predict.py 2.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
D
dayhaha 已提交
14
"""Usage: predict.py -c CONF -d DATA -m MODEL
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

Arguments:
    CONF        train conf
    DATA        MNIST Data
    MODEL       Model

Options:
    -h      --help
    -c      conf
    -d      data
    -m      model
"""

import os
import sys
from docopt import docopt
import numpy as np

from py_paddle import swig_paddle, DataProviderConverter
from paddle.trainer.PyDataProvider2 import dense_vector
from paddle.trainer.config_parser import parse_config

from load_data import read_data


class Prediction():
    def __init__(self, train_conf, data_dir, model_dir):

        conf = parse_config(train_conf, 'is_predict=1')
        self.network = swig_paddle.GradientMachine.createFromConfigProto(
            conf.model_config)
        self.network.loadParameters(model_dir)

        self.images, self.labels = read_data(data_dir, "t10k")
D
dayhaha 已提交
49
        self.images = self.images / 255.0 * 2.0 - 1.0  # normalized to [-1,1]
50 51 52 53 54 55 56 57 58

        slots = [dense_vector(28 * 28)]
        self.converter = DataProviderConverter(slots)

    def predict(self, index):
        input = self.converter([[self.images[index].flatten().tolist()]])
        output = self.network.forwardTest(input)
        prob = output[0]["value"]
        predict = np.argsort(-prob)
D
dayhaha 已提交
59
        print "Predicted probability of each digit:"
60
        print prob
D
dayhaha 已提交
61 62
        print "Predict Number: %d" % predict[0][0]
        print "Actual Number: %d" % self.labels[index]
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78


def main():
    arguments = docopt(__doc__)
    train_conf = arguments['CONF']
    data_dir = arguments['DATA']
    model_dir = arguments['MODEL']
    swig_paddle.initPaddle("--use_gpu=0")
    predictor = Prediction(train_conf, data_dir, model_dir)
    while True:
        index = int(raw_input("Input image_id [0~9999]: "))
        predictor.predict(index)


if __name__ == '__main__':
    main()