Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
X2Paddle
提交
f08b1f3f
X
X2Paddle
项目概览
PaddlePaddle
/
X2Paddle
大约 1 年 前同步成功
通知
328
Star
698
Fork
167
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
26
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
X
X2Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
26
Issue
26
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f08b1f3f
编写于
12月 29, 2020
作者:
J
Jason
提交者:
GitHub
12月 29, 2020
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #472 from SunAhong1993/lstm
Lstm
上级
a94afe1a
95519af0
变更
27
隐藏空白更改
内联
并排
Showing
27 changed file
with
543 addition
and
340 deletion
+543
-340
README.md
README.md
+1
-9
docs/introduction/op_list.md
docs/introduction/op_list.md
+3
-2
docs/introduction/x2paddle_model_zoo.md
docs/introduction/x2paddle_model_zoo.md
+27
-24
x2paddle/core/program.py
x2paddle/core/program.py
+17
-13
x2paddle/core/util.py
x2paddle/core/util.py
+48
-1
x2paddle/decoder/onnx_decoder.py
x2paddle/decoder/onnx_decoder.py
+1
-1
x2paddle/op_mapper/dygraph/caffe2paddle/caffe_op_mapper.py
x2paddle/op_mapper/dygraph/caffe2paddle/caffe_op_mapper.py
+25
-36
x2paddle/op_mapper/dygraph/onnx2paddle/opset9/opset.py
x2paddle/op_mapper/dygraph/onnx2paddle/opset9/opset.py
+19
-43
x2paddle/op_mapper/dygraph/pytorch2paddle/aten.py
x2paddle/op_mapper/dygraph/pytorch2paddle/aten.py
+111
-66
x2paddle/op_mapper/dygraph/pytorch2paddle/prim.py
x2paddle/op_mapper/dygraph/pytorch2paddle/prim.py
+27
-3
x2paddle/op_mapper/dygraph/pytorch2paddle/pytorch_custom_layer/gather.py
...per/dygraph/pytorch2paddle/pytorch_custom_layer/gather.py
+0
-1
x2paddle/op_mapper/dygraph/pytorch2paddle/pytorch_op_mapper.py
...dle/op_mapper/dygraph/pytorch2paddle/pytorch_op_mapper.py
+8
-4
x2paddle/op_mapper/dygraph/tf2paddle/tf_op_mapper.py
x2paddle/op_mapper/dygraph/tf2paddle/tf_op_mapper.py
+17
-25
x2paddle/op_mapper/static/caffe2paddle/caffe_op_mapper.py
x2paddle/op_mapper/static/caffe2paddle/caffe_op_mapper.py
+8
-12
x2paddle/op_mapper/static/onnx2paddle/opset9/opset.py
x2paddle/op_mapper/static/onnx2paddle/opset9/opset.py
+15
-24
x2paddle/op_mapper/static/tf2paddle/tf_op_mapper.py
x2paddle/op_mapper/static/tf2paddle/tf_op_mapper.py
+8
-11
x2paddle/optimizer/fusion/dygraph/bn_scale_fuser.py
x2paddle/optimizer/fusion/dygraph/bn_scale_fuser.py
+56
-9
x2paddle/optimizer/fusion/dygraph/reshape_fuser.py
x2paddle/optimizer/fusion/dygraph/reshape_fuser.py
+2
-2
x2paddle/optimizer/fusion/dygraph/trace_fc_fuser.py
x2paddle/optimizer/fusion/dygraph/trace_fc_fuser.py
+1
-1
x2paddle/optimizer/fusion/static/bn_scale_fuser.py
x2paddle/optimizer/fusion/static/bn_scale_fuser.py
+32
-14
x2paddle/optimizer/pattern_matcher.py
x2paddle/optimizer/pattern_matcher.py
+17
-3
x2paddle/optimizer/pytorch_code_optimizer/__init__.py
x2paddle/optimizer/pytorch_code_optimizer/__init__.py
+2
-2
x2paddle/optimizer/pytorch_code_optimizer/hierachical_tree.py
...ddle/optimizer/pytorch_code_optimizer/hierachical_tree.py
+34
-11
x2paddle/optimizer/pytorch_code_optimizer/layer_code_generator.py
.../optimizer/pytorch_code_optimizer/layer_code_generator.py
+38
-7
x2paddle/optimizer/pytorch_code_optimizer/module_graph.py
x2paddle/optimizer/pytorch_code_optimizer/module_graph.py
+25
-15
x2paddle/optimizer/pytorch_code_optimizer/parameter_tree.py
x2paddle/optimizer/pytorch_code_optimizer/parameter_tree.py
+0
-0
x2paddle/optimizer/pytorch_code_optimizer/subgraphs_union.py
x2paddle/optimizer/pytorch_code_optimizer/subgraphs_union.py
+1
-1
未找到文件。
README.md
浏览文件 @
f08b1f3f
...
...
@@ -10,7 +10,7 @@ X2Paddle在多个主流的CV模型上,测试过TensorFlow/Caffe/ONNX/PyTorch
## 环境依赖
python == 2.7 | python >= 3.5
paddlepaddle 2.0
-rc
或者 develop
paddlepaddle 2.0
.0-rc1
或者 develop
**按需安装以下依赖**
tensorflow : tensorflow == 1.14.0
...
...
@@ -93,12 +93,6 @@ X2Paddle提供了工具解决如下问题,详见[tools/README.md](tools/README
6.
[
X2Paddle添加内置的Caffe自定义层
](
./docs/user_guides/add_caffe_custom_layer.md
)
## 更新历史
2019.
08.05
1.
统一tensorflow/caffe/onnx模型转换代码和对外接口
2.
解决上一版caffe2fluid无法转换多分支模型的问题
3.
解决Windows上保存模型无法加载的问题
4.
新增optimizer,优化代码结构,合并conv、batch_norm的bias和激活函数
2020.
12.09
1.
新增PyTorch2Paddle转换方式,转换得到Paddle动态图代码,并动转静获得inference_model。
方式一:trace方式,转换后的代码有模块划分,每个模块的功能与PyTorch相同。
...
...
@@ -107,8 +101,6 @@ X2Paddle提供了工具解决如下问题,详见[tools/README.md](tools/README
3.
新增TensorFlow op(14个):Neg、Greater、FloorMod、LogicalAdd、Prd、Equal、Conv3D、Ceil、AddN、DivNoNan、Where、MirrorPad、Size、TopKv2
4.
新增Optimizer模块,主要包括op融合、op消除功能,转换后的代码可读性更强,进行预测时耗时更短。
**如果你需要之前版本的tensorflow2fluid/caffe2fluid/onnx2fluid,可以继续访问release-0.9分支,获取之前版本的代码使用。**
## Acknowledgements
...
...
docs/introduction/op_list.md
浏览文件 @
f08b1f3f
...
...
@@ -61,7 +61,7 @@
| 41 | MatMul | 42 | Sum | 43 | Transpose | 44 | BatchNormalization |
| 45 | Squeeze | 46 | Equal | 47 | Identity | 48 | GlobalAveragePool |
| 49 | MaxPool | 50 | Conv | 51 | Gemm | 52 | NonZero |
| 53 | Abs | 54 | Floor |
| 53 | Abs | 54 | Floor |
52 | ArgMax |
## PyTorch
Aten:
...
...
@@ -93,7 +93,8 @@ Aten:
| 93 | aten::sub | 94 | aten::t |95|aten::tanh|96|aten::split|
| 97 | aten::transpose | 98 | aten::to |99|aten::type
\_
as|100|aten::unsqueeze|
| 101 | aten::upsample
\_
bilinear2d | 102 | aten::values |103|aten::view|104|aten::warn|
| 105 | aten::where | 106 | aten::zeros |107|aten::zeros
\_
like|||
| 105 | aten::where | 106 | aten::zeros |107|aten::zeros
\_
like|108|aten::bmm|
| 109 | aten::sub
\_
| 110 | aten:erf |111|aten::lstm|112|aten::gather|
Prim:
| 序号 | OP | 序号 | OP | 序号 | OP | 序号 | OP |
...
...
docs/introduction/x2paddle_model_zoo.md
浏览文件 @
f08b1f3f
...
...
@@ -5,28 +5,28 @@
## TensorFlow
| 模型 | 代码 |
备注 |
|------|----------|
------|
| SqueezeNet |
[
code
](
https://github.com/tensorflow/tpu/blob/master/models/official/squeezenet/squeezenet_model.py
)
|
-|
| MobileNet_V1 |
[
code
](
https://github.com/tensorflow/models/tree/master/research/slim/nets
)
|
-|
| MobileNet_V2 |
[
code
](
https://github.com/tensorflow/models/tree/master/research/slim/nets
)
|
-|
| ShuffleNet |
[
code
](
https://github.com/TropComplique/shufflenet-v2-tensorflow
)
|
-|
| mNASNet |
[
code
](
https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet
)
|
-|
| EfficientNet |
[
code
](
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
)
|
-|
| Inception_V3 |
[
code
](
https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_v3.py
)
|
-|
| Inception_V4 |
[
code
](
https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_v4.py
)
|
-|
| Inception_ResNet_V2 |
[
code
](
https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_resnet_v2.py
)
|
-|
| VGG16 |
[
code
](
https://github.com/tensorflow/models/tree/master/research/slim/nets
)
|
-|
| ResNet_V1_101 |
[
code
](
https://github.com/tensorflow/models/tree/master/research/slim/nets
)
|
-|
| ResNet_V2_101 |
[
code
](
https://github.com/tensorflow/models/tree/master/research/slim/nets
)
|
-|
| UNet |
[
code1
](
https://github.com/jakeret/tf_unet
)
/
[
code2
](
https://github.com/lyatdawn/Unet-Tensorflow
)
|
-|
| MTCNN |
[
code
](
https://github.com/AITTSMD/MTCNN-Tensorflow
)
|
-|
| YOLO-V3|
[
code
](
https://github.com/YunYang1994/tensorflow-yolov3
)
|
-|
| FALSR |
[
code
](
https://github.com/xiaomi-automl/FALSR
)
|
需使用参数without_data_format_optimization |
| DCSCN |
[
code
](
https://modelzoo.co/model/dcscn-super-resolution
)
|
需使用参数without_data_format_optimization |
| Bert(albert) |
[
code
](
https://github.com/google-research/albert#pre-trained-models
)
|
需使用参数without_data_format_optimization |
| Bert(chinese_L-12_H-768_A-12) |
[
code
](
https://github.com/google-research/bert#pre-trained-models
)
|
需使用参数without_data_format_optimization |
| Bert(multi_cased_L-12_H-768_A-12) |
[
code
](
https://github.com/google-research/bert#pre-trained-models
)
|
需使用参数without_data_format_optimization |
| 模型 | 代码 |
|------|----------|
| SqueezeNet |
[
code
](
https://github.com/tensorflow/tpu/blob/master/models/official/squeezenet/squeezenet_model.py
)
|
| MobileNet_V1 |
[
code
](
https://github.com/tensorflow/models/tree/master/research/slim/nets
)
|
| MobileNet_V2 |
[
code
](
https://github.com/tensorflow/models/tree/master/research/slim/nets
)
|
| ShuffleNet |
[
code
](
https://github.com/TropComplique/shufflenet-v2-tensorflow
)
|
| mNASNet |
[
code
](
https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet
)
|
| EfficientNet |
[
code
](
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
)
|
| Inception_V3 |
[
code
](
https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_v3.py
)
|
| Inception_V4 |
[
code
](
https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_v4.py
)
|
| Inception_ResNet_V2 |
[
code
](
https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_resnet_v2.py
)
|
| VGG16 |
[
code
](
https://github.com/tensorflow/models/tree/master/research/slim/nets
)
|
| ResNet_V1_101 |
[
code
](
https://github.com/tensorflow/models/tree/master/research/slim/nets
)
|
| ResNet_V2_101 |
[
code
](
https://github.com/tensorflow/models/tree/master/research/slim/nets
)
|
| UNet |
[
code1
](
https://github.com/jakeret/tf_unet
)
/
[
code2
](
https://github.com/lyatdawn/Unet-Tensorflow
)
|
| MTCNN |
[
code
](
https://github.com/AITTSMD/MTCNN-Tensorflow
)
|
| YOLO-V3|
[
code
](
https://github.com/YunYang1994/tensorflow-yolov3
)
|
| FALSR |
[
code
](
https://github.com/xiaomi-automl/FALSR
)
|
| DCSCN |
[
code
](
https://modelzoo.co/model/dcscn-super-resolution
)
|
| Bert(albert) |
[
code
](
https://github.com/google-research/albert#pre-trained-models
)
|
| Bert(chinese_L-12_H-768_A-12) |
[
code
](
https://github.com/google-research/bert#pre-trained-models
)
|
| Bert(multi_cased_L-12_H-768_A-12) |
[
code
](
https://github.com/google-research/bert#pre-trained-models
)
|
## Caffe
...
...
@@ -72,8 +72,8 @@
| EfficientNet |
[
pytorch(personal practice)
](
https://github.com/rwightman/gen-efficientnet-pytorch
)
|9|
| SqueezeNet |
[
onnx official
](
https://s3.amazonaws.com/download.onnx/models/opset_9/squeezenet.tar.gz
)
|9|
|Ultra-Light-Fast-Generic-Face-Detector-1MB|
[
onnx_model
](
https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB/tree/master/models/onnx
)
|9 |
|BERT|
[
pytorch(huggingface)
](
https://github.com/huggingface/transformers/blob/master/notebooks/04-onnx-export.ipynb
)
|11|转换时需指定input shape,见
[
文档Q3
](
FAQ.md
)
|
|GPT2|
[
pytorch(huggingface)
](
https://github.com/huggingface/transformers/blob/master/notebooks/04-onnx-export.ipynb
)
|11|转换时需指定input shape,见
[
文档Q3
](
FAQ.md
)
|
|BERT|
[
pytorch(huggingface)
](
https://github.com/huggingface/transformers/blob/master/notebooks/04-onnx-export.ipynb
)
|11|转换时需指定input shape,见
[
文档Q3
](
../user_guides/
FAQ.md
)
|
|GPT2|
[
pytorch(huggingface)
](
https://github.com/huggingface/transformers/blob/master/notebooks/04-onnx-export.ipynb
)
|11|转换时需指定input shape,见
[
文档Q3
](
../user_guides/
FAQ.md
)
|
## PyTorch
...
...
@@ -96,3 +96,6 @@
| FlaubertModel |
[
code
](
https://huggingface.co/transformers/model_doc/flaubert.html
)
|只支持trace模式|
| Roberta|
[
code
](
https://huggingface.co/transformers/model_doc/roberta.html
)
|只支持trace模式|
| XLMRobertaForTokenClassification|
[
code
](
https://huggingface.co/transformers/model_doc/xlmroberta.html
)
|只支持trace模式|
| EasyOCR_detector|
[
code
](
https://github.com/JaidedAI/EasyOCR/blob/master/easyocr/detection.py
)
|-|
| EasyOCR_recognizer|
[
code
](
https://github.com/JaidedAI/EasyOCR/blob/master/easyocr/recognition.py
)
|-|
x2paddle/core/program.py
浏览文件 @
f08b1f3f
...
...
@@ -26,6 +26,7 @@ import six
import
pickle
import
numpy
as
np
from
os
import
path
as
osp
from
x2paddle.core.util
import
*
class
PaddleLayer
(
object
):
...
...
@@ -210,6 +211,8 @@ class PaddleGraph(object):
layer_id
,
0
)
==
0
and
layer
.
kernel
!=
"prim.assert"
\
and
layer
.
kernel
!=
"prim.exception"
\
and
layer
.
kernel
!=
"prim.warnings"
:
if
layer
.
kernel
==
"paddle.to_tensor"
:
self
.
inputs_info
.
pop
(
layer
.
outputs
[
0
])
invalid_list
.
append
(
layer_id
)
for
layer_id
in
invalid_list
:
self
.
layers
.
pop
(
layer_id
)
...
...
@@ -272,7 +275,7 @@ class PaddleGraph(object):
def
gen_dygraph_model
(
self
,
save_dir
,
jit_type
=
None
):
if
jit_type
==
"trace"
:
from
x2paddle.optimizer.code_optimizer
import
HierarchicalTree
from
x2paddle.optimizer.
pytorch_
code_optimizer
import
HierarchicalTree
hierarchical_tree
=
HierarchicalTree
(
self
)
for
layer_id
,
layer
in
self
.
layers
.
items
():
hierarchical_tree
.
insert
(
layer
)
...
...
@@ -280,7 +283,7 @@ class PaddleGraph(object):
self
.
dump_dygraph_parameter
(
save_dir
)
else
:
if
self
.
source_type
==
"pytorch"
:
from
x2paddle.optimizer.code_optimizer
import
ModuleGraph
from
x2paddle.optimizer.
pytorch_
code_optimizer
import
ModuleGraph
module_graph
=
ModuleGraph
(
self
)
module_graph
.
save_source_files
(
save_dir
)
self
.
dump_dygraph_parameter
(
save_dir
)
...
...
@@ -324,12 +327,10 @@ class PaddleGraph(object):
write_code
(
f
,
[
"from paddle.fluid.initializer import Constant"
,
"from paddle.fluid.param_attr import ParamAttr"
,
"import paddle.fluid as fluid"
,
custom_import
,
"import paddle"
,
"import math"
,
""
,
"import paddle"
,
"import math"
,
""
,
],
indent
=
0
)
if
self
.
custom_code
is
not
None
:
...
...
@@ -346,6 +347,8 @@ class PaddleGraph(object):
],
indent
=
1
)
for
layer_id
,
layer
in
self
.
layers
.
items
():
if
layer
.
kernel
.
startswith
(
"paddle"
):
remove_default_attrs
(
layer
.
kernel
,
layer
.
attrs
)
edges_in
=
self
.
edges_in
.
get
(
layer_id
,
[])
edges_out
=
self
.
edges_out
.
get
(
layer_id
,
[])
if
len
(
edges_in
)
==
0
and
len
(
edges_out
)
==
0
:
...
...
@@ -425,8 +428,7 @@ class PaddleGraph(object):
continue
if
layer
.
kernel
==
"paddle.to_tensor"
:
data
=
layer
.
attrs
[
"data"
]
if
not
data
.
startswith
(
"params["
):
self
.
inputs
.
append
(
data
)
self
.
inputs
.
append
(
data
)
if
len
(
layer
.
blocks
)
>
0
:
for
block
in
layer
.
blocks
:
block
.
get_dygraph_inputs
()
...
...
@@ -473,10 +475,7 @@ class PaddleGraph(object):
custom_import
=
""
self
.
head
=
gen_codes
(
[
"from paddle.fluid.initializer import Constant"
,
"from paddle.fluid.param_attr import ParamAttr"
,
"import paddle"
,
"import paddle.fluid as fluid"
,
"import math"
,
custom_import
,
""
,
...
...
@@ -548,6 +547,8 @@ class PaddleGraph(object):
gen_head
()
for
layer_id
,
layer
in
self
.
layers
.
items
():
if
layer
.
kernel
.
startswith
(
"paddle"
):
remove_default_attrs
(
layer
.
kernel
,
layer
.
attrs
)
if
(
"paddle.nn"
in
layer
.
kernel
and
"functional"
not
in
layer
.
kernel
)
or
layer
.
kernel
==
"paddle.to_tensor"
or
\
layer
.
kernel
.
startswith
(
"custom_layer"
)
or
\
...
...
@@ -578,7 +579,10 @@ class PaddleGraph(object):
elif
len
(
layer
.
outputs
)
==
2
:
line
=
layer
.
outputs
[
1
]
else
:
line
=
','
.
join
(
layer
.
outputs
[
1
:])
if
layer
.
kernel
==
"paddle.nn.LSTM"
:
line
=
"{}, ({})"
.
format
(
layer
.
outputs
[
1
],
', '
.
join
(
layer
.
outputs
[
-
2
:]))
else
:
line
=
','
.
join
(
layer
.
outputs
[
1
:])
if
layer
.
kernel
==
"paddle.to_tensor"
and
layer
.
attrs
[
"data"
].
startswith
(
"params["
):
line
+=
" = self.{}"
.
format
(
layer
.
outputs
[
0
])
...
...
x2paddle/core/util.py
浏览文件 @
f08b1f3f
# -*- coding:UTF-8 -*-
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
...
...
@@ -14,15 +15,61 @@
import
numpy
import
math
import
os
import
inspect
def
string
(
param
):
""" 生成字符串。
"""
return
"
\'
{}
\'
"
.
format
(
param
)
def
name_generator
(
nn_name
,
nn_name2id
):
""" 生成paddle.nn类op的名字。
Args:
nn_name (str): 名字。
nn_name2id (dict): key为名字,value为名字出现的次数-1。
"""
if
nn_name
in
nn_name2id
:
nn_name2id
[
nn_name
]
+=
1
else
:
nn_name2id
[
nn_name
]
=
0
real_nn_name
=
nn_name
+
str
(
nn_name2id
[
nn_name
])
return
real_nn_name
\ No newline at end of file
return
real_nn_name
def
remove_default_attrs
(
kernel
,
attrs
):
""" 删除每个OP的默认参数。
Args:
kernel (str): OP的类型名字。
attrs (dict): 目前该OP所包含的参数, key为参数名,value为参数值。
"""
def
get_default_args
(
func
):
signature
=
inspect
.
signature
(
func
)
return
{
k
:
v
.
default
for
k
,
v
in
signature
.
parameters
.
items
()
if
v
.
default
is
not
inspect
.
Parameter
.
empty
}
is_func
=
True
if
"paddle.nn"
in
kernel
and
"functional"
not
in
kernel
:
is_func
=
False
import
paddle
obj
=
paddle
for
i
,
part
in
enumerate
(
kernel
.
split
(
"."
)):
if
i
==
0
:
continue
obj
=
getattr
(
obj
,
part
)
if
is_func
:
func
=
obj
else
:
func
=
obj
.
__init__
default_attrs
=
get_default_args
(
func
)
for
default_k
,
default_v
in
default_attrs
.
items
():
if
default_k
in
attrs
:
if
(
isinstance
(
attrs
[
default_k
],
list
)
or
isinstance
(
attrs
[
default_k
],
tuple
))
\
and
not
is_func
:
if
len
(
set
(
attrs
[
default_k
]))
==
1
:
attrs
[
default_k
]
=
attrs
[
default_k
][
0
]
if
default_v
==
attrs
[
default_k
]:
attrs
.
pop
(
default_k
)
\ No newline at end of file
x2paddle/decoder/onnx_decoder.py
浏览文件 @
f08b1f3f
...
...
@@ -571,4 +571,4 @@ class ONNXDecoder(object):
node
.
input
[
i
]
=
self
.
make_variable_name
(
node
.
input
[
i
])
for
i
in
range
(
len
(
node
.
output
)):
node
.
output
[
i
]
=
self
.
make_variable_name
(
node
.
output
[
i
])
return
model
\ No newline at end of file
return
model
x2paddle/op_mapper/dygraph/caffe2paddle/caffe_op_mapper.py
浏览文件 @
f08b1f3f
...
...
@@ -367,57 +367,46 @@ class CaffeOpMapper(OpMapper):
output_size
=
kernel
)
else
:
layer_attrs
=
{
'
poo
l_size'
:
kernel
,
'
pool_
stride'
:
stride
,
'p
ool_p
adding'
:
pad
,
'
kerne
l_size'
:
kernel
,
'stride'
:
stride
,
'padding'
:
pad
,
'ceil_mode'
:
ceil_mode
,
'pool_type'
:
string
(
pool_type
),
'exclusive'
:
False
,
'global_pooling'
:
global_pool
,
}
self
.
paddle_graph
.
add_layer
(
"paddle.fluid.dygraph.Pool2D"
,
inputs
=
{
"input"
:
input
.
name
},
outputs
=
layer_outputs
,
**
layer_attrs
)
# layer_attrs = {
# 'kernel_size': kernel,
# 'stride': stride,
# 'padding': pad,
# 'ceil_mode': ceil_mode,
# }
# if params.pool == 0:
# self.paddle_graph.add_layer(
# "paddle.nn.MaxPool2D",
# inputs={"input": input.name},
# outputs=layer_outputs,
# **layer_attrs)
# else:
# layer_attrs["count_include_pad"] = True
# self.paddle_graph.add_layer(
# "paddle.nn.AvgPool2D",
# inputs={"input": input.name},
# outputs=layer_outputs,
# **layer_attrs)
if
params
.
pool
==
0
:
self
.
paddle_graph
.
add_layer
(
"paddle.nn.MaxPool2D"
,
inputs
=
{
"input"
:
input
.
name
},
outputs
=
layer_outputs
,
**
layer_attrs
)
else
:
self
.
paddle_graph
.
add_layer
(
"paddle.nn.AvgPool2D"
,
inputs
=
{
"input"
:
input
.
name
},
outputs
=
layer_outputs
,
**
layer_attrs
)
def
LRN
(
self
,
node
):
lrn_name
=
name_generator
(
"lrn"
,
self
.
nn_name2id
)
output_name
=
node
.
layer_name
layer_outputs
=
[
lrn_name
,
output_name
]
assert
len
(
node
.
inputs
)
==
1
,
"The count of LRN node
\'
s input is not 1."
input
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
params
=
node
.
layer
.
lrn_param
assert
params
.
local_size
%
2
==
1
alpha
=
params
.
alpha
/
float
(
params
.
local_size
)
layer_attrs
=
{
"
n"
:
params
.
local_size
,
"k"
:
params
.
k
,
"
size"
:
params
.
local_size
,
"k"
:
params
.
k
,
"alpha"
:
alpha
,
"beta"
:
params
.
beta
,
"beta"
:
params
.
beta
}
self
.
paddle_graph
.
add_layer
(
"
fluid.layers.lrn"
,
"
paddle.nn.LocalResponseNorm"
,
inputs
=
{
"input"
:
input
.
name
},
outputs
=
[
node
.
layer_name
]
,
outputs
=
layer_outputs
,
**
layer_attrs
)
def
InnerProduct
(
self
,
node
):
linear_name
=
name_generator
(
"linear"
,
self
.
nn_name2id
)
output_name
=
node
.
layer_name
...
...
@@ -1131,7 +1120,7 @@ class CaffeOpMapper(OpMapper):
input
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
params
=
node
.
layer
.
shuffle_channel_param
self
.
paddle_graph
.
add_layer
(
"fluid.layers.shuffle_channel"
,
"
paddle.
fluid.layers.shuffle_channel"
,
inputs
=
{
"x"
:
input
.
name
},
outputs
=
[
node
.
layer_name
],
group
=
params
.
group
)
...
...
x2paddle/op_mapper/dygraph/onnx2paddle/opset9/opset.py
浏览文件 @
f08b1f3f
...
...
@@ -14,8 +14,6 @@
from
x2paddle.decoder.onnx_decoder
import
ONNXGraph
,
ONNXGraphNode
,
ONNXGraphDataNode
from
x2paddle.core.graph
import
GraphNode
from
x2paddle.core.fluid_code
import
Layer
from
x2paddle.core.fluid_code
import
FluidCode
from
x2paddle.core.util
import
*
from
functools
import
reduce
import
numpy
as
np
...
...
@@ -86,7 +84,7 @@ class OpSet9():
elementwise_ops
=
{
'Add'
:
'paddle.add'
,
'Div'
:
'paddle.divide'
,
'Sub'
:
'
fluid.layers.elementwise_sub
'
,
'Sub'
:
'
paddle.subtract
'
,
'Mul'
:
'paddle.multiply'
,
'Pow'
:
'paddle.pow'
,
}
...
...
@@ -281,16 +279,11 @@ class OpSet9():
inputs
=
{
"x"
:
var_hw
},
outputs
=
[
var_hw
],
dtype
=
string
(
'int32'
))
# inputs['size'] = var_hw
# TODO(syf): all use
inputs
[
'out_shape'
]
=
var_hw
ipt
=
inputs
.
pop
(
"x"
)
inputs
[
"input"
]
=
ipt
mode
=
node
.
get_attr
(
'mode'
,
'nearest'
)
attrs
.
update
({
"align_corners"
:
False
})
inputs
[
'size'
]
=
var_hw
attrs
=
{
"align_corners"
:
False
,
"mode"
:
string
(
node
.
get_attr
(
'mode'
,
'nearest'
))}
self
.
paddle_graph
.
add_layer
(
kernel
=
"
fluid.layers.resize_nearest
"
,
kernel
=
"
paddle.nn.functional.interpolate
"
,
inputs
=
inputs
,
outputs
=
[
node
.
name
],
**
attrs
)
...
...
@@ -356,7 +349,7 @@ class OpSet9():
'sampling_ratio'
:
sampling_ratio
,
}
self
.
paddle_graph
.
add_layer
(
'fluid.layers.roi_align'
,
'
paddle.
fluid.layers.roi_align'
,
inputs
=
{
'input'
:
val_x
.
name
,
'rois'
:
val_rois
.
name
},
outputs
=
[
node
.
name
],
...
...
@@ -376,7 +369,7 @@ class OpSet9():
'spatial_scale'
:
spatial_scale
,
}
self
.
paddle_graph
.
add_layer
(
'fluid.layers.roi_pool'
,
'
paddle.
fluid.layers.roi_pool'
,
inputs
=
{
'input'
:
val_x
.
name
,
'rois'
:
val_rois
.
name
},
outputs
=
[
node
.
name
],
...
...
@@ -405,7 +398,7 @@ class OpSet9():
layer_attrs
[
'data_format'
]
=
string
(
'NCHW'
)
layer_attrs
[
'value'
]
=
value
else
:
paddle_op
=
'fluid.layers.pad'
paddle_op
=
'
paddle.
fluid.layers.pad'
layer_attrs
[
"pad_value"
]
=
value
if
len
(
pads
)
==
4
:
paddings
=
np
.
array
(
pads
).
reshape
(
...
...
@@ -1062,40 +1055,23 @@ class OpSet9():
strides
[
1
])
paddings
=
pad_h
+
pad_w
paddle_op
=
'fluid.layers.pool{}d'
.
format
(
poolnd
)
assert
2
<=
poolnd
<=
3
,
'only pool2d and pool3d are supported'
op_name
=
name_generator
(
"pool"
,
self
.
nn_name2id
)
output_name
=
node
.
name
layer_outputs
=
[
op_name
,
output_name
]
paddle_op
=
'paddle.nn.AvgPool{}D'
.
format
(
poolnd
)
assert
1
<=
poolnd
<=
3
,
'only Pool1D, Pool2D and Pool3D are supported'
layer_attrs
=
{
"pool_size"
:
kernel_shape
,
"pool_type"
:
string
(
'avg'
),
"pool_stride"
:
strides
,
"pool_padding"
:
paddings
,
"kernel_size"
:
kernel_shape
,
"stride"
:
strides
,
"padding"
:
paddings
,
"ceil_mode"
:
ceil_mode
,
"exclusive"
:
'True'
,
"name"
:
string
(
node
.
name
)
}
self
.
paddle_graph
.
add_layer
(
paddle_op
,
inputs
=
{
'
input'
:
val_x
if
isinstance
(
val_x
,
str
)
else
val_x
.
name
},
outputs
=
[
node
.
name
]
,
inputs
=
{
'
x'
:
val_x
.
name
},
outputs
=
layer_outputs
,
**
layer_attrs
)
# TODO(syf): op has diff
# op_name = name_generator("pool", self.nn_name2id)
# output_name = node.name
# layer_outputs = [op_name, output_name]
# paddle_op = 'paddle.nn.Pool{}D'.format(poolnd)
# assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'
# layer_attrs = {
# "kernel_size": kernel_shape,
# "stride": strides,
# "padding": paddings,
# "ceil_mode": ceil_mode,
# "exclusive": 'True',
# }
# self.paddle_graph.add_layer(
# paddle_op,
# inputs={'x': val_x.name},
# outputs=layer_outputs,
# **layer_attrs)
@
print_mapping_info
def
Concat
(
self
,
node
):
...
...
@@ -1657,4 +1633,4 @@ class OpSet9():
'paddle.argmax'
,
inputs
=
{
"x"
:
val_x
.
name
},
outputs
=
[
node
.
name
],
**
layer_attrs
)
**
layer_attrs
)
\ No newline at end of file
x2paddle/op_mapper/dygraph/pytorch2paddle/aten.py
浏览文件 @
f08b1f3f
...
...
@@ -426,11 +426,11 @@ def aten_avg_pool2d(mapper, graph, node):
# 获取当前节点输入的list
current_inputs
=
list
(
layer_inputs
.
values
())
# 处理输入1,即%538
layer_attrs
[
"
poo
l_size"
]
=
mapper
.
attrs
[
inputs_name
[
1
]]
layer_attrs
[
"
kerne
l_size"
]
=
mapper
.
attrs
[
inputs_name
[
1
]]
# 处理输入2,即%539
layer_attrs
[
"
pool_
stride"
]
=
mapper
.
attrs
[
inputs_name
[
2
]]
layer_attrs
[
"stride"
]
=
mapper
.
attrs
[
inputs_name
[
2
]]
# 处理输入3,即%540
layer_attrs
[
"p
ool_p
adding"
]
=
mapper
.
attrs
[
inputs_name
[
3
]]
layer_attrs
[
"padding"
]
=
mapper
.
attrs
[
inputs_name
[
3
]]
# 处理输入4,即%273
layer_attrs
[
"ceil_mode"
]
=
mapper
.
attrs
[
inputs_name
[
4
]]
# 处理输入5,即%272
...
...
@@ -445,22 +445,13 @@ def aten_avg_pool2d(mapper, graph, node):
key
=
mapper
.
attrs
[
inputs_name
[
6
]],
value
=
None
)
# TODO(syf): The op has diff.
# self.paddle_graph.add_layer(
# kernel="paddle.nn.AvgPool2D",
# inputs={"input": input_name},
# outputs=layer_outputs,
# kernel_size=k_size[2:4],
# stride=strides[2:4],
# padding=string(pad_mode))
layer_attrs
[
"pool_type"
]
=
string
(
"avg"
)
graph
.
add_layer
(
"fluid.layers.pool2d
"
,
kernel
=
"paddle.nn.AvgPool2D
"
,
inputs
=
layer_inputs
,
outputs
=
layer_outputs
[
1
:]
,
outputs
=
layer_outputs
,
scope_name
=
scope_name
,
**
layer_attrs
)
return
current_inputs
,
current_outputs
def
aten_avg_pool3d
(
mapper
,
graph
,
node
):
...
...
@@ -493,11 +484,11 @@ def aten_avg_pool3d(mapper, graph, node):
# 获取当前节点输入的list
current_inputs
=
list
(
layer_inputs
.
values
())
# 处理输入1,即%538
layer_attrs
[
"
poo
l_size"
]
=
mapper
.
attrs
[
inputs_name
[
1
]]
layer_attrs
[
"
kerne
l_size"
]
=
mapper
.
attrs
[
inputs_name
[
1
]]
# 处理输入2,即%539
layer_attrs
[
"
pool_
stride"
]
=
mapper
.
attrs
[
inputs_name
[
2
]]
layer_attrs
[
"stride"
]
=
mapper
.
attrs
[
inputs_name
[
2
]]
# 处理输入3,即%540
layer_attrs
[
"p
ool_p
adding"
]
=
mapper
.
attrs
[
inputs_name
[
3
]]
layer_attrs
[
"padding"
]
=
mapper
.
attrs
[
inputs_name
[
3
]]
# 处理输入4,即%273
layer_attrs
[
"ceil_mode"
]
=
mapper
.
attrs
[
inputs_name
[
4
]]
# 处理输入5,即%272
...
...
@@ -512,20 +503,10 @@ def aten_avg_pool3d(mapper, graph, node):
key
=
mapper
.
attrs
[
inputs_name
[
6
]],
value
=
None
)
# TODO(syf): The op has diff.
# self.paddle_graph.add_layer(
# kernel="paddle.nn.AvgPool2D",
# inputs={"input": input_name},
# outputs=layer_outputs,
# kernel_size=k_size[2:4],
# stride=strides[2:4],
# padding=string(pad_mode))
layer_attrs
[
"pool_type"
]
=
string
(
"avg"
)
graph
.
add_layer
(
"fluid.layers.pool3d
"
,
kernel
=
"paddle.nn.AvgPool3D
"
,
inputs
=
layer_inputs
,
outputs
=
layer_outputs
[
1
:]
,
outputs
=
layer_outputs
,
scope_name
=
scope_name
,
**
layer_attrs
)
return
current_inputs
,
current_outputs
...
...
@@ -561,11 +542,11 @@ def aten_avg_pool1d(mapper, graph, node):
# 获取当前节点输入的list
current_inputs
=
list
(
layer_inputs
.
values
())
# 处理输入1,即%538
layer_attrs
[
"
poo
l_size"
]
=
mapper
.
attrs
[
inputs_name
[
1
]]
layer_attrs
[
"
kerne
l_size"
]
=
mapper
.
attrs
[
inputs_name
[
1
]]
# 处理输入2,即%539
layer_attrs
[
"
pool_
stride"
]
=
mapper
.
attrs
[
inputs_name
[
2
]]
layer_attrs
[
"stride"
]
=
mapper
.
attrs
[
inputs_name
[
2
]]
# 处理输入3,即%540
layer_attrs
[
"p
ool_p
adding"
]
=
mapper
.
attrs
[
inputs_name
[
3
]]
layer_attrs
[
"padding"
]
=
mapper
.
attrs
[
inputs_name
[
3
]]
# 处理输入4,即%273
layer_attrs
[
"ceil_mode"
]
=
mapper
.
attrs
[
inputs_name
[
4
]]
# 处理输入5,即%272
...
...
@@ -580,20 +561,10 @@ def aten_avg_pool1d(mapper, graph, node):
key
=
mapper
.
attrs
[
inputs_name
[
6
]],
value
=
None
)
# TODO(syf): The op has diff.
# self.paddle_graph.add_layer(
# kernel="paddle.nn.AvgPool2D",
# inputs={"input": input_name},
# outputs=layer_outputs,
# kernel_size=k_size[2:4],
# stride=strides[2:4],
# padding=string(pad_mode))
layer_attrs
[
"pool_type"
]
=
string
(
"avg"
)
graph
.
add_layer
(
"fluid.layers.pool1d
"
,
kernel
=
"paddle.nn.AvgPool1D
"
,
inputs
=
layer_inputs
,
outputs
=
layer_outputs
[
1
:]
,
outputs
=
layer_outputs
,
scope_name
=
scope_name
,
**
layer_attrs
)
return
current_inputs
,
current_outputs
...
...
@@ -929,7 +900,7 @@ def aten_constant_pad_nd(mapper, graph, node):
outputs
=
[
inputs_name
[
0
]
+
"_list"
],
scope_name
=
scope_name
)
block
.
add_layer
(
"paddle.
tensor.
unsqueeze"
,
"paddle.unsqueeze"
,
inputs
=
{
"x"
:
inputs_name
[
0
],
"axis"
:
inputs_name
[
0
]
+
"_list"
},
outputs
=
[
inputs_name
[
0
]
+
"_var"
],
...
...
@@ -941,7 +912,7 @@ def aten_constant_pad_nd(mapper, graph, node):
scope_name
=
scope_name
,
**
layer_attrs
)
block
.
add_layer
(
"paddle.
tensor.
squeeze"
,
"paddle.squeeze"
,
inputs
=
{
"x"
:
output_name
,
"axis"
:
inputs_name
[
0
]
+
"_list"
},
outputs
=
[
output_name
],
...
...
@@ -1703,7 +1674,7 @@ def aten_expand_as(mapper, graph, node):
outputs
=
[
inputs_name
[
1
]
+
"_type"
],
scope_name
=
scope_name
)
block
.
add_layer
(
"
fluid.layers
.cast"
,
"
paddle
.cast"
,
inputs
=
{
"x"
:
inputs_name
[
0
]},
outputs
=
[
inputs_name
[
0
]],
scope_name
=
scope_name
,
...
...
@@ -1722,7 +1693,7 @@ def aten_expand_as(mapper, graph, node):
if_layer
=
graph
.
layers
[
list
(
graph
.
layers
.
keys
())[
-
1
]]
block
=
PaddleGraph
(
source_type
=
"pytorch"
,
parent_layer
=
if_layer
,
graph_type
=
"dygraph"
)
block
.
add_layer
(
"
fluid.layers
.cast"
,
"
paddle
.cast"
,
inputs
=
{
"x"
:
layer_outputs
[
0
]},
outputs
=
copy
.
deepcopy
(
layer_outputs
),
scope_name
=
scope_name
,
...
...
@@ -2515,6 +2486,89 @@ def aten_log(mapper, graph, node):
return
current_inputs
,
current_outputs
def
aten_lstm
(
mapper
,
graph
,
node
):
""" 构造长短期记忆网络(LSTM)的PaddleLayer。
TorchScript示例:
%input.96, %551, %552 = aten::lstm(%input.95, %734, %549, %526, %525, %524, %526, %526, %526)
参数含义:
%input.96 (Tensor): 输出,由前向和后向cell的输出拼接得到。
%551 (Tensor): cell state。
%552 (Tensor): hidden state。
%input.95 (Tensor): 网络输入。
%734 (Tensor): 网络的初始状态。
%549 (list): 所有权重组合成的list。
%526 (bool): 是否使用bias。
%525 (int): 网络层数。
%524 (float): dropout概率。
%526 (bool): 是否为训练阶段。
%526 (bool): 是否使用双向LSTM。
%526 (bool): 第一个维度是否为batch size。
"""
scope_name
=
mapper
.
normalize_scope_name
(
node
)
op_name
=
name_generator
(
"lstm"
,
mapper
.
nn_name2id
)
output_names
=
mapper
.
_get_outputs_name
(
node
)
layer_outputs
=
[
op_name
]
layer_outputs
.
extend
(
output_names
)
layer_inputs
=
{}
layer_attrs
=
{}
inputs_name
,
inputs_node
=
mapper
.
_get_inputs_name
(
node
)
# 获取当前节点输出的list
current_outputs
=
output_names
# 处理输入0,即%input.95
mapper
.
_check_input
(
graph
,
inputs_node
[
0
],
inputs_name
[
0
],
current_outputs
,
scope_name
)
layer_inputs
[
"input0"
]
=
inputs_name
[
0
]
# 处理输入1,即%734
mapper
.
_check_input
(
graph
,
inputs_node
[
1
],
inputs_name
[
1
],
current_outputs
,
scope_name
)
layer_inputs
[
"input1"
]
=
inputs_name
[
1
]
# 获取当前节点输入、输出的list
current_inputs
=
list
(
layer_inputs
.
values
())
# 处理输入2,即%734
mapper
.
_check_input
(
graph
,
inputs_node
[
2
],
inputs_name
[
2
],
current_outputs
,
scope_name
)
graph
.
layers
.
pop
(
mapper
.
output2id
[
inputs_name
[
2
]])
param_inputs_name
,
_
=
mapper
.
_get_inputs_name
(
inputs_node
[
2
])
new_param_inputs_name
=
list
()
for
i
,
param_name
in
enumerate
(
param_inputs_name
):
if
i
==
0
:
layer_attrs
[
"hidden_size"
]
=
int
(
mapper
.
paddle_params
[
param_name
].
shape
[
0
]
/
4
)
layer_attrs
[
"input_size"
]
=
int
(
mapper
.
paddle_params
[
param_name
].
shape
[
1
])
if
len
(
mapper
.
paddle_params
[
param_name
].
shape
)
>
1
:
part_name
=
param_name
.
split
(
"_weight_"
)[
-
1
]
mapper
.
paddle_params
[
"{}.weight_{}"
.
format
(
op_name
,
part_name
)]
=
mapper
.
paddle_params
[
param_name
]
new_param_inputs_name
.
append
(
"{}.weight_{}"
.
format
(
op_name
,
part_name
))
else
:
part_name
=
param_name
.
split
(
"_bias_"
)[
-
1
]
mapper
.
paddle_params
[
"{}.bias_{}"
.
format
(
op_name
,
part_name
)]
=
mapper
.
paddle_params
[
param_name
]
mapper
.
paddle_params
.
pop
(
param_name
)
# 处理输入3,即%526
is_bias
=
mapper
.
attrs
[
inputs_name
[
3
]]
if
not
is_bias
:
for
param_name
in
new_param_inputs_name
:
bias_name
=
param_name
.
replace
(
"weight"
,
"bias"
)
bias_shape
=
mapper
.
paddle_params
[
param_name
].
shape
[:
1
]
mapper
.
paddle_params
[
bias_name
]
=
np
.
zeros
(
bias_shape
).
astype
(
"float32"
)
# 处理输入4,即%525
layer_attrs
[
"num_layers"
]
=
mapper
.
attrs
[
inputs_name
[
4
]]
# 处理输入5,即%524
layer_attrs
[
"dropout"
]
=
mapper
.
attrs
[
inputs_name
[
5
]]
# 处理输入7,即%526
is_bidirectional
=
mapper
.
attrs
[
inputs_name
[
7
]]
if
is_bidirectional
:
layer_attrs
[
"direction"
]
=
string
(
"bidirectional"
)
# 处理输入8,即%526
batch_first
=
mapper
.
attrs
[
inputs_name
[
8
]]
if
not
batch_first
:
layer_attrs
[
"time_major"
]
=
True
graph
.
add_layer
(
"paddle.nn.LSTM"
,
inputs
=
layer_inputs
,
outputs
=
layer_outputs
,
scope_name
=
scope_name
,
**
layer_attrs
)
return
current_inputs
,
current_outputs
def
aten_lt
(
mapper
,
graph
,
node
):
""" 构造对比大小的PaddleLayer。
...
...
@@ -2847,22 +2901,13 @@ def aten_max_pool2d(mapper, graph, node):
# 处理输入5,即%19
layer_attrs
[
"ceil_mode"
]
=
mapper
.
attrs
[
inputs_name
[
5
]]
layer_attrs_tmp
[
"ceil_mode"
]
=
mapper
.
attrs
[
inputs_name
[
5
]]
if
mapper
.
attrs
[
inputs_name
[
5
]]
==
True
:
layer_attrs
[
"pool_type"
]
=
string
(
"max"
)
graph
.
add_layer
(
"fluid.layers.pool2d"
,
inputs
=
layer_inputs
,
outputs
=
layer_outputs
[
1
:],
scope_name
=
scope_name
,
**
layer_attrs_tmp
)
else
:
graph
.
add_layer
(
"paddle.nn.MaxPool2D"
,
inputs
=
layer_inputs
,
outputs
=
layer_outputs
,
scope_name
=
scope_name
,
**
layer_attrs
)
graph
.
add_layer
(
"paddle.nn.MaxPool2D"
,
inputs
=
layer_inputs
,
outputs
=
layer_outputs
,
scope_name
=
scope_name
,
**
layer_attrs
)
return
current_inputs
,
current_outputs
...
...
@@ -3991,7 +4036,7 @@ def aten_squeeze(mapper, graph, node):
layer_inputs
[
"axis"
]
=
inputs_name
[
1
]
current_inputs
.
append
(
inputs_name
[
1
])
graph
.
add_layer
(
"paddle.
tensor.
squeeze"
,
"paddle.squeeze"
,
inputs
=
layer_inputs
,
outputs
=
layer_outputs
,
scope_name
=
scope_name
,
...
...
x2paddle/op_mapper/dygraph/pytorch2paddle/prim.py
浏览文件 @
f08b1f3f
...
...
@@ -33,11 +33,33 @@ def prim_Constant(mapper, graph, node):
output_type
=
output
.
type
()
if
isinstance
(
value
,
str
):
value
=
string
(
value
)
if
str
(
output_type
)
==
"Tensor"
:
if
"Tensor"
in
str
(
output_type
)
:
tensor_value
=
value
value
=
"{}"
.
format
(
value
)
if
"tensor"
in
value
:
mapper
.
pytorch_params
[
output_name
]
=
tensor_value
.
cpu
().
detach
().
numpy
()
if
isinstance
(
tensor_value
,
list
)
or
isinstance
(
tensor_value
,
tuple
):
name_dict
=
dict
()
for
i
,
tv
in
enumerate
(
tensor_value
):
output_name_i
=
"{}_p{}"
.
format
(
output_name
,
i
)
key_i
=
"input{}"
.
format
(
i
)
mapper
.
paddle_params
[
output_name_i
]
=
tv
.
cpu
().
detach
().
numpy
()
graph
.
add_layer
(
"self.create_parameter"
,
inputs
=
{},
outputs
=
[
output_name_i
],
scope_name
=
scope_name
,
dtype
=
string
(
str
(
mapper
.
paddle_params
[
output_name_i
].
dtype
)),
shape
=
mapper
.
paddle_params
[
output_name_i
].
shape
,
default_initializer
=
"paddle.nn.initializer.Constant(value=0.0)"
)
name_dict
[
key_i
]
=
output_name_i
graph
.
add_layer
(
"prim.list"
,
inputs
=
name_dict
,
outputs
=
[
output_name
],
scope_name
=
scope_name
)
return
[],
[
output_name
]
else
:
mapper
.
pytorch_params
[
output_name
]
=
tensor_value
.
cpu
().
detach
().
numpy
()
if
"inf"
in
str
(
value
):
t
=
str
(
type
(
value
)).
split
(
"'"
)[
1
]
...
...
@@ -218,11 +240,13 @@ def prim_ListConstruct(mapper, graph, node):
current_outputs
=
[
output_name
]
# 处理每个输入
for
i
,
input_name
in
enumerate
(
inputs_name
):
mapper
.
_check_input
(
graph
,
inputs_node
[
i
],
input_name
,
current_outputs
,
scope_name
)
layer_inputs
[
"input{}"
.
format
(
i
)]
=
input_name
# 获取当前节点输入的list
current_inputs
=
list
(
layer_inputs
.
values
())
graph
.
add_layer
(
"prim.list"
,
inputs
=
layer_inputs
,
outputs
=
layer_outputs
,
scope_name
=
scope_name
)
layer_id
=
graph
.
add_layer
(
"prim.list"
,
inputs
=
layer_inputs
,
outputs
=
layer_outputs
,
scope_name
=
scope_name
)
mapper
.
output2id
[
output_name
]
=
layer_id
return
current_inputs
,
current_outputs
...
...
x2paddle/op_mapper/dygraph/pytorch2paddle/pytorch_custom_layer/gather.py
浏览文件 @
f08b1f3f
...
...
@@ -13,7 +13,6 @@
# limitations under the License.
import
paddle
import
paddle.fluid
as
fluid
from
itertools
import
product
import
numpy
as
np
...
...
x2paddle/op_mapper/dygraph/pytorch2paddle/pytorch_op_mapper.py
浏览文件 @
f08b1f3f
...
...
@@ -37,6 +37,7 @@ class PyTorchOpMapper(OpMapper):
self
.
scope_name_list
=
list
()
self
.
scope_name2id
=
dict
()
self
.
inputs_info
=
dict
()
self
.
output2id
=
dict
()
# output名字和layer_id的关系,用于lstm去除前面的node
# 转换
if
not
self
.
op_checker
(
decoder
.
graph
):
raise
Exception
(
"Model is not supported yet."
)
...
...
@@ -175,7 +176,7 @@ class PyTorchOpMapper(OpMapper):
if
add_dim
:
param
=
param
[
np
.
newaxis
,
:]
self
.
paddle_params
[
output_name
]
=
param
graph
.
add_layer
(
layer_id
=
graph
.
add_layer
(
"self.create_parameter"
,
inputs
=
{},
outputs
=
[
output_name
],
...
...
@@ -183,6 +184,7 @@ class PyTorchOpMapper(OpMapper):
dtype
=
string
(
str
(
param
.
dtype
)),
shape
=
param
.
shape
,
default_initializer
=
"paddle.nn.initializer.Constant(value=0.0)"
)
self
.
output2id
[
output_name
]
=
layer_id
else
:
if
isinstance
(
param
,
dict
)
and
"Tensor"
in
param
and
\
"parent_layer_id"
in
param
:
...
...
@@ -202,7 +204,7 @@ class PyTorchOpMapper(OpMapper):
if
add_dim
:
param
=
param
[
np
.
newaxis
,
:]
self
.
paddle_params
[
output_name
]
=
param
graph
.
add_layer
(
layer_id
=
graph
.
add_layer
(
"self.create_parameter"
,
inputs
=
{},
outputs
=
[
output_name
],
...
...
@@ -211,6 +213,7 @@ class PyTorchOpMapper(OpMapper):
shape
=
param
.
shape
,
default_initializer
=
"paddle.nn.initializer.Constant(value=0.0)"
)
node_outputs
.
append
(
output_name
)
self
.
output2id
[
output_name
]
=
layer_id
return
# 若if-else外,则可直接引用if-else中的赋值结果
graph
.
add_layer
(
...
...
@@ -231,14 +234,15 @@ class PyTorchOpMapper(OpMapper):
elif
node
.
kind
()
==
"prim::Constant"
and
output_name
in
self
.
pytorch_params
:
param
=
self
.
pytorch_params
[
output_name
]
self
.
paddle_params
[
output_name
]
=
param
graph
.
add_layer
(
layer_id
=
graph
.
add_layer
(
"self.create_parameter"
,
inputs
=
{},
outputs
=
[
output_name
],
scope_name
=
scope_name
,
dtype
=
string
(
str
(
param
.
dtype
)),
shape
=
param
.
shape
,
default_initializer
=
"paddle.nn.initializer.Constant(value=0.0)"
)
default_initializer
=
"paddle.nn.initializer.Constant(value=0.0)"
)
self
.
output2id
[
output_name
]
=
layer_id
def
_get_inputs_name
(
self
,
node
):
...
...
x2paddle/op_mapper/dygraph/tf2paddle/tf_op_mapper.py
浏览文件 @
f08b1f3f
...
...
@@ -70,7 +70,7 @@ class TFOpMapper(OpMapper):
'AddV2'
:
'paddle.add'
,
'RealDiv'
:
'paddle.divide'
,
'DivNoNan'
:
'paddle.divide'
,
'Sub'
:
'
fluid.layers.elementwise_sub
'
,
'Sub'
:
'
paddle.subtract
'
,
'Maximum'
:
'paddle.maximum'
,
'Minimum'
:
'paddle.minimum'
,
'Mul'
:
'paddle.multiply'
,
...
...
@@ -346,7 +346,7 @@ class TFOpMapper(OpMapper):
shape
=
[
0
,
c
,
h
,
w
])
self
.
paddle_graph
.
add_layer
(
kernel
=
"
fluid.layers
.pixel_shuffle"
,
kernel
=
"
paddle.nn.functional
.pixel_shuffle"
,
inputs
=
{
"x"
:
reshape_name
},
outputs
=
[
node
.
name
],
upscale_factor
=
block_size
)
...
...
@@ -858,22 +858,22 @@ class TFOpMapper(OpMapper):
layer_outputs
=
[
op_name
,
output_name
]
# TODO(syf): The op has diff.
# self.paddle_graph.add_layer(
# kernel="paddle.nn.AvgPool2D",
# inputs={"input": input_name},
# outputs=layer_outputs,
# kernel_size=k_size[2:4],
# stride=strides[2:4],
# padding=string(pad_mode))
self
.
paddle_graph
.
add_layer
(
kernel
=
"
fluid.layers.pool2d
"
,
kernel
=
"
paddle.nn.AvgPool2D
"
,
inputs
=
{
"input"
:
input_name
},
outputs
=
[
node
.
name
],
pool_size
=
k_size
[
2
:
4
],
pool_type
=
string
(
"avg"
),
pool_stride
=
strides
[
2
:
4
],
pool_padding
=
string
(
pad_mode
))
outputs
=
layer_outputs
,
kernel_size
=
k_size
[
2
:
4
],
stride
=
strides
[
2
:
4
],
padding
=
string
(
pad_mode
))
# self.paddle_graph.add_layer(
# kernel="fluid.layers.pool2d",
# inputs={"input": input_name},
# outputs=[node.name],
# pool_size=k_size[2:4],
# pool_type=string("avg"),
# pool_stride=strides[2:4],
# pool_padding=string(pad_mode))
if
data_format
==
"NHWC"
:
self
.
paddle_graph
.
add_layer
(
...
...
@@ -1118,14 +1118,6 @@ class TFOpMapper(OpMapper):
begin
=
begin
.
value
.
tolist
()
attrs
[
'offsets'
]
=
begin
else
:
# shape = begin.out_shapes[0]
# reshape_name = gen_name("slice", "reshape")
# self.paddle_graph.add_layer(
# kernel="fluid.layers.reshape",
# inputs={"x": begin.name},
# outputs=[reshape_name],
# shape=shape)
# inputs['offsets'] = reshape_name
begin
=
self
.
decoder
.
infer_tensor
(
begin
,
use_diff_inputs
=
False
).
tolist
()
attrs
[
'offsets'
]
=
begin
if
size
.
layer_type
==
"Const"
:
...
...
@@ -1433,7 +1425,7 @@ class TFOpMapper(OpMapper):
y_shape
=
y
.
out_shapes
[
0
]
# TODO(syf)
layer_id
=
self
.
paddle_graph
.
add_layer
(
"
fluid.layers.elementwise_sub
"
,
inputs
=
inputs
,
outputs
=
[
node
.
name
])
"
paddle.subtract
"
,
inputs
=
inputs
,
outputs
=
[
node
.
name
])
self
.
paddle_graph
.
layers
[
layer_id
].
input_shapes
=
{
"x"
:
x_shape
,
"y"
:
y_shape
}
inputs
=
{
"x"
:
node
.
name
,
"y"
:
node
.
name
}
...
...
x2paddle/op_mapper/static/caffe2paddle/caffe_op_mapper.py
浏览文件 @
f08b1f3f
...
...
@@ -401,18 +401,14 @@ class CaffeOpMapper(OpMapper):
padding
=
pad
,
ceil_mode
=
ceil_mode
)
else
:
# TODO(syf): The op has diff.
self
.
paddle_graph
.
add_layer
(
kernel
=
"
fluid.layers.
pool2d"
,
inputs
=
{
"
input
"
:
input
.
name
},
kernel
=
"
paddle.nn.functional.avg_
pool2d"
,
inputs
=
{
"
x
"
:
input
.
name
},
outputs
=
[
node
.
name
],
pool_size
=
kernel
,
pool_type
=
string
(
"avg"
),
pool_stride
=
stride
,
pool_padding
=
pad
,
ceil_mode
=
ceil_mode
,
exclusive
=
False
,
global_pooling
=
False
)
kernel_size
=
kernel
,
stride
=
stride
,
padding
=
pad
,
ceil_mode
=
ceil_mode
)
def
LRN
(
self
,
node
):
assert
len
(
node
.
inputs
)
==
1
,
'The count of LRN node
\'
s input is not 1.'
...
...
@@ -433,7 +429,7 @@ class CaffeOpMapper(OpMapper):
'name'
:
string
(
node
.
name
)
}
self
.
paddle_graph
.
add_layer
(
kernel
=
"fluid.layers.lrn"
,
kernel
=
"
paddle.
fluid.layers.lrn"
,
inputs
=
{
"input"
:
input
.
name
},
outputs
=
[
node
.
name
],
**
layer_attrs
)
...
...
@@ -1184,7 +1180,7 @@ class CaffeOpMapper(OpMapper):
input
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
params
=
node
.
layer
.
shuffle_channel_param
self
.
paddle_graph
.
add_layer
(
"fluid.layers.shuffle_channel"
,
"
paddle.
fluid.layers.shuffle_channel"
,
inputs
=
{
"x"
:
input
.
name
},
outputs
=
[
node
.
layer_name
],
group
=
params
.
group
)
...
...
x2paddle/op_mapper/static/onnx2paddle/opset9/opset.py
浏览文件 @
f08b1f3f
...
...
@@ -14,8 +14,6 @@
from
x2paddle.decoder.onnx_decoder
import
ONNXGraph
,
ONNXGraphNode
,
ONNXGraphDataNode
from
x2paddle.core.graph
import
GraphNode
from
x2paddle.core.fluid_code
import
Layer
from
x2paddle.core.fluid_code
import
FluidCode
from
x2paddle.core.util
import
string
from
functools
import
reduce
import
numpy
as
np
...
...
@@ -88,7 +86,7 @@ class OpSet9():
elementwise_ops
=
{
'Add'
:
'paddle.add'
,
'Div'
:
'paddle.divide'
,
'Sub'
:
'
fluid.layers.elementwise_sub
'
,
'Sub'
:
'
paddle.subtract
'
,
'Mul'
:
'paddle.multiply'
,
'Pow'
:
'paddle.pow'
,
}
...
...
@@ -271,16 +269,11 @@ class OpSet9():
inputs
=
{
"x"
:
var_hw
},
outputs
=
[
var_hw
],
dtype
=
string
(
'int32'
))
# inputs['size'] = var_hw
# TODO(syf): all use
inputs
[
'out_shape'
]
=
var_hw
ipt
=
inputs
.
pop
(
"x"
)
inputs
[
"input"
]
=
ipt
mode
=
node
.
get_attr
(
'mode'
,
'nearest'
)
attrs
.
update
({
"align_corners"
:
False
})
inputs
[
'size'
]
=
var_hw
attrs
=
{
"align_corners"
:
False
,
"mode"
:
string
(
node
.
get_attr
(
'mode'
,
'nearest'
))}
self
.
paddle_graph
.
add_layer
(
kernel
=
"
fluid.layers.resize_nearest
"
,
kernel
=
"
paddle.nn.functional.interpolate
"
,
inputs
=
inputs
,
outputs
=
[
node
.
name
],
**
attrs
)
...
...
@@ -346,7 +339,7 @@ class OpSet9():
'sampling_ratio'
:
sampling_ratio
,
}
self
.
paddle_graph
.
add_layer
(
'fluid.layers.roi_align'
,
'
paddle.
fluid.layers.roi_align'
,
inputs
=
{
'input'
:
val_x
.
name
,
'rois'
:
val_rois
.
name
},
outputs
=
[
node
.
name
],
...
...
@@ -365,7 +358,7 @@ class OpSet9():
'spatial_scale'
:
spatial_scale
,
}
self
.
paddle_graph
.
add_layer
(
'fluid.layers.roi_pool'
,
'
paddle.
fluid.layers.roi_pool'
,
inputs
=
{
'input'
:
val_x
.
name
,
'rois'
:
val_rois
.
name
},
outputs
=
[
node
.
name
],
...
...
@@ -394,7 +387,7 @@ class OpSet9():
layer_attrs
[
'data_format'
]
=
string
(
'NCHW'
)
layer_attrs
[
'value'
]
=
value
else
:
paddle_op
=
'fluid.layers.pad'
paddle_op
=
'
paddle.
fluid.layers.pad'
layer_attrs
[
"pad_value"
]
=
value
if
len
(
pads
)
==
4
:
paddings
=
np
.
array
(
pads
).
reshape
(
...
...
@@ -1046,23 +1039,21 @@ class OpSet9():
strides
[
1
])
paddings
=
pad_h
+
pad_w
paddle_op
=
'
fluid.layers.
pool{}d'
.
format
(
poolnd
)
assert
2
<=
poolnd
<=
3
,
'only pool2d and
pool3d are supported'
paddle_op
=
'
paddle.nn.functional.avg_
pool{}d'
.
format
(
poolnd
)
assert
1
<=
poolnd
<=
3
,
'only avg_pool1d, avg_pool2d and avg_
pool3d are supported'
layer_attrs
=
{
"pool_size"
:
kernel_shape
,
"pool_type"
:
string
(
'avg'
),
"pool_stride"
:
strides
,
"pool_padding"
:
paddings
,
"kernel_size"
:
kernel_shape
,
"stride"
:
strides
,
"padding"
:
paddings
,
"ceil_mode"
:
ceil_mode
,
"exclusive"
:
'True'
,
"exclusive"
:
True
,
"name"
:
string
(
node
.
name
)
}
self
.
paddle_graph
.
add_layer
(
paddle_op
,
inputs
=
{
'
input
'
:
val_x
if
isinstance
(
val_x
,
str
)
else
val_x
.
name
},
inputs
=
{
'
x
'
:
val_x
if
isinstance
(
val_x
,
str
)
else
val_x
.
name
},
outputs
=
[
node
.
name
],
**
layer_attrs
)
# TODO(syf): op has diff
@
print_mapping_info
def
Concat
(
self
,
node
):
...
...
x2paddle/op_mapper/static/tf2paddle/tf_op_mapper.py
浏览文件 @
f08b1f3f
...
...
@@ -72,7 +72,7 @@ class TFOpMapper(OpMapper):
'RealDiv'
:
'paddle.divide'
,
'DivNoNan'
:
'paddle.divide'
,
# TODO (syf): replace
'Sub'
:
'
fluid.layers.elementwise_sub
'
,
'Sub'
:
'
paddle.subtract
'
,
'Maximum'
:
'paddle.maximum'
,
'Minimum'
:
'paddle.minimum'
,
'Mul'
:
'paddle.multiply'
,
...
...
@@ -315,7 +315,7 @@ class TFOpMapper(OpMapper):
shape
=
[
0
,
c
,
h
,
w
])
self
.
paddle_graph
.
add_layer
(
kernel
=
"
fluid.layers
.pixel_shuffle"
,
kernel
=
"
paddle.nn.functional
.pixel_shuffle"
,
inputs
=
{
"x"
:
reshape_name
},
outputs
=
[
node
.
name
],
upscale_factor
=
block_size
)
...
...
@@ -437,8 +437,6 @@ class TFOpMapper(OpMapper):
if
c
==
-
1
:
attr
=
{
"shape"
:
[
0
,
k_size
[
2
],
0
,
0
]}
node
.
fluid_code
.
add_layer
(
"reshape"
,
inputs
=
input
,
output
=
input
,
param_attr
=
attr
)
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.reshape"
,
inputs
=
{
"x"
:
input_name
},
...
...
@@ -842,13 +840,12 @@ class TFOpMapper(OpMapper):
# TODO(syf): The op has diff.
self
.
paddle_graph
.
add_layer
(
kernel
=
"
fluid.layers.
pool2d"
,
inputs
=
{
"
input
"
:
input_name
},
kernel
=
"
paddle.nn.functional.avg_
pool2d"
,
inputs
=
{
"
x
"
:
input_name
},
outputs
=
[
node
.
name
],
pool_size
=
k_size
[
2
:
4
],
pool_type
=
string
(
"avg"
),
pool_stride
=
strides
[
2
:
4
],
pool_padding
=
string
(
pad_mode
))
kernel_size
=
k_size
[
2
:
4
],
stride
=
strides
[
2
:
4
],
padding
=
string
(
pad_mode
))
if
data_format
==
"NHWC"
:
self
.
paddle_graph
.
add_layer
(
...
...
@@ -1406,7 +1403,7 @@ class TFOpMapper(OpMapper):
y_shape
=
y
.
out_shapes
[
0
]
# TODO(syf)
layer_id
=
self
.
paddle_graph
.
add_layer
(
"
fluid.layers.elementwise_sub
"
,
inputs
=
inputs
,
outputs
=
[
node
.
name
])
"
paddle.subtract
"
,
inputs
=
inputs
,
outputs
=
[
node
.
name
])
self
.
paddle_graph
.
layers
[
layer_id
].
input_shapes
=
{
"x"
:
x_shape
,
"y"
:
y_shape
}
inputs
=
{
"x"
:
node
.
name
,
"y"
:
node
.
name
}
...
...
x2paddle/optimizer/fusion/dygraph/bn_scale_fuser.py
浏览文件 @
f08b1f3f
...
...
@@ -21,47 +21,94 @@ from x2paddle.core.util import *
class
DygraphBNScaleFuser
(
FuseBase
):
def
__init__
(
self
):
super
(
DygraphBNScaleFuser
,
self
).
__init__
(
graph_type
=
"dygraph"
)
patterns
=
list
()
def
build_pattern
(
self
):
""" 描述需要替换的batchnorm2d图结构。
batchnorm2d层模式python实现代码示例:
模式一:
bn_conv1 = self.batchnorm0(conv1)
scale_conv1_cparam1 = self.scale_conv1_cparam1
scale_conv1_mul = paddle.multiply(x=bn_conv1, y=scale_conv1_cparam1, axis=1)
scale_conv1_cparam2 = self.scale_conv1_cparam2
scale_conv1 = fluid.layers.elementwise_add(x=scale_conv1_mul, y=scale_conv1_cparam2, axis=1)
scale_conv1 = paddle.add(x=scale_conv1_mul, y=scale_conv1_cparam2, axis=1)
模式二:
bn_conv1 = self.batchnorm0(conv1)
scale_conv1_cparam1 = self.scale_conv1_cparam1
scale_conv1_mul = paddle.multiply(x=bn_conv1, y=scale_conv1_cparam1, axis=1)
scale_conv1_cparam2 = self.scale_conv1_cparam2
scale_conv1_cparam2 = paddle.reshape(x=scale_conv1_cparam2, shape=[32, 1, 1])
scale_conv1 = paddle.add(x=scale_conv1_mul, y=scale_conv1_cparam2, axis=1)
"""
def
gen_name
(
id
):
return
"x"
+
str
(
id
)
self
.
pattern
.
add_layer
(
pattern
=
PaddleGraph
(
graph_type
=
"dygraph"
)
pattern
.
add_layer
(
"paddle.nn.BatchNorm2D"
,
inputs
=
{
"input"
:
"bn-input-0"
},
outputs
=
[
gen_name
(
0
)])
pattern
.
add_layer
(
"self.create_parameter"
,
inputs
=
{},
outputs
=
[
gen_name
(
1
)])
inputs_dict
=
{}
inputs_dict
[
'x'
]
=
gen_name
(
0
)
inputs_dict
[
'y'
]
=
gen_name
(
1
)
pattern
.
add_layer
(
"paddle.multiply"
,
inputs
=
inputs_dict
,
outputs
=
[
gen_name
(
2
)])
pattern
.
add_layer
(
"self.create_parameter"
,
inputs
=
{},
outputs
=
[
gen_name
(
3
)])
inputs_dict
=
{}
inputs_dict
[
'x'
]
=
gen_name
(
2
)
inputs_dict
[
'y'
]
=
gen_name
(
3
)
pattern
.
add_layer
(
"paddle.add"
,
inputs
=
inputs_dict
,
outputs
=
[
gen_name
(
4
)])
pattern
.
build
(
inputs
=
{
"input-0"
:
"bn-input-0"
})
self
.
patterns
.
append
(
pattern
)
pattern
=
PaddleGraph
(
graph_type
=
"dygraph"
)
pattern
.
add_layer
(
"paddle.nn.BatchNorm2D"
,
inputs
=
{
"input"
:
"bn-input-0"
},
outputs
=
[
gen_name
(
0
)])
self
.
pattern
.
add_layer
(
pattern
.
add_layer
(
"self.create_parameter"
,
inputs
=
{},
outputs
=
[
gen_name
(
1
)])
inputs_dict
=
{}
inputs_dict
[
'x'
]
=
gen_name
(
0
)
inputs_dict
[
'y'
]
=
gen_name
(
1
)
self
.
pattern
.
add_layer
(
pattern
.
add_layer
(
"paddle.multiply"
,
inputs
=
inputs_dict
,
outputs
=
[
gen_name
(
2
)])
self
.
pattern
.
add_layer
(
pattern
.
add_layer
(
"self.create_parameter"
,
inputs
=
{},
outputs
=
[
gen_name
(
3
)])
pattern
.
add_layer
(
"paddle.reshape"
,
inputs
=
{
"x"
:
gen_name
(
3
)},
outputs
=
[
gen_name
(
3
)])
inputs_dict
=
{}
inputs_dict
[
'x'
]
=
gen_name
(
2
)
inputs_dict
[
'y'
]
=
gen_name
(
3
)
self
.
pattern
.
add_layer
(
"
fluid.layers.elementwise_
add"
,
pattern
.
add_layer
(
"
paddle.
add"
,
inputs
=
inputs_dict
,
outputs
=
[
gen_name
(
4
)])
self
.
pattern
.
build
(
inputs
=
{
"input-0"
:
"bn-input-0"
})
pattern
.
build
(
inputs
=
{
"input-0"
:
"bn-input-0"
})
self
.
patterns
.
append
(
pattern
)
def
insert_new_layer
(
self
,
graph
,
parameters
,
matches
):
new_layer
=
self
.
gen_new_layer
(
parameters
,
matches
)
...
...
@@ -78,7 +125,7 @@ class DygraphBNScaleFuser(FuseBase):
layer_attrs
=
layer
.
attrs
layer_attrs
.
pop
(
"weight_attr"
)
layer_attrs
.
pop
(
"bias_attr"
)
layer
=
matches
[
layers_id
[
4
]]
layer
=
matches
[
layers_id
[
-
1
]]
layer_outputs
=
[
bn_name
]
+
layer
.
outputs
layer
=
matches
[
layers_id
[
1
]]
data0_name
=
layer
.
outputs
[
0
]
...
...
x2paddle/optimizer/fusion/dygraph/reshape_fuser.py
浏览文件 @
f08b1f3f
...
...
@@ -27,7 +27,7 @@ class DygraphReshapeFuser(FuseBase):
reshape层模式python实现代码示例:
x165 = int(x164)
x166 = [x158, x159, x165]
x167 =
fluid.layers
.reshape(x=x157, shape=x166)
x167 =
paddle
.reshape(x=x157, shape=x166)
"""
def
gen_name
(
id
):
...
...
@@ -46,7 +46,7 @@ class DygraphReshapeFuser(FuseBase):
},
outputs
=
[
gen_name
(
1
)])
self
.
pattern
.
add_layer
(
"
fluid.layers
.reshape"
,
"
paddle
.reshape"
,
inputs
=
{
"x"
:
"reshape-input-3"
,
"shape"
:
gen_name
(
1
)},
outputs
=
[
gen_name
(
2
)])
...
...
x2paddle/optimizer/fusion/dygraph/trace_fc_fuser.py
浏览文件 @
f08b1f3f
...
...
@@ -49,7 +49,7 @@ class TraceFcFuser(FuseBase):
inputs
=
{},
outputs
=
[
gen_name
(
0
)])
pattern
.
add_layer
(
"
fluid.layers
.transpose"
,
"
paddle
.transpose"
,
inputs
=
{
"x"
:
gen_name
(
0
)},
outputs
=
[
gen_name
(
1
)],
perm
=
[
1
,
0
])
...
...
x2paddle/optimizer/fusion/static/bn_scale_fuser.py
浏览文件 @
f08b1f3f
...
...
@@ -21,12 +21,14 @@ from x2paddle.core.util import *
class
Static_BNScaleFuser
(
FuseBase
):
def
__init__
(
self
):
super
(
Static_BNScaleFuser
,
self
).
__init__
(
graph_type
=
"static"
)
patterns
=
list
()
self
.
patterns
=
list
()
def
build_pattern
(
self
):
""" 描述需要替换的batchnorm2d图结构。
batchnorm2d层模式python实现代码示例:
模式一:
conv1_bn_mean = paddle.static.create_parameter(shape=(128,), dtype='float32', name='conv1_bn_mean')
conv1_bn_variance = paddle.static.create_parameter(shape=(128,), dtype='float32', name='conv1_bn_variance')
conv1_bn = paddle.nn.functional.batch_norm(x=conv1, weight=conv1_bn_weight, bias=conv1_bn_bias, running_mean=conv1_bn_mean, running_var=conv1_bn_variance, epsilon=9.999999747378752e-06, momentum=0.9990000128746033)
conv1_scale_cparam1 = paddle.static.create_parameter(shape=(32,), dtype='float32', name='conv1_scale_cparam1')
conv1_scale_mul = paddle.multiply(x=conv1_bn, y=conv1_scale_cparam1, axis=1)
...
...
@@ -34,6 +36,8 @@ class Static_BNScaleFuser(FuseBase):
conv1_scale_cparam2 = paddle.reshape(x=conv1_scale_cparam2, shape=[32, 1, 1])
conv1_scale = paddle.add(x=conv1_scale_mul, y=conv1_scale_cparam2)
模式二:
conv1_bn_mean = paddle.static.create_parameter(shape=(128,), dtype='float32', name='conv1_bn_mean')
conv1_bn_variance = paddle.static.create_parameter(shape=(128,), dtype='float32', name='conv1_bn_variance')
conv1_bn = paddle.nn.functional.batch_norm(x=conv1, weight=conv1_bn_weight, bias=conv1_bn_bias, running_mean=conv1_bn_mean, running_var=conv1_bn_variance, epsilon=9.999999747378752e-06, momentum=0.9990000128746033)
conv1_scale_cparam1 = paddle.static.create_parameter(shape=(32,), dtype='float32', name='conv1_scale_cparam1')
conv1_scale_mul = paddle.multiply(x=conv1_bn, y=conv1_scale_cparam1, axis=1)
...
...
@@ -45,13 +49,21 @@ class Static_BNScaleFuser(FuseBase):
return
"x"
+
str
(
id
)
pattern
=
PaddleGraph
(
graph_type
=
"dygraph"
)
pattern
.
add_layer
(
"paddle.static.create_parameter"
,
inputs
=
{},
outputs
=
[
gen_name
(
10
)])
pattern
.
add_layer
(
"paddle.static.create_parameter"
,
inputs
=
{},
outputs
=
[
gen_name
(
11
)])
pattern
.
add_layer
(
"paddle.nn.functional.batch_norm"
,
inputs
=
{
"input"
:
"bn-input-0"
,
"weight"
:
"bn-input-1"
,
"bias"
:
"bn-input-2"
,
"running_mean"
:
"bn-input-3"
,
"running_var"
:
"bn-input-4"
,
},
"running_mean"
:
gen_name
(
10
)
,
"running_var"
:
gen_name
(
11
)
},
outputs
=
[
gen_name
(
0
)])
pattern
.
add_layer
(
"paddle.static.create_parameter"
,
...
...
@@ -81,19 +93,25 @@ class Static_BNScaleFuser(FuseBase):
outputs
=
[
gen_name
(
5
)])
pattern
.
build
(
inputs
=
{
"input-0"
:
"bn-input-0"
,
"input-1"
:
"bn-input-1"
,
"input-2"
:
"bn-input-2"
,
"input-3"
:
"bn-input-3"
,
"input-4"
:
"bn-input-4"
})
"input-2"
:
"bn-input-2"
})
self
.
patterns
.
append
(
pattern
)
pattern
=
PaddleGraph
(
graph_type
=
"dygraph"
)
pattern
.
add_layer
(
"paddle.static.create_parameter"
,
inputs
=
{},
outputs
=
[
gen_name
(
10
)])
pattern
.
add_layer
(
"paddle.static.create_parameter"
,
inputs
=
{},
outputs
=
[
gen_name
(
11
)])
pattern
.
add_layer
(
"paddle.nn.functional.batch_norm"
,
inputs
=
{
"input"
:
"bn-input-0"
,
"weight"
:
"bn-input-1"
,
"bias"
:
"bn-input-2"
,
"running_mean"
:
"bn-input-3"
,
"running_var"
:
"bn-input-4"
,},
"running_mean"
:
gen_name
(
10
)
,
"running_var"
:
gen_name
(
11
)
,},
outputs
=
[
gen_name
(
0
)])
pattern
.
add_layer
(
"paddle.static.create_parameter"
,
...
...
@@ -119,25 +137,25 @@ class Static_BNScaleFuser(FuseBase):
outputs
=
[
gen_name
(
4
)])
pattern
.
build
(
inputs
=
{
"input-0"
:
"bn-input-0"
,
"input-1"
:
"bn-input-1"
,
"input-2"
:
"bn-input-2"
,
"input-3"
:
"bn-input-3"
,
"input-4"
:
"bn-input-4"
})
"input-2"
:
"bn-input-2"
})
self
.
patterns
.
append
(
pattern
)
def
insert_new_layer
(
self
,
graph
,
parameters
,
matches
):
new_layer
=
self
.
gen_new_layer
(
parameters
,
matches
)
new_layer_id
=
list
(
matches
.
keys
())[
-
1
]
graph
.
layers
[
new_layer_id
]
=
new_layer
matches
.
pop
(
list
(
matches
.
keys
())[
0
])
matches
.
pop
(
list
(
matches
.
keys
())[
0
])
matches
.
pop
(
list
(
matches
.
keys
())[
1
])
matches
.
pop
(
list
(
matches
.
keys
())[
2
])
matches
.
pop
(
new_layer_id
)
def
gen_new_layer
(
self
,
parameters
,
matches
):
layers_id
=
list
(
matches
.
keys
())
bn_layer
=
matches
[
layers_id
[
0
]]
layer
=
matches
[
layers_id
[
1
]]
bn_layer
.
inputs
[
"weight"
]
=
layer
.
outputs
[
0
]
bn_layer
=
matches
[
layers_id
[
2
]]
layer
=
matches
[
layers_id
[
3
]]
bn_layer
.
inputs
[
"weight"
]
=
layer
.
outputs
[
0
]
layer
=
matches
[
layers_id
[
5
]]
bn_layer
.
inputs
[
"bias"
]
=
layer
.
outputs
[
0
]
bn_layer
.
id
=
layers_id
[
-
1
]
layer
=
matches
[
layers_id
[
-
1
]]
...
...
x2paddle/optimizer/pattern_matcher.py
浏览文件 @
f08b1f3f
...
...
@@ -99,7 +99,7 @@ class PatternMatcher(object):
return
False
else
:
subgraph_id2layers
.
pop
(
layer_id
)
continue
continue
else
:
if
len
(
graph
.
edges_out
[
layer_id
])
!=
len
(
pattern
.
edges_out
[
pattern_layer_id
]):
...
...
@@ -116,7 +116,20 @@ class PatternMatcher(object):
else
:
subgraph_id2layers
.
pop
(
layer_id
)
continue
else
:
layer_out
=
graph
.
edges_out
[
layer_id
]
pattern_layer_out
=
pattern
.
edges_out
[
pattern_layer_id
]
is_pop
=
False
for
i
in
range
(
len
(
layer_out
)):
layer_id_out
=
layer_out
[
i
]
pattern_layer_id_out
=
pattern_layer_out
[
i
]
if
layer_id_out
!=
-
1
:
if
graph_layers
[
layer_id_out
].
kernel
!=
pattern
.
layers
[
pattern_layer_id_out
].
kernel
:
is_pop
=
True
break
if
is_pop
:
subgraph_id2layers
.
pop
(
layer_id
)
continue
# 当为控制流时的处理
if
layer
.
kernel
==
"prim.if"
or
layer
.
kernel
==
"prim.loop"
:
if
len
(
pattern_layer
.
blocks
)
!=
len
(
layer
.
blocks
):
...
...
@@ -161,7 +174,7 @@ class PatternMatcher(object):
for
i
,
(
layer_id
,
layer
)
in
enumerate
(
graph
.
layers
.
items
()):
match_info
=
get_subgraph
(
self
.
pattern
,
graph
,
i
)
if
match_info
:
if
match_info
and
match_info
not
in
self
.
matches
:
self
.
matches
.
append
(
match_info
)
for
j
,
block
in
enumerate
(
layer
.
blocks
):
if
len
(
block
.
layers
)
>
0
:
...
...
@@ -343,4 +356,5 @@ class FuseBase(object):
if
layer_id
in
subgraph
.
layers
:
# layer_id可能是属于子图的,此时删除父layer,即删除整个子图
subgraph
.
layers
.
pop
(
layer_id
)
\ No newline at end of file
x2paddle/optimizer/code_optimizer/__init__.py
→
x2paddle/optimizer/
pytorch_
code_optimizer/__init__.py
浏览文件 @
f08b1f3f
...
...
@@ -13,5 +13,5 @@
# limitations under the License.
from
x2paddle.optimizer.code_optimizer.hierachical_tree
import
HierarchicalTree
from
x2paddle.optimizer.code_optimizer.module_graph
import
ModuleGraph
\ No newline at end of file
from
x2paddle.optimizer.pytorch_code_optimizer.hierachical_tree
import
HierarchicalTree
from
x2paddle.optimizer.pytorch_code_optimizer.module_graph
import
ModuleGraph
\ No newline at end of file
x2paddle/optimizer/code_optimizer/hierachical_tree.py
→
x2paddle/optimizer/
pytorch_
code_optimizer/hierachical_tree.py
浏览文件 @
f08b1f3f
...
...
@@ -18,10 +18,10 @@ import copy
import
os.path
as
osp
from
treelib
import
Tree
from
queue
import
Queue
from
x2paddle.optimizer.code_optimizer.layer_code_generator
import
gen_layer_code
,
rename_layers
,
NN_KERNEL_WITH_PARAMS
,
NN_KERNEL_NAME
from
x2paddle.optimizer.code_optimizer.subgraphs_union
import
distinguish_sequential
,
get_inputs_outputs
from
x2paddle.optimizer.
pytorch_
code_optimizer.layer_code_generator
import
gen_layer_code
,
rename_layers
,
NN_KERNEL_WITH_PARAMS
,
NN_KERNEL_NAME
from
x2paddle.optimizer.
pytorch_
code_optimizer.subgraphs_union
import
distinguish_sequential
,
get_inputs_outputs
from
x2paddle.core.program
import
PaddleLayer
from
x2paddle.optimizer.code_optimizer.parameter_tree
import
PamareterNode
,
PamareterTree
from
x2paddle.optimizer.
pytorch_
code_optimizer.parameter_tree
import
PamareterNode
,
PamareterTree
SEPARATOR_IN_SCOPE
=
"/"
...
...
@@ -39,6 +39,7 @@ class HierarchicalTree(Tree):
self
.
identifier_idx
=
dict
()
self
.
param_tree
=
PamareterTree
()
self
.
module_name2count
=
dict
()
self
.
scope_name_list
=
list
()
def
insert
(
self
,
layer
):
""" 往层次树中插入节点。
...
...
@@ -47,6 +48,7 @@ class HierarchicalTree(Tree):
layer (PaddleLayer): 需要插入的节点。
"""
scope_name
=
layer
.
scope_name
self
.
scope_name_list
.
append
(
scope_name
)
if
scope_name
==
""
:
if
layer
.
kernel
==
"prim.tuple"
or
layer
.
kernel
==
"prim.tuple_unpack"
:
layer_id
=
layer
.
id
...
...
@@ -55,12 +57,36 @@ class HierarchicalTree(Tree):
layer_id_list
.
append
(
int
(
input_layer_id
))
layer_id_list
=
list
(
set
(
layer_id_list
))
layer_id_list
.
sort
(
reverse
=
True
)
for
input_layer_id
in
layer_id_list
:
input_layer_id_str
=
str
(
input_layer_id
)
if
self
.
pd_graph
.
layers
[
input_layer_id_str
].
scope_name
!=
""
:
if
layer
.
kernel
==
"prim.tuple"
:
for
i
,
input_layer_id
in
enumerate
(
layer_id_list
):
input_layer_id_str
=
str
(
input_layer_id
)
scope_name
=
self
.
pd_graph
.
layers
[
input_layer_id_str
].
scope_name
break
layer
.
scope_name
=
scope_name
if
i
==
0
:
min_scope_name
=
scope_name
else
:
len1
=
len
(
min_scope_name
.
split
(
"/"
))
len2
=
len
(
scope_name
.
split
(
"/"
))
if
scope_name
not
in
self
.
scope_name_list
:
min_scope_name
=
scope_name
continue
if
len1
>
len2
:
min_scope_name
=
scope_name
if
min_scope_name
==
""
:
self
.
create_node
(
tag
=
layer
.
id
,
identifier
=
"no_scope_"
+
layer
.
id
,
parent
=
self
.
pd_graph
.
name
,
data
=
layer
)
return
layer
.
scope_name
=
min_scope_name
scope_name
=
min_scope_name
else
:
for
input_layer_id
in
layer_id_list
:
input_layer_id_str
=
str
(
input_layer_id
)
if
self
.
pd_graph
.
layers
[
input_layer_id_str
].
scope_name
!=
""
:
scope_name
=
self
.
pd_graph
.
layers
[
input_layer_id_str
].
scope_name
break
layer
.
scope_name
=
scope_name
else
:
self
.
create_node
(
tag
=
layer
.
id
,
identifier
=
"no_scope_"
+
layer
.
id
,
...
...
@@ -369,9 +395,6 @@ class HierarchicalTree(Tree):
self
.
convert_subgraph_to_layer
()
self
.
update_parameters
()
import_list
=
[
"import paddle"
,
"import paddle.fluid as fluid"
,
"from paddle.fluid.initializer import Constant"
,
"from paddle.fluid.param_attr import ParamAttr"
,
"import math"
,
"from x2paddle.op_mapper.dygraph.pytorch2paddle "
+
\
"import pytorch_custom_layer as x2paddle_nn"
...
...
x2paddle/optimizer/code_optimizer/layer_code_generator.py
→
x2paddle/optimizer/
pytorch_
code_optimizer/layer_code_generator.py
浏览文件 @
f08b1f3f
...
...
@@ -14,7 +14,11 @@
# limitations under the License.
import
copy
from
x2paddle.optimizer.code_optimizer.parameter_tree
import
PamareterNode
import
os.path
as
osp
import
x2paddle
from
x2paddle.optimizer.pytorch_code_optimizer.parameter_tree
import
PamareterNode
from
x2paddle.core.util
import
*
NN_KERNEL_NAME
=
{
"paddle.nn.BatchNorm"
:
"bn"
,
"paddle.nn.LayerNorm"
:
"layernorm"
,
...
...
@@ -22,6 +26,7 @@ NN_KERNEL_NAME = {"paddle.nn.BatchNorm": "bn",
"paddle.nn.Embedding"
:
"embedding"
,
"paddle.nn.Linear"
:
"linear"
,
"paddle.nn.Conv2DTranspose"
:
"conv"
,
"paddle.nn.LSTM"
:
"lstm"
,
"paddle.nn.ReLU"
:
"relu"
,
"paddle.nn.ReLU6"
:
"relu"
,
"paddle.nn.Softmax"
:
"softmax"
,
...
...
@@ -36,7 +41,7 @@ NN_KERNEL_NAME = {"paddle.nn.BatchNorm": "bn",
"paddle.nn.GELU"
:
"gelu"
,
"paddle.nn.Hardtanh"
:
"tanh"
,
"paddle.nn.LeakyReLU"
:
"leakly_relu"
}
NN_KERNEL_WITH_PARAMS
=
list
(
NN_KERNEL_NAME
.
keys
())[:
6
]
NN_KERNEL_WITH_PARAMS
=
list
(
NN_KERNEL_NAME
.
keys
())[:
7
]
def
rename_layers
(
layers
,
param_tree
=
None
,
is_rename_module
=
False
):
""" 对子模块的输入输出等进行重命名。
...
...
@@ -125,14 +130,30 @@ def rename_layers(layers, param_tree=None, is_rename_module=False):
return
layers_cp
,
nn_param_nodes
,
new_names
def
gen_layer_code
(
graph
,
sub_layers
,
sub_layers_name
,
different_attrs
=
list
()):
def
_update_attrs
(
layer
,
different_attrs
):
if
"module"
in
layer
.
kernel
or
"prim"
in
layer
.
kernel
:
return
common_attrs
=
copy
.
deepcopy
(
layer
.
attrs
)
special_attrs
=
dict
()
for
k
,
v
in
layer
.
attrs
.
items
():
if
len
(
layer
.
outputs
)
<
1
:
break
key_name
=
"{}_{}"
.
format
(
layer
.
outputs
[
0
],
k
)
if
key_name
in
different_attrs
:
common_attrs
.
pop
(
k
)
special_attrs
[
k
]
=
v
remove_default_attrs
(
layer
.
kernel
,
common_attrs
)
common_attrs
.
update
(
special_attrs
)
layer
.
attrs
=
common_attrs
def
gen_layer_code
(
graph
,
sub_layers
,
sub_layers_name
,
different_attrs
=
dict
()):
""" 根据sub_layers生成对应的Module代码。
Args:
graph (x2paddle.core.program.PaddleGraph): 整个Paddle图。
sub_layers (dict): 子图的id和其对应layer组成的字典。
sub_layers_name (str): 子图的名字。
different_attrs (
list): 属性
列表,这些属性表明在被调用时赋予不同值。
different_attrs (
dict/list): 属性字典/
列表,这些属性表明在被调用时赋予不同值。
"""
def
gen_codes
(
code_list
,
indent
=
0
):
""" 根据code_list生成代码段。
...
...
@@ -157,7 +178,13 @@ def gen_layer_code(graph, sub_layers, sub_layers_name, different_attrs=list()):
# 生成Layer的头部代码
head
=
gen_codes
([
"class {}(paddle.nn.Layer):"
.
format
(
sub_layers_name
)],
indent
=
0
)
# 生成init函数的头部代码
attrs_str
=
", "
.
join
(
different_attrs
)
diff_str_list
=
list
()
if
isinstance
(
different_attrs
,
dict
):
for
k
,
v
in
different_attrs
.
items
():
diff_str_list
.
append
(
"{}={}"
.
format
(
k
,
v
))
attrs_str
=
", "
.
join
(
diff_str_list
)
else
:
attrs_str
=
", "
.
join
(
different_attrs
)
init_func_head
=
\
gen_codes
([
"def __init__(self, {}):"
.
format
(
attrs_str
)],
indent
=
1
)
+
\
gen_codes
([
"super({}, self).__init__()"
.
format
(
sub_layers_name
)],
indent
=
2
)
...
...
@@ -213,6 +240,7 @@ def gen_layer_code(graph, sub_layers, sub_layers_name, different_attrs=list()):
outputs
.
append
(
layer
.
outputs
[
0
])
no_output_count
=
0
for
i
,
(
layer_id
,
layer
)
in
enumerate
(
sub_layers
.
items
()):
_update_attrs
(
layer
,
different_attrs
)
if
(
"paddle.nn"
in
layer
.
kernel
and
"functional"
not
in
layer
.
kernel
)
or
\
layer
.
kernel
.
startswith
(
"custom_layer"
):
line
=
"self.{}"
.
format
(
layer
.
outputs
[
0
])
...
...
@@ -235,7 +263,10 @@ def gen_layer_code(graph, sub_layers, sub_layers_name, different_attrs=list()):
elif
len
(
layer
.
outputs
)
==
2
:
line
=
layer
.
outputs
[
1
]
else
:
line
=
','
.
join
(
layer
.
outputs
[
1
:])
if
layer
.
kernel
==
"paddle.nn.LSTM"
:
line
=
"{}, ({})"
.
format
(
layer
.
outputs
[
1
],
', '
.
join
(
layer
.
outputs
[
-
2
:]))
else
:
line
=
','
.
join
(
layer
.
outputs
[
1
:])
line
+=
" = self.{}("
.
format
(
layer
.
outputs
[
0
])
for
k
,
v
in
layer
.
inputs
.
items
():
...
...
@@ -263,7 +294,7 @@ def gen_layer_code(graph, sub_layers, sub_layers_name, different_attrs=list()):
init_func
=
init_func
,
forward_func
=
forward_func
,
layer_id
=
layer_id
,
different_attrs
=
different_attrs
)
different_attrs
=
list
(
different_attrs
.
keys
())
if
isinstance
(
different_attrs
,
dict
)
else
different_attrs
)
cur_outputs
.
extend
(
layer
.
outputs
)
else
:
raise
Exception
(
...
...
x2paddle/optimizer/code_optimizer/module_graph.py
→
x2paddle/optimizer/
pytorch_
code_optimizer/module_graph.py
浏览文件 @
f08b1f3f
...
...
@@ -17,9 +17,9 @@ import copy
import
os
import
os.path
as
osp
from
x2paddle.core.program
import
PaddleLayer
from
x2paddle.optimizer.code_optimizer.subgraphs_union
import
construct_attrs_table
,
get_inputs_outputs
from
x2paddle.optimizer.code_optimizer.layer_code_generator
import
gen_layer_code
,
rename_layers
from
x2paddle.optimizer.code_optimizer.parameter_tree
import
PamareterNode
,
PamareterTree
from
x2paddle.optimizer.
pytorch_
code_optimizer.subgraphs_union
import
construct_attrs_table
,
get_inputs_outputs
from
x2paddle.optimizer.
pytorch_
code_optimizer.layer_code_generator
import
gen_layer_code
,
rename_layers
from
x2paddle.optimizer.
pytorch_
code_optimizer.parameter_tree
import
PamareterNode
,
PamareterTree
NoModuleStart
=
[
"paddle.nn.ReLU"
]
...
...
@@ -179,16 +179,27 @@ class ModuleGraph(object):
def
analyze_attrs_table
(
self
,
attrs_table
):
""" 分析属性表格,哪些属性取值不一致。
"""
diff_attrs_column
=
lis
t
()
diff_attrs_column
=
dic
t
()
for
column
in
list
(
attrs_table
.
columns
):
elements
=
list
(
attrs_table
.
get
(
column
))
base
=
elements
[
0
]
for
element
in
elements
[
1
:]:
if
isinstance
(
base
,
str
)
and
"'"
not
in
base
:
break
if
element
!=
base
:
diff_attrs_column
.
append
(
column
)
elements_list
=
list
()
count_list
=
list
()
for
element
in
elements
:
if
isinstance
(
element
,
str
)
and
"'"
not
in
element
:
break
if
element
not
in
elements_list
:
count_list
.
append
(
1
)
elements_list
.
append
(
element
)
else
:
index
=
elements_list
.
index
(
element
)
count_list
[
index
]
+=
1
if
len
(
elements_list
)
>
1
:
max_ct
=
0
for
k
,
v
in
zip
(
elements_list
,
count_list
):
if
v
>
max_ct
and
str
(
k
)
!=
"nan"
:
max_ele
=
k
max_ct
=
v
diff_attrs_column
[
column
]
=
max_ele
return
diff_attrs_column
def
analyze_graph
(
self
,
sub_layers_list
):
...
...
@@ -258,8 +269,10 @@ class ModuleGraph(object):
outputs
=
[
"{}_{}"
.
format
(
mn
,
index
)]
+
outputs
node_name
=
"{}_{}"
.
format
(
module_name
,
index
)
diff_attrs
=
dict
()
for
column
in
diff_attrs_column
:
diff_attrs
[
column
]
=
attrs_table
.
get
(
column
).
loc
[
node_name
]
for
column
,
element
in
diff_attrs_column
.
items
():
current_element
=
attrs_table
.
get
(
column
).
loc
[
node_name
]
if
current_element
!=
element
:
diff_attrs
[
column
]
=
current_element
new_layer
=
PaddleLayer
(
id
=
list
(
sub_layers
.
keys
())[
-
1
],
kernel
=
"module"
,
inputs
=
inputs_dict
,
...
...
@@ -352,9 +365,6 @@ class ModuleGraph(object):
self
.
convert_subgraph_to_layer
(
combination
,
combination_id
)
self
.
update_parameters
()
import_list
=
[
"import paddle"
,
"import paddle.fluid as fluid"
,
"from paddle.fluid.initializer import Constant"
,
"from paddle.fluid.param_attr import ParamAttr"
,
"import math"
,
"from x2paddle.op_mapper.dygraph.pytorch2paddle "
+
\
"import pytorch_custom_layer as x2paddle_nn"
...
...
x2paddle/optimizer/code_optimizer/parameter_tree.py
→
x2paddle/optimizer/
pytorch_
code_optimizer/parameter_tree.py
浏览文件 @
f08b1f3f
文件已移动
x2paddle/optimizer/code_optimizer/subgraphs_union.py
→
x2paddle/optimizer/
pytorch_
code_optimizer/subgraphs_union.py
浏览文件 @
f08b1f3f
...
...
@@ -16,7 +16,7 @@
import
copy
import
pandas
as
pd
from
x2paddle.optimizer.code_optimizer.layer_code_generator
import
rename_layers
from
x2paddle.optimizer.
pytorch_
code_optimizer.layer_code_generator
import
rename_layers
def
construct_attrs_table
(
sub_layers_list
,
node_name2sub_layers
=
None
,
module_name
=
None
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录