index.en.html 30.2 KB
Newer Older
1

Y
Yi Wang 已提交
2 3 4 5 6 7 8
<html>
<head>
  <script type="text/x-mathjax-config">
  MathJax.Hub.Config({
    extensions: ["tex2jax.js", "TeX/AMSsymbols.js", "TeX/AMSmath.js"],
    jax: ["input/TeX", "output/HTML-CSS"],
    tex2jax: {
9 10
      inlineMath: [ ['$','$'] ],
      displayMath: [ ['$$','$$'] ],
Y
Yi Wang 已提交
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
      processEscapes: true
    },
    "HTML-CSS": { availableFonts: ["TeX"] }
  });
  </script>
  <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js" async></script>
  <script type="text/javascript" src="../.tmpl/marked.js">
  </script>
  <link href="http://cdn.bootcss.com/highlight.js/9.9.0/styles/darcula.min.css" rel="stylesheet">
  <script src="http://cdn.bootcss.com/highlight.js/9.9.0/highlight.min.js"></script>
  <link href="http://cdn.bootcss.com/bootstrap/4.0.0-alpha.6/css/bootstrap.min.css" rel="stylesheet">
  <link href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" rel="stylesheet">
  <link href="../.tmpl/github-markdown.css" rel='stylesheet'>
</head>
<style type="text/css" >
.markdown-body {
    box-sizing: border-box;
    min-width: 200px;
    max-width: 980px;
    margin: 0 auto;
    padding: 45px;
}
</style>


<body>

<div id="context" class="container markdown-body">
</div>

<!-- This block will be replaced by each markdown file content. Please do not change lines below.-->
<div id="markdown" style='display:none'>
# Semantic Role Labeling

L
Luo Tao 已提交
45
Source code of this chapter is in [book/label_semantic_roles](https://github.com/PaddlePaddle/book/tree/develop/label_semantic_roles).
Y
Yi Wang 已提交
46 47 48

## Background

L
Luo Tao 已提交
49
Natural Language Analysis contains three components: Lexical Analysis, Syntactic Analysis, and Semantic Analysis. Semantic Role Labelling (SRL) is one way for Shallow Semantic Analysis. A predicate of a sentence is a property that a subject possesses or is characterized, such as what it does, what it is or how it is, which mostly corresponds to the core of an event. The noun associated with a predicate is called Argument. Semantic roles express the abstract roles that arguments of a predicate can take in the event, such as Agent, Patient, Theme, Experiencer, Beneficiary, Instrument, Location, Goal and Source, etc.
Y
Yi Wang 已提交
50

L
Luo Tao 已提交
51
In the following example, “遇到” (encounters) is a Predicate (“Pred”),“小明” (Ming) is an Agent,“小红” (Hong) is a Patient,“昨天” (yesterday) indicates the Time, and “公园” (park) is the Location.
Y
Yi Wang 已提交
52 53 54

$$\mbox{[小明]}_{\mbox{Agent}}\mbox{[昨天]}_{\mbox{Time}}\mbox{[晚上]}_\mbox{Time}\mbox{在[公园]}_{\mbox{Location}}\mbox{[遇到]}_{\mbox{Predicate}}\mbox{了[小红]}_{\mbox{Patient}}\mbox{。}$$

L
Luo Tao 已提交
55
Instead of in-depth analysis on semantic information, the goal of Semantic Role Labeling is to identify the relation of predicate and other constituents, e.g., predicate-argument structure, as specific semantic roles, which is an important intermediate step in a wide range of natural language understanding tasks (Information Extraction, Discourse Analysis, DeepQA etc). Predicates are always assumed to be given; the only thing is to identify arguments and their semantic roles.
Y
Yi Wang 已提交
56

L
Luo Tao 已提交
57
Standard SRL system mostly builds on top of Syntactic Analysis and contains five steps:
Y
Yi Wang 已提交
58 59 60 61

1. Construct a syntactic parse tree, as shown in Fig. 1
2. Identity candidate arguments of given predicate from constructed syntactic parse tree.
3. Prune most unlikely candidate arguments.
L
Luo Tao 已提交
62
4. Identify arguments, often by a binary classifier.
Y
Yi Wang 已提交
63 64 65 66
5. Multi-class semantic role labeling. Steps 2-3 usually introduce hand-designed features based on Syntactic Analysis (step 1).


<div  align="center">
67
<img src="image/dependency_parsing_en.png" width = "80%" align=center /><br>
Y
Yi Wang 已提交
68 69 70 71
Fig 1. Syntactic parse tree
</div>


L
Luo Tao 已提交
72
However, complete syntactic analysis requires identifying the relation among all constitutes and the performance of SRL is sensitive to the precision of syntactic analysis, which makes SRL a very challenging task. To reduce the complexity and obtain some syntactic structure information, we often use shallow syntactic analysis. Shallow Syntactic Analysis is also called partial parsing or chunking. Unlike complete syntactic analysis which requires the construction of the complete parsing tree, Shallow Syntactic Analysis only need to identify some independent components with relatively simple structure, such as verb phrases (chunk). To avoid difficulties in constructing a syntactic tree with high accuracy, some work\[[1](#Reference)\] proposed semantic chunking based SRL methods, which convert SRL as a sequence tagging problem. Sequence tagging tasks classify syntactic chunks using BIO representation. For syntactic chunks forming a chunk of type A, the first chunk receives the B-A tag (Begin), the remaining ones receive the tag I-A (Inside), and all chunks outside receive the tag O-A.
Y
Yi Wang 已提交
73 74 75 76

The BIO representation of above example is shown in Fig.1.

<div  align="center">
77
<img src="image/bio_example_en.png" width = "90%"  align=center /><br>
Y
Yi Wang 已提交
78 79 80
Fig 2. BIO represention
</div>

L
Luo Tao 已提交
81
This example illustrates the simplicity of sequence tagging because (1) shallow syntactic analysis reduces the precision requirement of syntactic analysis; (2) pruning candidate arguments is removed; 3) argument identification and tagging are finished at the same time. Such unified methods simplify the procedure, reduce the risk of accumulating errors and boost the performance further.
Y
Yi Wang 已提交
82

L
Luo Tao 已提交
83
In this tutorial, our SRL system is built as an end-to-end system via a neural network. We take only text sequences, without using any syntactic parsing results or complex hand-designed features. We give public dataset [CoNLL-2004 and CoNLL-2005 Shared Tasks](http://www.cs.upc.edu/~srlconll/) as an example to illustrate: given a sentence with predicates marked, identify the corresponding arguments and their semantic roles by sequence tagging method.
Y
Yi Wang 已提交
84 85 86

## Model

L
Luo Tao 已提交
87
Recurrent Neural Networks are important tools for sequence modeling and have been successfully used in some natural language processing tasks. Unlike Feed-forward neural networks, RNNs can model the dependency between elements of sequences. LSTMs as variants of RNNs aim to model long-term dependency in long sequences. We have introduced this in [understand_sentiment](https://github.com/PaddlePaddle/book/tree/develop/understand_sentiment). In this chapter, we continue to use LSTMs to solve SRL problems.
Y
Yi Wang 已提交
88 89 90

### Stacked Recurrent Neural Network

L
Luo Tao 已提交
91
Deep Neural Networks allows extracting hierarchical representations. Higher layers can form more abstract/complex representations on top of lower layers. LSTMs, when unfolded in time, is a deep feed-forward neural network, because a computational path between the input at time $k < t$ to the output at time $t$ crosses several nonlinear layers. However, the computation carried out at each time-step is only linear transformation, which makes LSTMs a shallow model. Deep LSTMs are typically constructed by stacking multiple LSTM layers on top of each other and taking the output from lower LSTM layer at time $t$ as the input of upper LSTM layer at time $t$. Deep, hierarchical neural networks can be much efficient at representing some functions and modeling varying-length dependencies\[[2](#Reference)\].
Y
Yi Wang 已提交
92 93


L
Luo Tao 已提交
94
However, deep LSTMs increases the number of nonlinear steps the gradient has to traverse when propagated back in depth. For example, four layer LSTMs can be trained properly, but the performance becomes worse as the number of layers up to 4-8. Conventional LSTMs prevent backpropagated errors from vanishing and exploding by introducing shortcut connections to skip the intermediate nonlinear layers. Therefore, deep LSTMs can consider shortcut connections in depth as well.
Y
Yi Wang 已提交
95 96


L
Luo Tao 已提交
97
The operation of a single LSTM cell contain 3 parts: (1) input-to-hidden: map input $x$ to the input of the forget gates, input gates, memory cells and output gates by linear transformation (i.e., matrix mapping); (2) hidden-to-hidden: calculate forget gates, input gates, output gates and update memory cell, this is the main part of LSTMs; (3)hidden-to-output: this part typically involves an activation operation on hidden states. Based on the stacked LSTMs, we add a shortcut connection: take the input-to-hidden from the previous layer as a new input and learn another linear transformation.
Y
Yi Wang 已提交
98 99 100

Fig.3 illustrate the final stacked recurrent neural networks.

Y
Update  
Yi Wang 已提交
101
<p align="center">  
102
<img src="./image/stacked_lstm_en.png" width = "40%"  align=center><br>
Y
Yi Wang 已提交
103 104 105 106 107
Fig 3. Stacked Recurrent Neural Networks
</p>

### Bidirectional Recurrent Neural Network

L
Luo Tao 已提交
108
LSTMs can summarize the history of previous inputs seen up to now, but can not see the future. In most of NLP (natural language processing) tasks, the entire sentences are ready to use. Therefore, sequential learning might be much efficient if the future can be encoded as well like histories.
Y
Yi Wang 已提交
109 110 111 112

To address the above drawbacks, we can design bidirectional recurrent neural networks by making a minor modification. Higher LSTM layers process the sequence in reversed direction with previous lower LSTM layers, i.e., Deep LSTMs operate from left-to-right, right-to-left, left-to-right,..., in depth. Therefore, LSTM layers at time-step $t$ can see both histories and the future since the second layer. Fig. 4 illustrates the bidirectional recurrent neural networks.


Y
Update  
Yi Wang 已提交
113
<p align="center">  
114
<img src="./image/bidirectional_stacked_lstm_en.png" width = "60%" align=center><br>
Y
Yi Wang 已提交
115 116 117
Fig 4. Bidirectional LSTMs
</p>

L
Luo Tao 已提交
118
Note that, this bidirectional RNNs is different with the one proposed by Bengio et al. in machine translation tasks \[[3](#Reference), [4](#Reference)\]. We will introduce another bidirectional RNNs in the following tasks[machine translation](https://github.com/PaddlePaddle/book/blob/develop/machine_translation/README.md)
Y
Yi Wang 已提交
119 120 121 122 123 124 125 126

### Conditional Random Field

The basic pipeline of Neural Networks solving problems is 1) all lower layers aim to learn representations; 2) the top layer is designed for learning the final task. In SRL tasks, CRF is built on top of the network for the final tag sequence prediction. It takes the representations provided by the last LSTM layer as input.


CRF is a probabilistic graph model (undirected) with nodes denoting random variables and edges denoting dependencies between nodes. To be simplicity, CRFs learn conditional probability $P(Y|X)$, where $X = (x_1, x_2, ... , x_n)$ are sequences of input, $Y = (y_1, y_2, ... , y_n)$ are label sequences; Decoding is to search sequence $Y$ to maximize conditional probability $P(Y|X)$, i.e., $Y^* = \mbox{arg max}_{Y} P(Y | X)$。

L
Luo Tao 已提交
127
Sequence tagging tasks only consider input and output as linear sequences without extra dependent assumptions on graph model. Thus, the graph model of sequence tagging tasks is simple chain or line, which results in a Linear-Chain Conditional Random Field, shown in Fig.5.
Y
Yi Wang 已提交
128

Y
Update  
Yi Wang 已提交
129
<p align="center">  
Y
Yi Wang 已提交
130 131 132 133
<img src="./image/linear_chain_crf.png" width = "35%" align=center><br>
Fig 5. Linear Chain Conditional Random Field used in SRL tasks
</p>

134
By the fundamental theorem of random fields \[[5](#Reference)\], the joint distribution over the label sequence $Y$ given $X$ has the form:
Y
Yi Wang 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155

$$p(Y | X) = \frac{1}{Z(X)} \text{exp}\left(\sum_{i=1}^{n}\left(\sum_{j}\lambda_{j}t_{j} (y_{i - 1}, y_{i}, X, i) + \sum_{k} \mu_k s_k (y_i, X, i)\right)\right)$$


where, $Z(X)$ is normalization constant, $t_j$ is feature function defined on edges, called transition feature, depending on $y_i$ and $y_{i-1}$ which represents transition probabilities from $y_{i-1}$ to $y_i$ given input sequence $X$. $s_k$ is feature function defined on nodes, called state feature, depending on $y_i$ and represents the probality of $y_i$ given input sequence $X$. $\lambda_j$ 和 $\mu_k$ are weights corresponding to $t_j$ and $s_k$. Actually, $t$ and $s$ can be wrtten in the same form, then take summation over all nodes $i$: $f_{k}(Y, X) = \sum_{i=1}^{n}f_k({y_{i - 1}, y_i, X, i})$, $f$ is defined as feature function. Thus, $P(Y|X)$ can be wrtten as:

$$p(Y|X, W) = \frac{1}{Z(X)}\text{exp}\sum_{k}\omega_{k}f_{k}(Y, X)$$

$\omega$ are weights of feature function which should be learned in CRF models. At training stage, given input sequences and label sequences $D = \left[(X_1,  Y_1), (X_2 , Y_2) , ... , (X_N, Y_N)\right]$, solve following objective function using MLE:


$$L(\lambda, D) = - \text{log}\left(\prod_{m=1}^{N}p(Y_m|X_m, W)\right) + C \frac{1}{2}\lVert W\rVert^{2}$$


This objective function can be solved via back-propagation in an end-to-end manner. At decoding stage, given input sequences $X$, search sequence $\bar{Y}$ to maximize conditional probability $\bar{P}(Y|X)$ via decoding methods (such as Viterbi, Beam Search).

### DB-LSTM SRL model

Given predicates and a sentence, SRL tasks aim to identify arguments of the given predicate and their semantic roles. If a sequence has n predicates, we will process this sequence n times. One model is as follows:

1. Construct inputs;
L
Luo Tao 已提交
156
 - input 1: predicate, input 2: sentence
Y
Yi Wang 已提交
157
 - expand input 1 as a sequence with the same length with input 2 using one-hot representation;
L
Luo Tao 已提交
158 159
2. Convert one-hot sequences from step 1 to vector sequences via lookup table;
3. Learn the representation of input sequences by taking vector sequences from step 2 as inputs;
Y
Yi Wang 已提交
160 161 162 163 164 165
4. Take representations from step 3 as inputs, label sequence as supervision signal, do sequence tagging tasks

We can try above method. Here, we propose some modifications by introducing two simple but effective features:

- predicate context (ctx-p): A single predicate word can not exactly describe the predicate information, especially when the same words appear more than one times in a sentence. With the expanded context, the ambiguity can be largely eliminated. Thus, we extract $n$ words before and after predicate to construct a window chunk.

L
Luo Tao 已提交
166
- region mark ($m_r$): $m_r = 1$ to denote word in that position locates in the predicate context region, or $m_r = 0$ if not.
Y
Yi Wang 已提交
167 168 169 170

After modification, the model is as follows:

1. Construct inputs
L
Luo Tao 已提交
171
 - Input 1: word sequence. Input 2: predicate. Input 3: predicate context, extract $n$ words before and after predicate. Input 4: region mark sequence, element value will be 1 if word locates in the predicate context region, 0 otherwise.
Y
Yi Wang 已提交
172
 - expand input 2~3 as sequences with the same length with input 1
L
Luo Tao 已提交
173 174
2. Convert input 1~4 to vector sequences via lookup table; input 1 and 3 shares the same lookup table, input 2 and 4 have separate lookup tables
3. Take four vector sequences from step 2 as inputs of bidirectional LSTMs; Train LSTMs to update representations
Y
Yi Wang 已提交
175 176 177
4. Take representation from step 3 as input of CRF, label sequence as supervision signal, do sequence tagging tasks


Y
Update  
Yi Wang 已提交
178
<div  align="center">  
D
dangqingqing 已提交
179
<img src="image/db_lstm_network_en.png" width = "60%"  align=center /><br>
Y
Yi Wang 已提交
180 181 182
Fig 6. DB-LSTM for SRL tasks
</div>

L
Luo Tao 已提交
183
## Data Preparation
Y
Yi Wang 已提交
184

L
Luo Tao 已提交
185
In the tutorial, we use [CoNLL 2005](http://www.cs.upc.edu/~srlconll/) SRL task open dataset as an example. It is important to note that the training set and development set of the CoNLL 2005 SRL task are not free to download after the competition. Currently, only the test set can be obtained, including 23 sections of the Wall Street Journal and three sections of the Brown corpus. In this tutorial, we use the WSJ corpus as the training dataset to explain the model. However, since the training set is small, if you want to train a usable neural network SRL system, consider paying for the full corpus.
Y
Yi Wang 已提交
186

L
Luo Tao 已提交
187
The original data includes a variety of information such as POS tagging, naming entity recognition, parsing tree, and so on. In this tutorial, we only use the data under the words folder (text sequence) and the props folder (label results) inside test.wsj parent folder. The data directory used in this tutorial is as follows:
Y
Yi Wang 已提交
188 189 190 191 192 193 194 195

```text
conll05st-release/
└── test.wsj
    ├── props  # 标注结果
    └── words  # 输入文本序列
```

L
Luo Tao 已提交
196
The annotation information is derived from the results of Penn TreeBank\[[7](#references)\] and PropBank \[[8](# references)\]. The label of the PropBank is different from the label that we used in the example at the beginning of the article, but the principle is the same. For the description of the label, please refer to the paper \[[9](#references)\].
Y
Yi Wang 已提交
197

L
Luo Tao 已提交
198
The raw data needs to be preprocessed before used by PaddlePaddle. The preprocessing consists of the following steps:
Y
Yi Wang 已提交
199

L
Luo Tao 已提交
200 201 202 203 204
1. Merge the text sequence and the tag sequence into the same record;
2. If a sentence contains $n$ predicates, the sentence will be processed $n$ times into $n$ separate training samples, each sample with a different predicate;
3. Extract the predicate context and construct the predicate context region marker;
4. Construct the markings in BIO format;
5. Obtain the integer index corresponding to the word according to the dictionary.
Y
Yi Wang 已提交
205

L
Luo Tao 已提交
206 207 208 209 210 211
```python
# import paddle.v2.dataset.conll05 as conll05
# conll05.corpus_reader does step 1 and 2 as mentioned above.
# conll05.reader_creator does step 3 to 5.
# conll05.test gets preprocessed training instances.
```
Y
Yi Wang 已提交
212

L
Luo Tao 已提交
213
After preprocessing completes, a training sample contains nine features, namely: word sequence, predicate, predicate context (5 columns), region mark sequence, label sequence. Following table is an example of a training sample.
Y
Yi Wang 已提交
214

L
Luo Tao 已提交
215
| word sequence | predicate | predicate context(5 columns) | region mark sequence | label sequence|
Y
Yi Wang 已提交
216 217 218 219 220 221 222 223 224 225
|---|---|---|---|---|
| A | set | n't been set . × | 0 | B-A1 |
| record | set | n't been set . × | 0 | I-A1 |
| date | set | n't been set . × | 0 | I-A1 |
| has | set | n't been set . × | 0 | O |
| n't | set | n't been set . × | 1 | B-AM-NEG |
| been | set | n't been set . × | 1 | O |
| set | set | n't been set . × | 1 | B-V |
| . | set | n't been set . × | 1 | O |

L
Luo Tao 已提交
226 227 228 229 230 231 232 233 234 235 236 237
In addition to the data, we provide following resources:

| filename | explanation |
|---|---|
| word_dict | dictionary of input sentences, total 44068 words |
| label_dict | dictionary of labels, total 106 labels |
| predicate_dict | predicate dictionary, total 3162 predicates |
| emb | a pre-trained word vector lookup table, 32-dimentional |

We trained in the English Wikipedia language model to get a word vector lookup table used to initialize the SRL model. During the SRL model training process, the word vector lookup table is no longer updated. About the language model and the word vector lookup table can refer to [word vector](https://github.com/PaddlePaddle/book/blob/develop/word2vec/README.md) tutorial. There are 995,000,000 token in training corpus, and the dictionary size is 4900,000 words. In the CoNLL 2005 training corpus, 5% of the words are not in the 4900,000 words, and we see them all as unknown words, represented by `<unk>`.

Get dictionary, print dictionary size:
Y
Yi Wang 已提交
238 239

```python
D
dangqingqing 已提交
240 241
import math
import numpy as np
L
Luo Tao 已提交
242 243 244 245 246 247 248 249
import paddle.v2 as paddle
import paddle.v2.dataset.conll05 as conll05

word_dict, verb_dict, label_dict = conll05.get_dict()
word_dict_len = len(word_dict)
label_dict_len = len(label_dict)
pred_len = len(verb_dict)

D
dangqingqing 已提交
250 251 252
print word_dict_len
print label_dict_len
print pred_len
Y
Yi Wang 已提交
253 254
```

L
Luo Tao 已提交
255 256
## Model configuration

D
dangqingqing 已提交
257
- Define input data dimensions and model hyperparameters.
L
Luo Tao 已提交
258

D
dangqingqing 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
```python
mark_dict_len = 2    # Value range of region mark. Region mark is either 0 or 1, so range is 2
word_dim = 32        # word vector dimension
mark_dim = 5         # adjacent dimension
hidden_dim = 512     # the dimension of LSTM hidden layer vector is 128 (512/4)
depth = 8            # depth of stacked LSTM

# There are 9 features per sample, so we will define 9 data layers.
# They type for each layer is integer_value_sequence.
def d_type(value_range):
    return paddle.data_type.integer_value_sequence(value_range)

# word sequence
word = paddle.layer.data(name='word_data', type=d_type(word_dict_len))
# predicate
274
predicate = paddle.layer.data(name='verb_data', type=d_type(pred_len))
D
dangqingqing 已提交
275 276

# 5 features for predicate context
277
ctx_n2 = paddle.layer.data(name='ctx_n2_data', type=d_type(word_dict_len))
D
dangqingqing 已提交
278 279 280 281 282 283 284 285 286 287 288
ctx_n1 = paddle.layer.data(name='ctx_n1_data', type=d_type(word_dict_len))
ctx_0 = paddle.layer.data(name='ctx_0_data', type=d_type(word_dict_len))
ctx_p1 = paddle.layer.data(name='ctx_p1_data', type=d_type(word_dict_len))
ctx_p2 = paddle.layer.data(name='ctx_p2_data', type=d_type(word_dict_len))

# region marker sequence
mark = paddle.layer.data(name='mark_data', type=d_type(mark_dict_len))

# label sequence
target = paddle.layer.data(name='target', type=d_type(label_dict_len))
```
289

D
dangqingqing 已提交
290 291
Speciala note: hidden_dim = 512 means LSTM hidden vector of 128 dimension (512/4). Please refer PaddlePaddle official documentation for detail: [lstmemory](http://www.paddlepaddle.org/doc/ui/api/trainer_config_helpers/layers.html#lstmemory)。

D
dangqingqing 已提交
292
- The word sequence, predicate, predicate context, and region mark sequence are transformed into embedding vector sequences.
D
dangqingqing 已提交
293

Y
Update  
Yi Wang 已提交
294
```python  
D
dangqingqing 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

# Since word vectorlookup table is pre-trained, we won't update it this time.
# is_static being True prevents updating the lookup table during training.
emb_para = paddle.attr.Param(name='emb', initial_std=0., is_static=True)
# hyperparameter configurations
default_std = 1 / math.sqrt(hidden_dim) / 3.0
std_default = paddle.attr.Param(initial_std=default_std)
std_0 = paddle.attr.Param(initial_std=0.)

predicate_embedding = paddle.layer.embedding(
    size=word_dim,
    input=predicate,
    param_attr=paddle.attr.Param(
        name='vemb', initial_std=default_std))
mark_embedding = paddle.layer.embedding(
    size=mark_dim, input=mark, param_attr=std_0)

word_input = [word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2]
emb_layers = [
    paddle.layer.embedding(
        size=word_dim, input=x, param_attr=emb_para) for x in word_input
]
emb_layers.append(predicate_embedding)
emb_layers.append(mark_embedding)
```
L
Luo Tao 已提交
320

D
dangqingqing 已提交
321
- 8 LSTM units will be trained in "forward / backward" order.
L
Luo Tao 已提交
322

Y
Update  
Yi Wang 已提交
323
```python  
D
dangqingqing 已提交
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
hidden_0 = paddle.layer.mixed(
    size=hidden_dim,
    bias_attr=std_default,
    input=[
        paddle.layer.full_matrix_projection(
            input=emb, param_attr=std_default) for emb in emb_layers
    ])

mix_hidden_lr = 1e-3
lstm_para_attr = paddle.attr.Param(initial_std=0.0, learning_rate=1.0)
hidden_para_attr = paddle.attr.Param(
    initial_std=default_std, learning_rate=mix_hidden_lr)

lstm_0 = paddle.layer.lstmemory(
    input=hidden_0,
    act=paddle.activation.Relu(),
    gate_act=paddle.activation.Sigmoid(),
    state_act=paddle.activation.Sigmoid(),
    bias_attr=std_0,
    param_attr=lstm_para_attr)

# stack L-LSTM and R-LSTM with direct edges
input_tmp = [hidden_0, lstm_0]

for i in range(1, depth):
    mix_hidden = paddle.layer.mixed(
L
Luo Tao 已提交
350 351 352 353
        size=hidden_dim,
        bias_attr=std_default,
        input=[
            paddle.layer.full_matrix_projection(
D
dangqingqing 已提交
354 355 356
                input=input_tmp[0], param_attr=hidden_para_attr),
            paddle.layer.full_matrix_projection(
                input=input_tmp[1], param_attr=lstm_para_attr)
L
Luo Tao 已提交
357 358
        ])

D
dangqingqing 已提交
359 360
    lstm = paddle.layer.lstmemory(
        input=mix_hidden,
L
Luo Tao 已提交
361 362 363
        act=paddle.activation.Relu(),
        gate_act=paddle.activation.Sigmoid(),
        state_act=paddle.activation.Sigmoid(),
D
dangqingqing 已提交
364
        reverse=((i % 2) == 1),
L
Luo Tao 已提交
365 366 367
        bias_attr=std_0,
        param_attr=lstm_para_attr)

D
dangqingqing 已提交
368 369 370
    input_tmp = [mix_hidden, lstm]
```

D
dangqingqing 已提交
371
- We will concatenate the output of top LSTM unit with it's input, and project into a hidden layer. Then put a fully connected layer on top of it to get the final vector representation.
D
dangqingqing 已提交
372 373 374 375 376 377 378 379 380 381 382 383 384

 ```python
 feature_out = paddle.layer.mixed(
 size=label_dict_len,
 bias_attr=std_default,
 input=[
     paddle.layer.full_matrix_projection(
         input=input_tmp[0], param_attr=hidden_para_attr),
     paddle.layer.full_matrix_projection(
         input=input_tmp[1], param_attr=lstm_para_attr)
 ], )
 ```

D
dangqingqing 已提交
385
- We use CRF as cost function, the parameter of CRF cost will be named `crfw`.
D
dangqingqing 已提交
386 387 388

```python
crf_cost = paddle.layer.crf(
L
Luo Tao 已提交
389
    size=label_dict_len,
D
dangqingqing 已提交
390 391 392 393 394 395 396 397
    input=feature_out,
    label=target,
    param_attr=paddle.attr.Param(
        name='crfw',
        initial_std=default_std,
        learning_rate=mix_hidden_lr))
```

D
dangqingqing 已提交
398
- CRF decoding layer is used for evaluation and inference. It shares parameter with CRF layer.  The sharing of parameters among multiple layers is specified by the same parameter name in these layers.
D
dangqingqing 已提交
399 400 401 402 403 404 405 406 407

```python
crf_dec = paddle.layer.crf_decoding(
   name='crf_dec_l',
   size=label_dict_len,
   input=feature_out,
   label=target,
   param_attr=paddle.attr.Param(name='crfw'))
```
L
Luo Tao 已提交
408 409 410 411 412 413

## Train model

### Create Parameters

All necessary parameters will be traced created given output layers that we need to use.
Y
Yi Wang 已提交
414 415

```python
L
Luo Tao 已提交
416
parameters = paddle.parameters.create([crf_cost, crf_dec])
Y
Yi Wang 已提交
417 418
```

L
Luo Tao 已提交
419
We can print out parameter name. It will be generated if not specified.
420

L
Luo Tao 已提交
421 422
```python
print parameters.keys()
Y
Yi Wang 已提交
423 424
```

L
Luo Tao 已提交
425
Now we load pre-trained word lookup table.
Y
Yi Wang 已提交
426

L
Luo Tao 已提交
427 428 429
```python
def load_parameter(file_name, h, w):
    with open(file_name, 'rb') as f:
D
dangqingqing 已提交
430 431
        f.read(16)
        return np.fromfile(f, dtype=np.float32).reshape(h, w)
L
Luo Tao 已提交
432
parameters.set('emb', load_parameter(conll05.get_embedding(), 44068, 32))
Y
Yi Wang 已提交
433 434
```

L
Luo Tao 已提交
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
### Create Trainer

We will create trainer given model topology, parameters and optimization method. We will use most basic SGD method (momentum optimizer with 0 momentum). In the meantime, we will set learning rate and regularization.

```python
optimizer = paddle.optimizer.Momentum(
    momentum=0,
    learning_rate=2e-2,
    regularization=paddle.optimizer.L2Regularization(rate=8e-4),
    model_average=paddle.optimizer.ModelAverage(
        average_window=0.5, max_average_window=10000), )

trainer = paddle.trainer.SGD(cost=crf_cost,
                             parameters=parameters,
                             update_equation=optimizer)
```
Y
Yi Wang 已提交
451

L
Luo Tao 已提交
452
### Trainer
Y
Yi Wang 已提交
453

L
Luo Tao 已提交
454
As mentioned in data preparation section, we will use CoNLL 2005 test corpus as training data set. `conll05.test()` outputs one training instance at a time. It will be shuffled, and batched into mini batches as input.
Y
Yi Wang 已提交
455 456

```python
L
Luo Tao 已提交
457
reader = paddle.batch(
L
Luo Tao 已提交
458 459
    paddle.reader.shuffle(
        conll05.test(), buf_size=8192), batch_size=20)
Y
Yi Wang 已提交
460 461
```

L
Luo Tao 已提交
462
`feeding` is used to specify relationship between data instance and layer layer. For example, according to following `feeding`, the 0th column of data instance produced by`conll05.test()` correspond to data layer named `word_data`.
L
Luo Tao 已提交
463 464

```python
L
Luo Tao 已提交
465
feeding = {
L
Luo Tao 已提交
466 467 468 469 470 471 472 473 474 475
    'word_data': 0,
    'ctx_n2_data': 1,
    'ctx_n1_data': 2,
    'ctx_0_data': 3,
    'ctx_p1_data': 4,
    'ctx_p2_data': 5,
    'verb_data': 6,
    'mark_data': 7,
    'target': 8
}
Y
Yi Wang 已提交
476 477
```

L
Luo Tao 已提交
478
`event_handle` can be used as callback for training events, it will be used as an argument for `train`. Following `event_handle` prints cost during training.
Y
Yi Wang 已提交
479

L
Luo Tao 已提交
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
```python
def event_handler(event):
    if isinstance(event, paddle.event.EndIteration):
        if event.batch_id % 100 == 0:
            print "Pass %d, Batch %d, Cost %f" % (
                event.pass_id, event.batch_id, event.cost)
```

`trainer.train` will train the model.

```python
trainer.train(
    reader=reader,
    event_handler=event_handler,
    num_passes=10000,
L
Luo Tao 已提交
495
    feeding=feeding)
Y
Yi Wang 已提交
496 497 498 499
```

## Conclusion

L
Luo Tao 已提交
500
Semantic Role Labeling is an important intermediate step in a wide range of natural language processing tasks. In this tutorial, we give SRL as an example to introduce how to use PaddlePaddle to do sequence tagging tasks. Proposed models are from our published paper\[[10](#Reference)\]. We only use test data as an illustration since train data on CoNLL 2005 dataset is not completely public. We hope to propose an end-to-end neural network model with fewer dependencies on natural language processing tools but is comparable, or even better than traditional models. Please check out our paper for more information and discussions.
Y
Yi Wang 已提交
501 502 503 504 505 506 507 508 509 510 511 512 513 514

## Reference
1. Sun W, Sui Z, Wang M, et al. [Chinese semantic role labeling with shallow parsing](http://www.aclweb.org/anthology/D09-1#page=1513)[C]//Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume 3-Volume 3. Association for Computational Linguistics, 2009: 1475-1483.
2. Pascanu R, Gulcehre C, Cho K, et al. [How to construct deep recurrent neural networks](https://arxiv.org/abs/1312.6026)[J]. arXiv preprint arXiv:1312.6026, 2013.
3. Cho K, Van Merriënboer B, Gulcehre C, et al. [Learning phrase representations using RNN encoder-decoder for statistical machine translation](https://arxiv.org/abs/1406.1078)[J]. arXiv preprint arXiv:1406.1078, 2014.
4. Bahdanau D, Cho K, Bengio Y. [Neural machine translation by jointly learning to align and translate](https://arxiv.org/abs/1409.0473)[J]. arXiv preprint arXiv:1409.0473, 2014.
5. Lafferty J, McCallum A, Pereira F. [Conditional random fields: Probabilistic models for segmenting and labeling sequence data](http://www.jmlr.org/papers/volume15/doppa14a/source/biblio.bib.old)[C]//Proceedings of the eighteenth international conference on machine learning, ICML. 2001, 1: 282-289.
6. 李航. 统计学习方法[J]. 清华大学出版社, 北京, 2012.
7. Marcus M P, Marcinkiewicz M A, Santorini B. [Building a large annotated corpus of English: The Penn Treebank](http://repository.upenn.edu/cgi/viewcontent.cgi?article=1246&context=cis_reports)[J]. Computational linguistics, 1993, 19(2): 313-330.
8. Palmer M, Gildea D, Kingsbury P. [The proposition bank: An annotated corpus of semantic roles](http://www.mitpressjournals.org/doi/pdfplus/10.1162/0891201053630264)[J]. Computational linguistics, 2005, 31(1): 71-106.
9. Carreras X, Màrquez L. [Introduction to the CoNLL-2005 shared task: Semantic role labeling](http://www.cs.upc.edu/~srlconll/st05/papers/intro.pdf)[C]//Proceedings of the Ninth Conference on Computational Natural Language Learning. Association for Computational Linguistics, 2005: 152-164.
10. Zhou J, Xu W. [End-to-end learning of semantic role labeling using recurrent neural networks](http://www.aclweb.org/anthology/P/P15/P15-1109.pdf)[C]//Proceedings of the Annual Meeting of the Association for Computational Linguistics. 2015.

<br/>
515
This tutorial is contributed by <a xmlns:cc="http://creativecommons.org/ns#" href="http://book.paddlepaddle.org" property="cc:attributionName" rel="cc:attributionURL">PaddlePaddle</a>, and licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>.
516

Y
Yi Wang 已提交
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
</div>
<!-- You can change the lines below now. -->

<script type="text/javascript">
marked.setOptions({
  renderer: new marked.Renderer(),
  gfm: true,
  breaks: false,
  smartypants: true,
  highlight: function(code, lang) {
    code = code.replace(/&amp;/g, "&")
    code = code.replace(/&gt;/g, ">")
    code = code.replace(/&lt;/g, "<")
    code = code.replace(/&nbsp;/g, " ")
    return hljs.highlightAuto(code, [lang]).value;
  }
});
document.getElementById("context").innerHTML = marked(
535
        document.getElementById("markdown").innerHTML)
Y
Yi Wang 已提交
536 537
</script>
</body>