dataprovider.py 3.1 KB
Newer Older
C
caoying03 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.trainer.PyDataProvider2 import *

UNK_IDX = 0


def hook(settings, word_dict, label_dict, predicate_dict, **kwargs):
    settings.word_dict = word_dict
    settings.label_dict = label_dict
    settings.predicate_dict = predicate_dict

    #all inputs are integral and sequential type
C
caoying03 已提交
26 27 28 29 30 31
    settings.input_types = {
        'word_data': integer_value_sequence(len(word_dict)),
        'ctx_n2_data': integer_value_sequence(len(word_dict)),
        'ctx_n1_data': integer_value_sequence(len(word_dict)),
        'ctx_0_data': integer_value_sequence(len(word_dict)),
        'ctx_p1_data': integer_value_sequence(len(word_dict)),
C
caoying03 已提交
32 33
        'ctx_p2_data': integer_value_sequence(len(word_dict)),
        'verb_data': integer_value_sequence(len(predicate_dict)),
C
caoying03 已提交
34 35 36
        'mark_data': integer_value_sequence(2),
        'target': integer_value_sequence(len(label_dict))
    }
C
caoying03 已提交
37 38


S
Skye 已提交
39 40
def get_batch_size(yield_data):
    return len(yield_data[0])
C
caoying03 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70


@provider(
    init_hook=hook,
    should_shuffle=True,
    calc_batch_size=get_batch_size,
    can_over_batch_size=True,
    cache=CacheType.CACHE_PASS_IN_MEM)
def process(settings, file_name):
    with open(file_name, 'r') as fdata:
        for line in fdata:
            sentence, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2,  mark, label = \
                line.strip().split('\t')

            words = sentence.split()
            sen_len = len(words)
            word_slot = [settings.word_dict.get(w, UNK_IDX) for w in words]

            predicate_slot = [settings.predicate_dict.get(predicate)] * sen_len
            ctx_n2_slot = [settings.word_dict.get(ctx_n2, UNK_IDX)] * sen_len
            ctx_n1_slot = [settings.word_dict.get(ctx_n1, UNK_IDX)] * sen_len
            ctx_0_slot = [settings.word_dict.get(ctx_0, UNK_IDX)] * sen_len
            ctx_p1_slot = [settings.word_dict.get(ctx_p1, UNK_IDX)] * sen_len
            ctx_p2_slot = [settings.word_dict.get(ctx_p2, UNK_IDX)] * sen_len

            marks = mark.split()
            mark_slot = [int(w) for w in marks]

            label_list = label.split()
            label_slot = [settings.label_dict.get(w) for w in label_list]
C
caoying03 已提交
71 72 73 74 75 76 77 78 79 80 81
            yield {
                'word_data': word_slot,
                'ctx_n2_data': ctx_n2_slot,
                'ctx_n1_data': ctx_n1_slot,
                'ctx_0_data': ctx_0_slot,
                'ctx_p1_data': ctx_p1_slot,
                'ctx_p2_data': ctx_p2_slot,
                'verb_data': predicate_slot,
                'mark_data': mark_slot,
                'target': label_slot
            }