AssertionError: The parameter of my_classifier (type is InnerProduct) is not set. You need to use python package of caffe to set the default value.
Created by: imistyrain
转换resnet50模型(来自caffe-model-zoo),报错
register layer[ROIPooling]
register layer[PriorBox]
register layer[Permute]
register layer[DetectionOutput]
register layer[Normalize]
register layer[Select]
register layer[ShuffleChannel]
register layer[ConvolutionDepthwise]
register layer[Axpy]
Now translating model from caffe to paddle.
cost: 1.406264305114746
Ignoring parameters for non-existent layer: fc1000
Total nodes: 229
squeeze idx:1, with kind:Convolution,name:conv1
Traceback (most recent call last):
File "/usr/local/bin/x2paddle", line 9, in <module>
load_entry_point('x2paddle==0.4.5', 'console_scripts', 'x2paddle')()
File "/home/***/CNN/X2Paddle/x2paddle/convert.py", line 211, in main
args.caffe_proto)
File "/home/***/CNN/X2Paddle/x2paddle/convert.py", line 137, in caffe2paddle
mapper = CaffeOpMapper(model)
File "/home/***/CNN/X2Paddle/x2paddle/op_mapper/caffe_op_mapper.py", line 46, in __init__
func(node)
File "/home/***/CNN/X2Paddle/x2paddle/op_mapper/caffe_op_mapper.py", line 346, in InnerProduct
node.layer_name, node.layer_type)
AssertionError: The parameter of my_classifier (type is InnerProduct) is not set. You need to use python package of caffe to set the default value.
转换用的命令为:
x2paddle --framework=caffe --prototxt=resnet50.prototxt --weight=resnet50.caffemodel --save_dir=pd_model --caffe_proto=***/build/include/caffe/proto/caffe_pb2.py
0.3之前用的caffe2fluid还好好的呢,怎么升级了就不兼容了?