db_lstm.py 6.2 KB
Newer Older
C
caoying03 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import os
import sys
from paddle.trainer_config_helpers import *

C
caoying03 已提交
20 21 22
is_test = get_config_arg('is_test', bool, False)
is_predict = get_config_arg('is_predict', bool, False)

C
caoying03 已提交
23
#file paths
C
caoying03 已提交
24 25 26
word_dict_file = './data/word_dict'
label_dict_file = './data/label_dict'
predicate_file = './data/predicate_dict'
C
caoying03 已提交
27
train_list_file = './data/train.list' if not (is_test or is_predict) else None
C
caoying03 已提交
28 29
test_list_file = './data/test.list'

C
caoying03 已提交
30 31 32 33 34 35 36 37

def load_dict(dict_file_path):
    data_dict = {}
    with open(dict_file_path, "r") as fdict:
        for idx, line in enumerate(fdict):
            data_dict[line.strip()] = idx
    return data_dict

C
caoying03 已提交
38 39 40

if not is_predict:
    #load dictionaries
C
caoying03 已提交
41 42 43
    word_dict = load_dict(word_dict_file)
    label_dict = load_dict(label_dict_file)
    predicate_dict = load_dict(predicate_file)
C
caoying03 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56

    #define data provider
    define_py_data_sources2(
        train_list=train_list_file,
        test_list=test_list_file,
        module='dataprovider',
        obj='process',
        args={
            'word_dict': word_dict,
            'label_dict': label_dict,
            'predicate_dict': predicate_dict
        })

C
caoying03 已提交
57 58 59 60 61 62
word_dict_len = get_config_arg('dict_len',
                               int) if is_predict else len(word_dict)
label_dict_len = get_config_arg('label_len',
                                int) if is_predict else len(label_dict)
pred_len = get_config_arg('pred_len',
                          int) if is_predict else len(predicate_dict)
C
caoying03 已提交
63 64 65 66 67 68 69 70 71 72 73

############################## Hyper-parameters ##################################
mark_dict_len = 2
word_dim = 32
mark_dim = 5
hidden_dim = 512
depth = 8

########################### Optimizer #######################################

settings(
C
caoying03 已提交
74
    batch_size=1,
C
caoying03 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
    learning_method=MomentumOptimizer(momentum=0),
    learning_rate=2e-2,
    regularization=L2Regularization(8e-4),
    model_average=ModelAverage(
        average_window=0.5, max_average_window=10000), )

####################################### network ##############################
#8 features and 1 target
word = data_layer(name='word_data', size=word_dict_len)
predicate = data_layer(name='verb_data', size=pred_len)

ctx_n2 = data_layer(name='ctx_n2_data', size=word_dict_len)
ctx_n1 = data_layer(name='ctx_n1_data', size=word_dict_len)
ctx_0 = data_layer(name='ctx_0_data', size=word_dict_len)
ctx_p1 = data_layer(name='ctx_p1_data', size=word_dict_len)
ctx_p2 = data_layer(name='ctx_p2_data', size=word_dict_len)
mark = data_layer(name='mark_data', size=mark_dict_len)

if not is_predict:
    target = data_layer(name='target', size=label_dict_len)

default_std = 1 / math.sqrt(hidden_dim) / 3.0

C
caoying03 已提交
98
emb_para = ParameterAttribute(name='emb', initial_std=0., is_static=True)
C
caoying03 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
std_0 = ParameterAttribute(initial_std=0.)
std_default = ParameterAttribute(initial_std=default_std)

predicate_embedding = embedding_layer(
    size=word_dim,
    input=predicate,
    param_attr=ParameterAttribute(
        name='vemb', initial_std=default_std))

word_input = [word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2]
emb_layers = [
    embedding_layer(
        size=word_dim, input=x, param_attr=emb_para) for x in word_input
]
emb_layers.append(predicate_embedding)
C
caoying03 已提交
114 115
mark_embedding = embedding_layer(
    name='word_ctx-in_embedding', size=mark_dim, input=mark, param_attr=std_0)
C
caoying03 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
emb_layers.append(mark_embedding)

hidden_0 = mixed_layer(
    name='hidden0',
    size=hidden_dim,
    bias_attr=std_default,
    input=[
        full_matrix_projection(
            input=emb, param_attr=std_default) for emb in emb_layers
    ])

mix_hidden_lr = 1e-3
lstm_para_attr = ParameterAttribute(initial_std=0.0, learning_rate=1.0)
hidden_para_attr = ParameterAttribute(
    initial_std=default_std, learning_rate=mix_hidden_lr)

lstm_0 = lstmemory(
    name='lstm0',
    input=hidden_0,
    act=ReluActivation(),
    gate_act=SigmoidActivation(),
    state_act=SigmoidActivation(),
    bias_attr=std_0,
    param_attr=lstm_para_attr)

#stack L-LSTM and R-LSTM with direct edges
input_tmp = [hidden_0, lstm_0]

for i in range(1, depth):

    mix_hidden = mixed_layer(
        name='hidden' + str(i),
        size=hidden_dim,
        bias_attr=std_default,
        input=[
            full_matrix_projection(
                input=input_tmp[0], param_attr=hidden_para_attr),
            full_matrix_projection(
                input=input_tmp[1], param_attr=lstm_para_attr)
        ])

    lstm = lstmemory(
        name='lstm' + str(i),
        input=mix_hidden,
        act=ReluActivation(),
        gate_act=SigmoidActivation(),
        state_act=SigmoidActivation(),
        reverse=((i % 2) == 1),
        bias_attr=std_0,
        param_attr=lstm_para_attr)

    input_tmp = [mix_hidden, lstm]

feature_out = mixed_layer(
    name='output',
    size=label_dict_len,
    bias_attr=std_default,
    input=[
        full_matrix_projection(
            input=input_tmp[0], param_attr=hidden_para_attr),
        full_matrix_projection(
            input=input_tmp[1], param_attr=lstm_para_attr)
    ], )

if not is_predict:
    crf_l = crf_layer(
        name='crf',
        size=label_dict_len,
        input=feature_out,
        label=target,
        param_attr=ParameterAttribute(
            name='crfw', initial_std=default_std, learning_rate=mix_hidden_lr))

    crf_dec_l = crf_decoding_layer(
        name='crf_dec_l',
        size=label_dict_len,
        input=feature_out,
        label=target,
        param_attr=ParameterAttribute(name='crfw'))

    eval = sum_evaluator(input=crf_dec_l)

    outputs(crf_l)

else:
    crf_dec_l = crf_decoding_layer(
        name='crf_dec_l',
        size=label_dict_len,
        input=feature_out,
        param_attr=ParameterAttribute(name='crfw'))

    outputs(crf_dec_l)