index.en.html 22.8 KB
Newer Older
1

Y
Yuanpeng 已提交
2 3 4 5 6 7 8
<html>
<head>
  <script type="text/x-mathjax-config">
  MathJax.Hub.Config({
    extensions: ["tex2jax.js", "TeX/AMSsymbols.js", "TeX/AMSmath.js"],
    jax: ["input/TeX", "output/HTML-CSS"],
    tex2jax: {
9 10
      inlineMath: [ ['$','$'] ],
      displayMath: [ ['$$','$$'] ],
Y
Yuanpeng 已提交
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
      processEscapes: true
    },
    "HTML-CSS": { availableFonts: ["TeX"] }
  });
  </script>
  <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js" async></script>
  <script type="text/javascript" src="../.tmpl/marked.js">
  </script>
  <link href="http://cdn.bootcss.com/highlight.js/9.9.0/styles/darcula.min.css" rel="stylesheet">
  <script src="http://cdn.bootcss.com/highlight.js/9.9.0/highlight.min.js"></script>
  <link href="http://cdn.bootcss.com/bootstrap/4.0.0-alpha.6/css/bootstrap.min.css" rel="stylesheet">
  <link href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" rel="stylesheet">
  <link href="../.tmpl/github-markdown.css" rel='stylesheet'>
</head>
<style type="text/css" >
.markdown-body {
    box-sizing: border-box;
    min-width: 200px;
    max-width: 980px;
    margin: 0 auto;
    padding: 45px;
}
</style>
34 35


Y
Yuanpeng 已提交
36
<body>
37

Y
Yuanpeng 已提交
38 39
<div id="context" class="container markdown-body">
</div>
40

Y
Yuanpeng 已提交
41 42 43 44
<!-- This block will be replaced by each markdown file content. Please do not change lines below.-->
<div id="markdown" style='display:none'>
# Recognize Digits

45
The source code for this tutorial is under [book/recognize_digits](https://github.com/PaddlePaddle/book/tree/develop/recognize_digits). First-time readers, please refer to PaddlePaddle [installation instructions](http://www.paddlepaddle.org/doc_cn/build_and_install/index.html).
Y
Yuanpeng 已提交
46 47

## Introduction
48
When we learn a new programming language, the first task is usually to write a program that prints "Hello World." In Machine Learning or Deep Learning, the equivalent task is to train a model to perform handwritten digit recognition with [MNIST](http://yann.lecun.com/exdb/mnist/) dataset. Handwriting recognition is a typical image classification problem. The problem is relatively easy, and MNIST is a complete dataset. As a simple Computer Vision dataset, MNIST contains images of handwritten digits and their corresponding labels (Fig. 1). The input image is a 28x28 matrix, and the label is one of the digits from 0 to 9. Each image is normalized in size and centered.
Y
Yuanpeng 已提交
49 50 51 52 53 54

<p align="center">
<img src="image/mnist_example_image.png" width="400"><br/>
Fig. 1. Examples of MNIST images
</p>

55 56 57
The MNIST dataset is created from the [NIST](https://www.nist.gov/srd/nist-special-database-19) Special Database 3 (SD-3) and the Special Database 1 (SD-1). The SD-3 is labeled by the staff of the U.S. Census Bureau, while SD-1 is labeled by high school students the in U.S. Therefore the SD-3 is cleaner and easier to recognize than the SD-1 dataset. Yann LeCun et al. used half of the samples from each of SD-1 and SD-3 to create the MNIST training set (60,000 samples) and test set (10,000 samples), where training set was labeled by 250 different annotators, and it was guaranteed that there wasn't a complete overlap of annotators of training set and test set.

Yann LeCun, one of the founders of Deep Learning, contributed highly towards handwritten character recognition in early days and proposed CNN (Convolutional Neural Network), which drastically improved recognition capability for handwritten characters. CNNs are now a critical concept in Deep Learning. From Yann LeCun's first proposal of LeNet to those winning models in ImageNet, such as VGGNet, GoogLeNet, ResNet, etc. (Please refer to [Image Classification](https://github.com/PaddlePaddle/book/tree/develop/image_classification) tutorial), CNN achieved a series of impressive results in Image Classification tasks.
Y
Yuanpeng 已提交
58

59
Many algorithms are tested on MNIST. In 1998, LeCun experimented with single layer linear classifier, MLP (Multilayer Perceptron) and Multilayer CNN LeNet. These algorithms constantly reduced test error from 12% to 0.7% \[[1](#References)\]. Since then, researchers have worked on many algorithms such as k-NN (K-Nearest Neighbors) \[[2](#References)\], Support Vector Machine (SVM) \[[3](#References)\], Neural Networks \[[4-7](#References)\] and Boosting \[[8](#References)\]. Various preprocessing methods like distortion removal, noise removal, blurring etc. have also been applied to increase recognition accuracy.
Y
Yuanpeng 已提交
60

61
In this tutorial, we tackle the task of handwritten character recognition. We start with a simple softmax regression model and guide our readers step-by-step to improve this model's performance on the task of recognition.
Y
Yuanpeng 已提交
62 63 64 65 66


## Model Overview

Before introducing classification algorithms and training procedure, we provide some definitions:
67 68 69
- $X$ is the input: Input is a $28\times28$ MNIST image. It is flattened to a $784$ dimensional vector. $X=\left ( x_0, x_1, \dots, x_{783} \right )$.
- $Y$ is the output: Output of the classifier is 1 of the 10 classes (digits from 0 to 9). $Y=\left ( y_0, y_1, \dots, y_9 \right )$. Each dimension $y_i$ represents the probability that the input image belongs to class $i$.
- $L$ is the ground truth label: $L=\left ( l_0, l_1, \dots, l_9 \right )$. It is also 10 dimensional, but only one dimension is 1 and all others are all 0.
Y
Yuanpeng 已提交
70 71 72

### Softmax Regression

73
In a simple softmax regression model, the input is fed to fully connected layers and a softmax function is applied to get probabilities of multiple output classes\[[9](#References)\].
Y
Yuanpeng 已提交
74

75
Input $X$ is multiplied with weights $W$, and bias $b$ is added to generate activations.
Y
Yuanpeng 已提交
76 77 78 79 80

$$ y_i = softmax(\sum_j W_{i,j}x_j + b_i) $$

where $ softmax(x_i) = \frac{e^{x_i}}{\sum_j e^{x_j}} $

81
For an $N$ class classification problem with $N$ output nodes, an $N$ dimensional vector is normalized to $N$ real values in the range [0, 1], each representing the probability of the sample to belong to the class. Here $y_i$ is the prediction probability that an image is digit $i$.
Y
Yuanpeng 已提交
82

83
In such a classification problem, we usually use the cross entropy loss function:
Y
Yuanpeng 已提交
84 85 86

$$  crossentropy(label, y) = -\sum_i label_ilog(y_i) $$

L
Luo Tao 已提交
87
Fig. 2 shows a softmax regression network, with weights in blue, and bias in red. +1 indicates bias is 1.
Y
Yuanpeng 已提交
88 89

<p align="center">
Y
Yi Wang 已提交
90
<img src="image/softmax_regression_en.png" width=400><br/>
Y
Yuanpeng 已提交
91 92 93 94 95
Fig. 2. Softmax regression network architecture<br/>
</p>

### Multilayer Perceptron

96
The Softmax regression model described above uses the simplest two-layer neural network, i.e. it only contains an input layer and an output layer. So its regression ability is limited. To achieve better recognition results, we consider adding several hidden layers \[[10](#References)\] between the input layer and the output layer.
Y
Yuanpeng 已提交
97

98
1.  After the first hidden layer, we get $ H_1 = \phi(W_1X + b_1) $, where $\phi$ is the activation function. Some common ones are sigmoid, tanh and ReLU.
Y
Yuanpeng 已提交
99
2.  After the second hidden layer, we get $ H_2 = \phi(W_2H_1 + b_2) $.
100
3.  Finally, after output layer, we get $Y=softmax(W_3H_2 + b_3)$, the final classification result vector.
Y
Yuanpeng 已提交
101

L
Luo Tao 已提交
102
Fig. 3. is Multilayer Perceptron network, with weights in blue, and bias in red. +1 indicates bias is 1.
Y
Yuanpeng 已提交
103 104

<p align="center">
Y
Yi Wang 已提交
105
<img src="image/mlp_en.png" width=500><br/>
Y
Yuanpeng 已提交
106
Fig. 3. Multilayer Perceptron network architecture<br/>
Y
Yi Wang 已提交
107

Y
Yuanpeng 已提交
108 109 110 111 112 113 114
</p>

### Convolutional Neural Network

#### Convolutional Layer

<p align="center">
Y
Yi Wang 已提交
115
<img src="image/conv_layer_en.png" width=500><br/>
Y
Yuanpeng 已提交
116 117 118
Fig. 4. Convolutional layer<br/>
</p>

119
The Convolutional layer is the core of a Convolutional Neural Network. The parameters in this layer are composed of a set of filters or kernels. In the forward step, each kernel moves horizontally and vertically, we compute a dot product of the kernel and the input at the corresponding positions, to this result we add bias and apply an activation function. The result is a two-dimensional activation map. For example, some kernel may recognize corners, and some may recognize circles. These convolution kernels may respond strongly to the corresponding features.
Y
Yuanpeng 已提交
120

121
Fig. 4 is a dynamic graph of a convolutional layer, where depths are not shown for simplicity. Input is $W_1=5, H_1=5, D_1=3$. In fact, this is a common representation for colored images. $W_1$ and  $H_1$ of a colored image correspond to the width and height respectively. $D_1$ corresponds to the 3 color channels for RGB. The parameters of the convolutional layer are $K=2, F=3, S=2, P=1$. $K$ is the number of kernels. Here, $Filter W_0$ and $Filter   W_1$ are two kernels. $F$ is kernel size. $W0$ and $W1$ are both $3\times3$ matrix in all depths. $S$ is the stride. Kernels move leftwards or downwards by 2 units each time. $P$ is padding, an extension of the input. The gray area in the figure shows zero padding with size 1.
Y
Yuanpeng 已提交
122 123 124 125

#### Pooling Layer

<p align="center">
Y
Yi Wang 已提交
126
<img src="image/max_pooling_en.png" width="400px"><br/>
Y
Yuanpeng 已提交
127 128 129
Fig. 5 Pooling layer<br/>
</p>

130
A Pooling layer performs downsampling. The main functionality of this layer is to reduce computation by reducing the network parameters. It also prevents overfitting to some extent. Usually, a pooling layer is added after a convolutional layer. Pooling layer can be of various types like max pooling, average pooling, etc. Max pooling uses rectangles to segment the input layer into several parts and computes the maximum value in each part as the output (Fig. 5.)
Y
Yuanpeng 已提交
131 132 133 134

#### LeNet-5 Network 

<p align="center">
Y
Yi Wang 已提交
135
<img src="image/cnn_en.png"><br/>
Y
Yuanpeng 已提交
136 137 138
Fig. 6. LeNet-5 Convolutional Neural Network architecture<br/>
</p>

139
[LeNet-5](http://yann.lecun.com/exdb/lenet/) is one of the simplest Convolutional Neural Networks. Fig. 6. shows its architecture: A 2-dimensional input image is fed into two sets of convolutional layers and pooling layers, this output is then fed to a fully connected layer and a softmax classifier. The following three properties of convolution enable LeNet-5 to better recognize images than Multilayer fully connected perceptrons:
Y
Yuanpeng 已提交
140

141 142 143
- 3D properties of neurons: a convolutional layer is organized by width, height and depth. Neurons in each layer are connected to only a small region in the previous layer. This region is called the receptive field.
- Local connection: A CNN utilizes the local space correlation by connecting local neurons. This design guarantees that the learned filter has a strong response to local input features. Stacking many such layers generates a non-linear filter that is more global. This enables the network to first obtain good representation for small parts of input and then combine them to represent a larger region.
- Sharing weights: In a CNN, computation is iterated on shared parameters (weights and bias) to form a feature map. This means all neurons in the same depth of the output respond to the same feature. This allows detecting a feature regardless of its position in the input and enables translation equivariance.
Y
Yuanpeng 已提交
144

145
For more details on Convolutional Neural Networks, please refer to [this Stanford open course]( http://cs231n.github.io/convolutional-networks/ ) and [this Image Classification](https://github.com/PaddlePaddle/book/blob/develop/image_classification/README.md) tutorial.
Y
Yuanpeng 已提交
146 147

### List of Common Activation Functions  
148
- Sigmoid activation function: $ f(x) = sigmoid(x) = \frac{1}{1+e^{-x}} $
Y
Yuanpeng 已提交
149

150
- Tanh activation function: $ f(x) = tanh(x) = \frac{e^x-e^{-x}}{e^x+e^{-x}} $
Y
Yuanpeng 已提交
151

152
  In fact, tanh function is just a rescaled version of the sigmoid function. It is obtained by magnifying the value of the sigmoid function and moving it downwards by 1.
Y
Yuanpeng 已提交
153

154
- ReLU activation function: $ f(x) = max(0, x) $
Y
Yuanpeng 已提交
155

156
For more information, please refer to [Activation functions on Wikipedia](https://en.wikipedia.org/wiki/Activation_function).
Y
Yuanpeng 已提交
157 158 159

## Data Preparation

L
Luo Tao 已提交
160
PaddlePaddle provides a Python module, `paddle.dataset.mnist`, which downloads and caches the [MNIST dataset](http://yann.lecun.com/exdb/mnist/).  The cache is under `/home/username/.cache/paddle/dataset/mnist`:
Y
Yuanpeng 已提交
161 162 163 164 165 166 167 168 169 170


|    File name          |       Description              |
|----------------------|-------------------------|
|train-images-idx3-ubyte|  Training images, 60,000 |
|train-labels-idx1-ubyte|  Training labels, 60,000 |
|t10k-images-idx3-ubyte |  Evaluation images, 10,000 |
|t10k-labels-idx1-ubyte |  Evaluation labels, 10,000 |


L
Luo Tao 已提交
171
## Model Configuration
Y
Yuanpeng 已提交
172

L
Luo Tao 已提交
173
A PaddlePaddle program starts from importing the API package:
Y
Yuanpeng 已提交
174 175

```python
L
Luo Tao 已提交
176
import paddle.v2 as paddle
Y
Yuanpeng 已提交
177 178
```

L
Luo Tao 已提交
179
We want to use this program to demonstrate multiple kinds of models.  Let define each of them as a Python function:
Y
Yuanpeng 已提交
180

L
Luo Tao 已提交
181
- softmax regression: the network has a fully-connection layer with softmax activation:
Y
Yuanpeng 已提交
182 183 184

```python
def softmax_regression(img):
L
Luo Tao 已提交
185 186 187
    predict = paddle.layer.fc(input=img,
                              size=10,
                              act=paddle.activation.Softmax())
Y
Yuanpeng 已提交
188 189 190
    return predict
```

L
Luo Tao 已提交
191
- multi-layer perceptron: this network has two hidden fully-connected layers, one with LeRU and the other with softmax activation:
Y
Yuanpeng 已提交
192 193 194

```python
def multilayer_perceptron(img):
L
Luo Tao 已提交
195 196 197 198 199 200 201
    hidden1 = paddle.layer.fc(input=img, size=128, act=paddle.activation.Relu())
    hidden2 = paddle.layer.fc(input=hidden1,
                              size=64,
                              act=paddle.activation.Relu())
    predict = paddle.layer.fc(input=hidden2,
                              size=10,
                              act=paddle.activation.Softmax())
Y
Yuanpeng 已提交
202 203 204
    return predict
```

L
Luo Tao 已提交
205
- convolution network LeNet-5: the input image is fed through two convolution-pooling layer, a fully-connected layer, and the softmax output layer:
Y
Yuanpeng 已提交
206 207 208

```python
def convolutional_neural_network(img):
L
Luo Tao 已提交
209 210

    conv_pool_1 = paddle.networks.simple_img_conv_pool(
Y
Yuanpeng 已提交
211 212 213 214 215 216
        input=img,
        filter_size=5,
        num_filters=20,
        num_channel=1,
        pool_size=2,
        pool_stride=2,
L
Luo Tao 已提交
217 218 219
        act=paddle.activation.Tanh())

    conv_pool_2 = paddle.networks.simple_img_conv_pool(
Y
Yuanpeng 已提交
220 221 222 223 224 225
        input=conv_pool_1,
        filter_size=5,
        num_filters=50,
        num_channel=20,
        pool_size=2,
        pool_stride=2,
L
Luo Tao 已提交
226
        act=paddle.activation.Tanh())
Y
Yuanpeng 已提交
227

L
Luo Tao 已提交
228 229 230
    fc1 = paddle.layer.fc(input=conv_pool_2,
                          size=128,
                          act=paddle.activation.Tanh())
Y
Yuanpeng 已提交
231

L
Luo Tao 已提交
232 233 234 235
    predict = paddle.layer.fc(input=fc1,
                              size=10,
                              act=paddle.activation.Softmax())
    return predict
Y
Yuanpeng 已提交
236 237
```

L
Luo Tao 已提交
238
PaddlePaddle provides a special layer `layer.data` for reading data. Let us create a data layer for reading images and connect it to a classification network created using one of above three functions.  We also need a cost layer for training the model.
Y
Yuanpeng 已提交
239

L
Luo Tao 已提交
240 241
```python
paddle.init(use_gpu=False, trainer_count=1)
Y
Yuanpeng 已提交
242

L
Luo Tao 已提交
243 244 245 246
images = paddle.layer.data(
    name='pixel', type=paddle.data_type.dense_vector(784))
label = paddle.layer.data(
    name='label', type=paddle.data_type.integer_value(10))
Y
Yuanpeng 已提交
247

L
Luo Tao 已提交
248 249 250
predict = softmax_regression(images)
#predict = multilayer_perceptron(images) # uncomment for MLP
#predict = convolutional_neural_network(images) # uncomment for LeNet5
Y
Yuanpeng 已提交
251

L
Luo Tao 已提交
252
cost = paddle.layer.classification_cost(input=predict, label=label)
Y
Yuanpeng 已提交
253 254
```

L
Luo Tao 已提交
255
Now, it is time to specify training parameters. The number 0.9 in the following `Momentum` optimizer means that 90% of the current the momentum comes from the momentum of the previous iteration.
Y
Yuanpeng 已提交
256

L
Luo Tao 已提交
257 258
```python
parameters = paddle.parameters.create(cost)
Y
Yuanpeng 已提交
259

L
Luo Tao 已提交
260 261 262 263
optimizer = paddle.optimizer.Momentum(
    learning_rate=0.1 / 128.0,
    momentum=0.9,
    regularization=paddle.optimizer.L2Regularization(rate=0.0005 * 128))
Y
Yuanpeng 已提交
264

L
Luo Tao 已提交
265 266 267
trainer = paddle.trainer.SGD(cost=cost,
                             parameters=parameters,
                             update_equation=optimizer)
Y
Yuanpeng 已提交
268 269
```

L
Luo Tao 已提交
270
Then we specify the training data `paddle.dataset.movielens.train()` and testing data `paddle.dataset.movielens.test()`.  These two functions are *reader creators*, once called, returns a *reader*.  A reader is a Python function, which, once called, returns a Python generator, which yields instances of data.  
Y
Yuanpeng 已提交
271

L
Luo Tao 已提交
272
Here `shuffle` is a reader decorator, which takes a reader A as its parameter, and returns a new reader B, where B calls A to read in `buffer_size` data instances everytime into a buffer, then shuffles and yield instances in the buffer.  If you want very shuffled data, try use a larger buffer size. 
Y
Yuanpeng 已提交
273

L
Luo Tao 已提交
274
`batch` is a special decorator, whose input is a reader and output is a *batch reader*, which doesn't yield an instance at a time, but a minibatch.
Y
Yuanpeng 已提交
275

L
Luo Tao 已提交
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
```python
lists = []

def event_handler(event):
    if isinstance(event, paddle.event.EndIteration):
        if event.batch_id % 100 == 0:
            print "Pass %d, Batch %d, Cost %f, %s" % (
                event.pass_id, event.batch_id, event.cost, event.metrics)
    if isinstance(event, paddle.event.EndPass):
        result = trainer.test(reader=paddle.reader.batched(
            paddle.dataset.mnist.test(), batch_size=128))
        print "Test with Pass %d, Cost %f, %s\n" % (
            event.pass_id, result.cost, result.metrics)
        lists.append((event.pass_id, result.cost,
                      result.metrics['classification_error_evaluator']))

trainer.train(
    reader=paddle.reader.batched(
        paddle.reader.shuffle(
            paddle.dataset.mnist.train(), buf_size=8192),
        batch_size=128),
    event_handler=event_handler,
    num_passes=100)
Y
Yuanpeng 已提交
299 300
```

L
Luo Tao 已提交
301
During training, `trainer.train` invokes `event_handler` for certain events. This gives us a chance to print the training progress.
Y
Yuanpeng 已提交
302 303

```
L
Luo Tao 已提交
304 305 306 307 308 309
# Pass 0, Batch 0, Cost 2.780790, {'classification_error_evaluator': 0.9453125}
# Pass 0, Batch 100, Cost 0.635356, {'classification_error_evaluator': 0.2109375}
# Pass 0, Batch 200, Cost 0.326094, {'classification_error_evaluator': 0.1328125}
# Pass 0, Batch 300, Cost 0.361920, {'classification_error_evaluator': 0.1015625}
# Pass 0, Batch 400, Cost 0.410101, {'classification_error_evaluator': 0.125}
# Test with Pass 0, Cost 0.326659, {'classification_error_evaluator': 0.09470000118017197}
Y
Yuanpeng 已提交
310 311
```

L
Luo Tao 已提交
312
After the training, we can check the model's prediction accuracy.
Y
Yuanpeng 已提交
313 314

```
L
Luo Tao 已提交
315 316 317 318
# find the best pass
best = sorted(lists, key=lambda list: float(list[1]))[0]
print 'Best pass is %s, testing Avgcost is %s' % (best[0], best[1])
print 'The classification accuracy is %.2f%%' % (100 - float(best[2]) * 100)
Y
Yuanpeng 已提交
319 320
```

L
Luo Tao 已提交
321 322
Usually, with MNIST data, the softmax regression model can get accuracy around 92.34%, MLP can get about 97.66%, and convolution network can get up to around 99.20%.  Convolution layers have been widely considered a great invention for image processsing.

Y
Yuanpeng 已提交
323 324

## Conclusion
325
This tutorial describes a few basic Deep Learning models viz. Softmax regression, Multilayer Perceptron Network and Convolutional Neural Network. The subsequent tutorials will derive more sophisticated models from these. So it is crucial to understand these models for future learning. When our model evolved from a simple softmax regression to slightly complex Convolutional Neural Network, the recognition accuracy on the MNIST data set achieved large improvement in accuracy. This is due to the Convolutional layers' local connections and parameter sharing. While learning new models in the future, we encourage the readers to understand the key ideas that lead a new model to improve results of an old one. Moreover, this tutorial introduced the basic flow of PaddlePaddle model design, starting with a dataprovider, model layer construction, to final training and prediction. Readers can leverage the flow used in this MNIST handwritten digit classification example and experiment with different data and network architectures to train models for classification tasks of their choice.
Y
Yuanpeng 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341

## References

1. LeCun, Yann, Léon Bottou, Yoshua Bengio, and Patrick Haffner. ["Gradient-based learning applied to document recognition."](http://ieeexplore.ieee.org/abstract/document/726791/) Proceedings of the IEEE 86, no. 11 (1998): 2278-2324.
2. Wejéus, Samuel. ["A Neural Network Approach to Arbitrary SymbolRecognition on Modern Smartphones."](http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A753279&dswid=-434) (2014).
3. Decoste, Dennis, and Bernhard Schölkopf. ["Training invariant support vector machines."](http://link.springer.com/article/10.1023/A:1012454411458) Machine learning 46, no. 1-3 (2002): 161-190.
4. Simard, Patrice Y., David Steinkraus, and John C. Platt. ["Best Practices for Convolutional Neural Networks Applied to Visual Document Analysis."](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.160.8494&rep=rep1&type=pdf) In ICDAR, vol. 3, pp. 958-962. 2003.
5. Salakhutdinov, Ruslan, and Geoffrey E. Hinton. ["Learning a Nonlinear Embedding by Preserving Class Neighbourhood Structure."](http://www.jmlr.org/proceedings/papers/v2/salakhutdinov07a/salakhutdinov07a.pdf) In AISTATS, vol. 11. 2007.
6. Cireşan, Dan Claudiu, Ueli Meier, Luca Maria Gambardella, and Jürgen Schmidhuber. ["Deep, big, simple neural nets for handwritten digit recognition."](http://www.mitpressjournals.org/doi/abs/10.1162/NECO_a_00052) Neural computation 22, no. 12 (2010): 3207-3220.
7. Deng, Li, Michael L. Seltzer, Dong Yu, Alex Acero, Abdel-rahman Mohamed, and Geoffrey E. Hinton. ["Binary coding of speech spectrograms using a deep auto-encoder."](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.185.1908&rep=rep1&type=pdf) In Interspeech, pp. 1692-1695. 2010.
8. Kégl, Balázs, and Róbert Busa-Fekete. ["Boosting products of base classifiers."](http://dl.acm.org/citation.cfm?id=1553439) In Proceedings of the 26th Annual International Conference on Machine Learning, pp. 497-504. ACM, 2009.
9. Rosenblatt, Frank. ["The perceptron: A probabilistic model for information storage and organization in the brain."](http://psycnet.apa.org/journals/rev/65/6/386/) Psychological review 65, no. 6 (1958): 386.
10. Bishop, Christopher M. ["Pattern recognition."](http://s3.amazonaws.com/academia.edu.documents/30428242/bg0137.pdf?AWSAccessKeyId=AKIAJ56TQJRTWSMTNPEA&Expires=1484816640&Signature=85Ad6%2Fca8T82pmHzxaSXermovIA%3D&response-content-disposition=inline%3B%20filename%3DPattern_recognition_and_machine_learning.pdf) Machine Learning 128 (2006): 1-58.

<br/>
<a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/"><img alt="知识共享许可协议" style="border-width:0" src="https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png" /></a><br /><span xmlns:dct="http://purl.org/dc/terms/" href="http://purl.org/dc/dcmitype/Text" property="dct:title" rel="dct:type">This book</span> is created by <a xmlns:cc="http://creativecommons.org/ns#" href="http://book.paddlepaddle.org" property="cc:attributionName" rel="cc:attributionURL">PaddlePaddle</a>, and uses <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">Shared knowledge signature - non commercial use-Sharing 4.0 International Licensing Protocal</a>.
342

Y
Yuanpeng 已提交
343 344
</div>
<!-- You can change the lines below now. -->
345

Y
Yuanpeng 已提交
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
<script type="text/javascript">
marked.setOptions({
  renderer: new marked.Renderer(),
  gfm: true,
  breaks: false,
  smartypants: true,
  highlight: function(code, lang) {
    code = code.replace(/&amp;/g, "&")
    code = code.replace(/&gt;/g, ">")
    code = code.replace(/&lt;/g, "<")
    code = code.replace(/&nbsp;/g, " ")
    return hljs.highlightAuto(code, [lang]).value;
  }
});
document.getElementById("context").innerHTML = marked(
		document.getElementById("markdown").innerHTML)
</script>
</body>