential learning might be much efficient if the future can be encoded as well like histories.
Y
Yi Wang 已提交
67 68 69 70

To address the above drawbacks, we can design bidirectional recurrent neural networks by making a minor modification. Higher LSTM layers process the sequence in reversed direction with previous lower LSTM layers, i.e., Deep LSTMs operate from left-to-right, right-to-left, left-to-right,..., in depth. Therefore, LSTM layers at time-step $t$ can see both histories and the future since the second layer. Fig. 4 illustrates the bidirectional recurrent neural networks.


71
<p align="center">  
72
<img src="./image/bidirectional_stacked_lstm_en.png" width = "60%" align=center><br>
Y
Yi Wang 已提交
73 74 75
Fig 4. Bidirectional LSTMs
</p>

76
Note that, this bidirectional RNNs is different with the one proposed by Bengio et al. in machine translation tasks \[[3](#Reference), [4](#Reference)\]. We will introduce another bidirectional RNNs in the following tasks[machine translation](https://github.com/PaddlePaddle/book/blob/develop/machine_translation/README.md)
Y
Yi Wang 已提交
77 78 79 80 81 82 83 84

### Conditional Random Field

The basic pipeline of Neural Networks solving problems is 1) all lower layers aim to learn representations; 2) the top layer is designed for learning the final task. In SRL tasks, CRF is built on top of the network for the final tag sequence prediction. It takes the representations provided by the last LSTM layer as input.


CRF is a probabilistic graph model (undirected) with nodes denoting random variables and edges denoting dependencies between nodes. To be simplicity, CRFs learn conditional probability $P(Y|X)$, where $X = (x_1, x_2, ... , x_n)$ are sequences of input, $Y = (y_1, y_2, ... , y_n)$ are label sequences; Decoding is to search sequence $Y$ to maximize conditional probability $P(Y|X)$, i.e., $Y^* = \mbox{arg max}_{Y} P(Y | X)$。

85
Sequence tagging tasks only consider input and output as linear sequences without extra dependent assumptions on graph model. Thus, the graph model of sequence tagging tasks is simple chain or line, which results in a Linear-Chain Conditional Random Field, shown in Fig.5.
Y
Yi Wang 已提交
86

87
<p align="center">  
Y
Yi Wang 已提交
88 89 90 91
<img src="./image/linear_chain_crf.png" width = "35%" align=center><br>
Fig 5. Linear Chain Conditional Random Field used in SRL tasks
</p>

92
By the fundamental theorem of random fields \[[5](#Reference)\], the joint distribution over the label sequence $Y$ given $X$ has the form:
Y
Yi Wang 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113

$$p(Y | X) = \frac{1}{Z(X)} \text{exp}\left(\sum_{i=1}^{n}\left(\sum_{j}\lambda_{j}t_{j} (y_{i - 1}, y_{i}, X, i) + \sum_{k} \mu_k s_k (y_i, X, i)\right)\right)$$


where, $Z(X)$ is normalization constant, $t_j$ is feature function defined on edges, called transition feature, depending on $y_i$ and $y_{i-1}$ which represents transition probabilities from $y_{i-1}$ to $y_i$ given input sequence $X$. $s_k$ is feature function defined on nodes, called state feature, depending on $y_i$ and represents the probality of $y_i$ given input sequence $X$. $\lambda_j$ 和 $\mu_k$ are weights corresponding to $t_j$ and $s_k$. Actually, $t$ and $s$ can be wrtten in the same form, then take summation over all nodes $i$: $f_{k}(Y, X) = \sum_{i=1}^{n}f_k({y_{i - 1}, y_i, X, i})$, $f$ is defined as feature function. Thus, $P(Y|X)$ can be wrtten as:

$$p(Y|X, W) = \frac{1}{Z(X)}\text{exp}\sum_{k}\omega_{k}f_{k}(Y, X)$$

$\omega$ are weights of feature function which should be learned in CRF models. At training stage, given input sequences and label sequences $D = \left[(X_1,  Y_1), (X_2 , Y_2) , ... , (X_N, Y_N)\right]$, solve following objective function using MLE:


$$L(\lambda, D) = - \text{log}\left(\prod_{m=1}^{N}p(Y_m|X_m, W)\right) + C \frac{1}{2}\lVert W\rVert^{2}$$


This objective function can be solved via back-propagation in an end-to-end manner. At decoding stage, given input sequences $X$, search sequence $\bar{Y}$ to maximize conditional probability $\bar{P}(Y|X)$ via decoding methods (such as Viterbi, Beam Search).

### DB-LSTM SRL model

Given predicates and a sentence, SRL tasks aim to identify arguments of the given predicate and their semantic roles. If a sequence has n predicates, we will process this sequence n times. One model is as follows:

1. Construct inputs;
H
Helin Wang 已提交
114
 - input 1: predicate, input 2: sentence
Y
Yi Wang 已提交
115
 - expand input 1 as a sequence with the same length with input 2 using one-hot representation;
H
Helin Wang 已提交
116 117
2. Convert one-hot sequences from step 1 to vector sequences via lookup table;
3. Learn the representation of input sequences by taking vector sequences from step 2 as inputs;
Y
Yi Wang 已提交
118 119 120 121 122 123
4. Take representations from step 3 as inputs, label sequence as supervision signal, do sequence tagging tasks

We can try above method. Here, we propose some modifications by introducing two simple but effective features:

- predicate context (ctx-p): A single predicate word can not exactly describe the predicate information, especially when the same words appear more than one times in a sentence. With the expanded context, the ambiguity can be largely eliminated. Thus, we extract $n$ words before and after predicate to construct a window chunk.

H
Helin Wang 已提交
124
- region mark ($m_r$): $m_r = 1$ to denote word in that position locates in the predicate context region, or $m_r = 0$ if not.
Y
Yi Wang 已提交
125 126 127 128

After modification, the model is as follows:

1. Construct inputs
Y
Yi Wang 已提交
129
 - Input 1: word sequence. Input 2: predicate. Input 3: predicate context, extract $n$ words before and after predicate. Input 4: region mark sequence, element value will be 1 if word locates in the predicate context region, 0 otherwise.
Y
Yi Wang 已提交
130
 - expand input 2~3 as sequences with the same length with input 1
Y
Yi Wang 已提交
131
2. Convert input 1~4 to vector sequences via lookup table; input 1 and 3 shares the same lookup table, input 2 and 4 have separate lookup tables
H
Helin Wang 已提交
132
3. Take four vector sequences from step 2 as inputs of bidirectional LSTMs; Train LSTMs to update representations
Y
Yi Wang 已提交
133 134 135
4. Take representation from step 3 as input of CRF, label sequence as supervision signal, do sequence tagging tasks


136
<div  align="center">  
137
<img src="image/db_lstm_en.png" width = "60%"  align=center /><br>
Y
Yi Wang 已提交
138 139 140
Fig 6. DB-LSTM for SRL tasks
</div>

141
## Data Preparation
Y
Yi Wang 已提交
142

143
In the tutorial, we use [CoNLL 2005](http://www.cs.upc.edu/~srlconll/) SRL task open dataset as an example. It is important to note that the training set and development set of the CoNLL 2005 SRL task are not free to download after the competition. Currently, only the test set can be obtained, including 23 sections of the Wall Street Journal and three sections of the Brown corpus. In this tutorial, we use the WSJ corpus as the training dataset to explain the model. However, since the training set is small, if you want to train a usable neural network SRL system, consider paying for the full corpus.
Y
Yi Wang 已提交
144

145
The original data includes a variety of information such as POS tagging, naming entity recognition, parsing tree, and so on. In this tutorial, we only use the data under the words folder (text sequence) and the props folder (label results) inside test.wsj parent folder. The data directory used in this tutorial is as follows:
Y
Yi Wang 已提交
146 147 148 149 150 151 152 153

```text
conll05st-release/
└── test.wsj
    ├── props  # 标注结果
    └── words  # 输入文本序列
```

154
The annotation information is derived from the results of Penn TreeBank\[[7](#references)\] and PropBank \[[8](# references)\]. The label of the PropBank is different from the label that we used in the example at the beginning of the article, but the principle is the same. For the description of the label, please refer to the paper \[[9](#references)\].
Y
Yi Wang 已提交
155

156
The raw data needs to be preprocessed before used by PaddlePaddle. The preprocessing consists of the following steps:
Y
Yi Wang 已提交
157

158 159 160 161 162
1. Merge the text sequence and the tag sequence into the same record;
2. If a sentence contains $n$ predicates, the sentence will be processed $n$ times into $n$ separate training samples, each sample with a different predicate;
3. Extract the predicate context and construct the predicate context region marker;
4. Construct the markings in BIO format;
5. Obtain the integer index corresponding to the word according to the dictionary.
Y
Yi Wang 已提交
163

164 165
```python
# import paddle.v2.dataset.conll05 as conll05
H
Helin Wang 已提交
166 167 168
# conll05.corpus_reader does step 1 and 2 as mentioned above.
# conll05.reader_creator does step 3 to 5.
# conll05.test gets preprocessed training instances.
169
```
Y
Yi Wang 已提交
170

Y
Yi Wang 已提交
171
After preprocessing completes, a training sample contains nine features, namely: word sequence, predicate, predicate context (5 columns), region mark sequence, label sequence. Following table is an example of a training sample.
Y
Yi Wang 已提交
172

H
Helin Wang 已提交
173
| word sequence | predicate | predicate context(5 columns) | region mark sequence | label sequence|
Y
Yi Wang 已提交
174 175 176 177 178 179 180 181 182 183
|---|---|---|---|---|
| A | set | n't been set . × | 0 | B-A1 |
| record | set | n't been set . × | 0 | I-A1 |
| date | set | n't been set . × | 0 | I-A1 |
| has | set | n't been set . × | 0 | O |
| n't | set | n't been set . × | 1 | B-AM-NEG |
| been | set | n't been set . × | 1 | O |
| set | set | n't been set . × | 1 | B-V |
| . | set | n't been set . × | 1 | O |

H
Helin Wang 已提交
184
In addition to the data, we provide following resources:
Y
Yi Wang 已提交
185

186 187 188 189 190
| filename | explanation |
|---|---|
| word_dict | dictionary of input sentences, total 44068 words |
| label_dict | dictionary of labels, total 106 labels |
| predicate_dict | predicate dictionary, total 3162 predicates |
H
Helin Wang 已提交
191
| emb | a pre-trained word vector lookup table, 32-dimentional |
Y
Yi Wang 已提交
192

H
Helin Wang 已提交
193
We trained in the English Wikipedia language model to get a word vector lookup table used to initialize the SRL model. During the SRL model training process, the word vector lookup table is no longer updated. About the language model and the word vector lookup table can refer to [word vector](https://github.com/PaddlePaddle/book/blob/develop/word2vec/README.md) tutorial. There are 995,000,000 token in training corpus, and the dictionary size is 4900,000 words. In the CoNLL 2005 training corpus, 5% of the words are not in the 4900,000 words, and we see them all as unknown words, represented by `<unk>`.
Y
Yi Wang 已提交
194

195
Get dictionary, print dictionary size:
Y
Yi Wang 已提交
196 197

```python
D
dangqingqing 已提交
198 199
import math
import numpy as np
200 201
import paddle.v2 as paddle
import paddle.v2.dataset.conll05 as conll05
Y
Yi Wang 已提交
202

203 204 205 206
word_dict, verb_dict, label_dict = conll05.get_dict()
word_dict_len = len(word_dict)
label_dict_len = len(label_dict)
pred_len = len(verb_dict)
Y
Yi Wang 已提交
207

D
dangqingqing 已提交
208 209 210
print word_dict_len
print label_dict_len
print pred_len
Y
Yi Wang 已提交
211 212
```

213
## Model configuration
Y
Yi Wang 已提交
214

D
dangqingqing 已提交
215
- 1. Define input data dimensions and model hyperparameters.
Y
Yi Wang 已提交
216

D
dangqingqing 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
```python
mark_dict_len = 2    # Value range of region mark. Region mark is either 0 or 1, so range is 2
word_dim = 32        # word vector dimension
mark_dim = 5         # adjacent dimension
hidden_dim = 512     # the dimension of LSTM hidden layer vector is 128 (512/4)
depth = 8            # depth of stacked LSTM

# There are 9 features per sample, so we will define 9 data layers.
# They type for each layer is integer_value_sequence.
def d_type(value_range):
    return paddle.data_type.integer_value_sequence(value_range)

# word sequence
word = paddle.layer.data(name='word_data', type=d_type(word_dict_len))
# predicate
232
predicate = paddle.layer.data(name='verb_data', type=d_type(pred_len))
D
dangqingqing 已提交
233 234

# 5 features for predicate context
235
ctx_n2 = paddle.layer.data(name='ctx_n2_data', type=d_type(word_dict_len))
D
dangqingqing 已提交
236 237 238 239 240 241 242 243 244 245 246
ctx_n1 = paddle.layer.data(name='ctx_n1_data', type=d_type(word_dict_len))
ctx_0 = paddle.layer.data(name='ctx_0_data', type=d_type(word_dict_len))
ctx_p1 = paddle.layer.data(name='ctx_p1_data', type=d_type(word_dict_len))
ctx_p2 = paddle.layer.data(name='ctx_p2_data', type=d_type(word_dict_len))

# region marker sequence
mark = paddle.layer.data(name='mark_data', type=d_type(mark_dict_len))

# label sequence
target = paddle.layer.data(name='target', type=d_type(label_dict_len))
```
247

D
dangqingqing 已提交
248 249 250 251
Speciala note: hidden_dim = 512 means LSTM hidden vector of 128 dimension (512/4). Please refer PaddlePaddle official documentation for detail: [lstmemory](http://www.paddlepaddle.org/doc/ui/api/trainer_config_helpers/layers.html#lstmemory)

- 2. The word sequence, predicate, predicate context, and region mark sequence are transformed into embedding vector sequences.

252
```python  
D
dangqingqing 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277

# Since word vectorlookup table is pre-trained, we won't update it this time.
# is_static being True prevents updating the lookup table during training.
emb_para = paddle.attr.Param(name='emb', initial_std=0., is_static=True)
# hyperparameter configurations
default_std = 1 / math.sqrt(hidden_dim) / 3.0
std_default = paddle.attr.Param(initial_std=default_std)
std_0 = paddle.attr.Param(initial_std=0.)

predicate_embedding = paddle.layer.embedding(
    size=word_dim,
    input=predicate,
    param_attr=paddle.attr.Param(
        name='vemb', initial_std=default_std))
mark_embedding = paddle.layer.embedding(
    size=mark_dim, input=mark, param_attr=std_0)

word_input = [word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2]
emb_layers = [
    paddle.layer.embedding(
        size=word_dim, input=x, param_attr=emb_para) for x in word_input
]
emb_layers.append(predicate_embedding)
emb_layers.append(mark_embedding)
```
278

D
dangqingqing 已提交
279
- 3. 8 LSTM units will be trained in "forward / backward" order.
280

D
dangqingqing 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
```python  
hidden_0 = paddle.layer.mixed(
    size=hidden_dim,
    bias_attr=std_default,
    input=[
        paddle.layer.full_matrix_projection(
            input=emb, param_attr=std_default) for emb in emb_layers
    ])

mix_hidden_lr = 1e-3
lstm_para_attr = paddle.attr.Param(initial_std=0.0, learning_rate=1.0)
hidden_para_attr = paddle.attr.Param(
    initial_std=default_std, learning_rate=mix_hidden_lr)

lstm_0 = paddle.layer.lstmemory(
    input=hidden_0,
    act=paddle.activation.Relu(),
    gate_act=paddle.activation.Sigmoid(),
    state_act=paddle.activation.Sigmoid(),
    bias_attr=std_0,
    param_attr=lstm_para_attr)

# stack L-LSTM and R-LSTM with direct edges
input_tmp = [hidden_0, lstm_0]

for i in range(1, depth):
    mix_hidden = paddle.layer.mixed(
308 309 310 311
        size=hidden_dim,
        bias_attr=std_default,
        input=[
            paddle.layer.full_matrix_projection(
D
dangqingqing 已提交
312 313 314
                input=input_tmp[0], param_attr=hidden_para_attr),
            paddle.layer.full_matrix_projection(
                input=input_tmp[1], param_attr=lstm_para_attr)
315 316
        ])

D
dangqingqing 已提交
317 318
    lstm = paddle.layer.lstmemory(
        input=mix_hidden,
319 320 321
        act=paddle.activation.Relu(),
        gate_act=paddle.activation.Sigmoid(),
        state_act=paddle.activation.Sigmoid(),
D
dangqingqing 已提交
322
        reverse=((i % 2) == 1),
323 324 325
        bias_attr=std_0,
        param_attr=lstm_para_attr)

D
dangqingqing 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
    input_tmp = [mix_hidden, lstm]
```

- 4. We will concatenate the output of top LSTM unit with it's input, and project into a hidden layer. Then put a fully connected layer on top of it to get the final vector representation.

 ```python
 feature_out = paddle.layer.mixed(
 size=label_dict_len,
 bias_attr=std_default,
 input=[
     paddle.layer.full_matrix_projection(
         input=input_tmp[0], param_attr=hidden_para_attr),
     paddle.layer.full_matrix_projection(
         input=input_tmp[1], param_attr=lstm_para_attr)
 ], )
 ```

- 5.  We use CRF as cost function, the parameter of CRF cost will be named `crfw`.

```python
crf_cost = paddle.layer.crf(
347
    size=label_dict_len,
D
dangqingqing 已提交
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
    input=feature_out,
    label=target,
    param_attr=paddle.attr.Param(
        name='crfw',
        initial_std=default_std,
        learning_rate=mix_hidden_lr))
```

- 6.  CRF decoding layer is used for evaluation and inference. It shares parameter with CRF layer.  The sharing of parameters among multiple layers is specified by the same parameter name in these layers.

```python
crf_dec = paddle.layer.crf_decoding(
   name='crf_dec_l',
   size=label_dict_len,
   input=feature_out,
   label=target,
   param_attr=paddle.attr.Param(name='crfw'))
```
366 367 368 369 370

## Train model

### Create Parameters

H
Helin Wang 已提交
371
All necessary parameters will be traced created given output layers that we need to use.
372 373 374 375

```python
parameters = paddle.parameters.create([crf_cost, crf_dec])
```
Y
Yi Wang 已提交
376

377
We can print out parameter name. It will be generated if not specified.
378

379 380
```python
print parameters.keys()
Y
Yi Wang 已提交
381 382
```

H
Helin Wang 已提交
383
Now we load pre-trained word lookup table.
Y
Yi Wang 已提交
384

385 386 387
```python
def load_parameter(file_name, h, w):
    with open(file_name, 'rb') as f:
D
dangqingqing 已提交
388 389
        f.read(16)
        return np.fromfile(f, dtype=np.float32).reshape(h, w)
390 391 392 393 394
parameters.set('emb', load_parameter(conll05.get_embedding(), 44068, 32))
```

### Create Trainer

H
Helin Wang 已提交
395
We will create trainer given model topology, parameters and optimization method. We will use most basic SGD method (momentum optimizer with 0 momentum). In the meantime, we will set learning rate and regularization.
396 397 398 399 400 401 402 403 404 405 406 407

```python
optimizer = paddle.optimizer.Momentum(
    momentum=0,
    learning_rate=2e-2,
    regularization=paddle.optimizer.L2Regularization(rate=8e-4),
    model_average=paddle.optimizer.ModelAverage(
        average_window=0.5, max_average_window=10000), )

trainer = paddle.trainer.SGD(cost=crf_cost,
                             parameters=parameters,
                             update_equation=optimizer)
Y
Yi Wang 已提交
408 409
```

410 411
### Trainer

H
Helin Wang 已提交
412
As mentioned in data preparation section, we will use CoNLL 2005 test corpus as training data set. `conll05.test()` outputs one training instance at a time. It will be shuffled, and batched into mini batches as input.
Y
Yi Wang 已提交
413

414
```python
D
dangqingqing 已提交
415
reader = paddle.batch(
416 417 418
    paddle.reader.shuffle(
        conll05.test(), buf_size=8192), batch_size=20)
```
Y
Yi Wang 已提交
419

D
dangqingqing 已提交
420
`feeding` is used to specify relationship between data instance and layer layer. For example, according to following `feeding`, the 0th column of data instance produced by`conll05.test()` correspond to data layer named `word_data`.
Y
Yi Wang 已提交
421 422

```python
D
dangqingqing 已提交
423
feeding = {
424 425 426 427 428 429 430 431 432 433
    'word_data': 0,
    'ctx_n2_data': 1,
    'ctx_n1_data': 2,
    'ctx_0_data': 3,
    'ctx_p1_data': 4,
    'ctx_p2_data': 5,
    'verb_data': 6,
    'mark_data': 7,
    'target': 8
}
Y
Yi Wang 已提交
434 435
```

H
Helin Wang 已提交
436
`event_handle` can be used as callback for training events, it will be used as an argument for `train`. Following `event_handle` prints cost during training.
437 438 439 440 441 442 443

```python
def event_handler(event):
    if isinstance(event, paddle.event.EndIteration):
        if event.batch_id % 100 == 0:
            print "Pass %d, Batch %d, Cost %f" % (
                event.pass_id, event.batch_id, event.cost)
Y
Yi Wang 已提交
444 445
```

446
`trainer.train` will train the model.
Y
Yi Wang 已提交
447

448 449 450 451 452
```python
trainer.train(
    reader=reader,
    event_handler=event_handler,
    num_passes=10000,
D
dangqingqing 已提交
453
    feeding=feeding)
Y
Yi Wang 已提交
454 455 456 457
```

## Conclusion

H
Helin Wang 已提交
458
Semantic Role Labeling is an important intermediate step in a wide range of natural language processing tasks. In this tutorial, we give SRL as an example to introduce how to use PaddlePaddle to do sequence tagging tasks. Proposed models are from our published paper\[[10](#Reference)\]. We only use test data as an illustration since train data on CoNLL 2005 dataset is not completely public. We hope to propose an end-to-end neural network model with fewer dependencies on natural language processing tools but is comparable, or even better than traditional models. Please check out our paper for more information and discussions.
Y
Yi Wang 已提交
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473

## Reference
1. Sun W, Sui Z, Wang M, et al. [Chinese semantic role labeling with shallow parsing](http://www.aclweb.org/anthology/D09-1#page=1513)[C]//Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume 3-Volume 3. Association for Computational Linguistics, 2009: 1475-1483.
2. Pascanu R, Gulcehre C, Cho K, et al. [How to construct deep recurrent neural networks](https://arxiv.org/abs/1312.6026)[J]. arXiv preprint arXiv:1312.6026, 2013.
3. Cho K, Van Merriënboer B, Gulcehre C, et al. [Learning phrase representations using RNN encoder-decoder for statistical machine translation](https://arxiv.org/abs/1406.1078)[J]. arXiv preprint arXiv:1406.1078, 2014.
4. Bahdanau D, Cho K, Bengio Y. [Neural machine translation by jointly learning to align and translate](https://arxiv.org/abs/1409.0473)[J]. arXiv preprint arXiv:1409.0473, 2014.
5. Lafferty J, McCallum A, Pereira F. [Conditional random fields: Probabilistic models for segmenting and labeling sequence data](http://www.jmlr.org/papers/volume15/doppa14a/source/biblio.bib.old)[C]//Proceedings of the eighteenth international conference on machine learning, ICML. 2001, 1: 282-289.
6. 李航. 统计学习方法[J]. 清华大学出版社, 北京, 2012.
7. Marcus M P, Marcinkiewicz M A, Santorini B. [Building a large annotated corpus of English: The Penn Treebank](http://repository.upenn.edu/cgi/viewcontent.cgi?article=1246&context=cis_reports)[J]. Computational linguistics, 1993, 19(2): 313-330.
8. Palmer M, Gildea D, Kingsbury P. [The proposition bank: An annotated corpus of semantic roles](http://www.mitpressjournals.org/doi/pdfplus/10.1162/0891201053630264)[J]. Computational linguistics, 2005, 31(1): 71-106.
9. Carreras X, Màrquez L. [Introduction to the CoNLL-2005 shared task: Semantic role labeling](http://www.cs.upc.edu/~srlconll/st05/papers/intro.pdf)[C]//Proceedings of the Ninth Conference on Computational Natural Language Learning. Association for Computational Linguistics, 2005: 152-164.
10. Zhou J, Xu W. [End-to-end learning of semantic role labeling using recurrent neural networks](http://www.aclweb.org/anthology/P/P15/P15-1109.pdf)[C]//Proceedings of the Annual Meeting of the Association for Computational Linguistics. 2015.

<br/>
<a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/"><img alt="知识共享许可协议" style="border-width:0" src="https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png" /></a><br /><span xmlns:dct="http://purl.org/dc/terms/" href="http://purl.org/dc/dcmitype/Text" property="dct:title" rel="dct:type">本教程</span><a xmlns:cc="http://creativecommons.org/ns#" href="http://book.paddlepaddle.org" property="cc:attributionName" rel="cc:attributionURL">PaddlePaddle</a> 创作,采用 <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">知识共享 署名-非商业性使用-相同方式共享 4.0 国际 许可协议</a>进行许可。