Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
X2Paddle
提交
be3d799b
X
X2Paddle
项目概览
PaddlePaddle
/
X2Paddle
大约 1 年 前同步成功
通知
328
Star
698
Fork
167
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
26
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
X
X2Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
26
Issue
26
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
be3d799b
编写于
8月 10, 2020
作者:
J
Jason
提交者:
GitHub
8月 10, 2020
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #355 from mamingjie-China/develop
update op_list
上级
4a524a8a
4af3caec
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
40 addition
and
23 deletion
+40
-23
op_list.md
op_list.md
+19
-15
x2paddle/op_mapper/tf_op_mapper_nhwc.py
x2paddle/op_mapper/tf_op_mapper_nhwc.py
+16
-6
x2paddle/optimizer/tf_optimizer.py
x2paddle/optimizer/tf_optimizer.py
+4
-1
x2paddle_model_zoo.md
x2paddle_model_zoo.md
+1
-1
未找到文件。
op_list.md
浏览文件 @
be3d799b
# X2Paddle支持OP列表
# X2Paddle支持OP列表
> 目前X2Paddle支持
5
0+的TensorFlow OP,30+的Caffe Layer,覆盖了大部分CV分类模型常用的操作。我们在如下列表中给出了目前X2Paddle支持的全部OP。
> 目前X2Paddle支持
7
0+的TensorFlow OP,30+的Caffe Layer,覆盖了大部分CV分类模型常用的操作。我们在如下列表中给出了目前X2Paddle支持的全部OP。
**注:**
目前,部分OP暂未支持,如您在转换过程中出现OP不支持的情况,可自行添加或反馈给我们。欢迎通过
[
ISSUE反馈
](
https://github.com/PaddlePaddle/X2Paddle/issues/new
)
的方式告知我们(模型名,代码实现或模型获取方式),我们会及时跟进:)
**注:**
目前,部分OP暂未支持,如您在转换过程中出现OP不支持的情况,可自行添加或反馈给我们。欢迎通过
[
ISSUE反馈
](
https://github.com/PaddlePaddle/X2Paddle/issues/new
)
的方式告知我们(模型名,代码实现或模型获取方式),我们会及时跟进:)
...
@@ -7,20 +7,24 @@
...
@@ -7,20 +7,24 @@
| 序号 | OP | 序号 | OP | 序号 | OP | 序号 | OP |
| 序号 | OP | 序号 | OP | 序号 | OP | 序号 | OP |
|------|------|------|------|------|------|------|------|
|------|------|------|------|------|------|------|------|
| 1 | Relu | 2 | Relu6 | 3 | Shape | 4 | Abs |
| 1 | Relu | 2 | Relu6 | 3 | Shape | 4 | Abs |
| 5 | Sigmoid | 6 | Exp | 7 | Rsqrt | 8 | swish_f32 |
| 5 | Sigmoid | 6 | Exp | 7 | Rsqrt | 8 | swish_f32 |
| 9 | Tanh | 10 | LeakyRelu | 11 | Add | 12 | RealDiv |
| 9 | Tanh | 10 | LeakyRelu | 11 | Add | 12 | RealDiv |
| 13 | Sub | 14 | Maximum | 15 | Mul | 16 | FloorDiv |
| 13 | Sub | 14 | Maximum | 15 | Mul | 16 | FloorDiv |
| 17 | Placeholder | 18 | Const | 19 | Transpose | 20 | FusedBatchNorm |
| 17 | Placeholder | 18 | Const | 19 | Transpose | 20 | FusedBatchNorm |
| 21 | Conv2D | 22 | BiasAdd | 23 | MaxPool | 24 | DepthwiseConv2dNative |
| 21 | Conv2D | 22 | BiasAdd | 23 | MaxPool | 24 | DepthwiseConv2dNative |
| 25 | Reshape | 26 | AvgPool | 27 | SplitV | 28 | SquaredDifference |
| 25 | Reshape | 26 | AvgPool | 27 | SplitV | 28 | SquaredDifference |
| 29 | Tile | 30 | Pack | 31 | Pad | 32 | ResizeBilinear |
| 29 | Tile | 30 | Pack | 31 | Pad | 32 | ResizeBilinear |
| 33 | Mean | 34 | MatMul | 35 | ArgMax | 36 | StridedSlice |
| 33 | Mean | 34 | MatMul | 35 | ArgMax | 36 | StridedSlice |
| 37 | Slice | 38 | Sum | 39 | Max | 40 | Conv2DBackpropInput |
| 37 | Slice | 38 | Sum | 39 | Max | 40 | Conv2DBackpropInput |
| 41 | Cast | 42 | Split | 43 | Squeeze | 44 | ResizeNearestNeighbor |
| 41 | Cast | 42 | Split | 43 | Squeeze | 44 | ResizeNearestNeighbor |
| 45 | Softmax | 46 | Range | 47 | ConcatV2 | 48 | MirrorPad |
| 45 | Softmax | 46 | Range | 47 | ConcatV2 | 48 | MirrorPad |
| 49 | Identity | 50 | GreaterEqual | 51 | StopGradient | 52 | Minimum |
| 49 | Identity | 50 | GreaterEqual | 51 | StopGradient | 52 | Minimum |
| 53 | RadnomUniform | 54 | Fill | 55 | Floor | 56 | DepthToSpace |
| 53 | RadnomUniform | 54 | Fill | 55 | Floor | 56 | DepthToSpace |
| 57 | Sqrt | 58 | Softplus | 59 | Erf | 60 | AddV2 |
| 61 | LessEqual | 62 | BatchMatMul | 63 | BatchMatMulV2 | 64 | ExpandDims |
| 65 | BatchToSpaceND | 66 | SpaceToBatchND | 67 | OneHot | 68 | Pow |
| 69 | All | 70 | GatherV2 | 71 | IteratorV2 | | |
## Caffe
## Caffe
...
...
x2paddle/op_mapper/tf_op_mapper_nhwc.py
浏览文件 @
be3d799b
...
@@ -299,6 +299,10 @@ class TFOpMapperNHWC(OpMapper):
...
@@ -299,6 +299,10 @@ class TFOpMapperNHWC(OpMapper):
data_format
=
node
.
get_attr
(
"data_format"
).
decode
()
data_format
=
node
.
get_attr
(
"data_format"
).
decode
()
pad_mode
=
node
.
get_attr
(
"padding"
).
decode
()
pad_mode
=
node
.
get_attr
(
"padding"
).
decode
()
channel_first
=
data_format
==
"NCHW"
channel_first
=
data_format
==
"NCHW"
if
data_format
==
"NHWC"
:
n
,
h
,
w
,
c
=
input
.
out_shapes
[
0
]
else
:
n
,
c
,
h
,
w
=
input
.
out_shapes
[
0
]
if
kernel
.
layer_type
==
'Const'
:
if
kernel
.
layer_type
==
'Const'
:
kernel_value
=
kernel
.
value
kernel_value
=
kernel
.
value
...
@@ -329,10 +333,15 @@ class TFOpMapperNHWC(OpMapper):
...
@@ -329,10 +333,15 @@ class TFOpMapperNHWC(OpMapper):
"dilation"
:
dilations
[
2
:
4
],
"dilation"
:
dilations
[
2
:
4
],
"padding"
:
string
(
pad_mode
)
"padding"
:
string
(
pad_mode
)
}
}
if
hasattr
(
node
,
'dilation'
)
and
attr
[
'dilation'
]
==
[
1
,
1
]:
if
hasattr
(
node
,
'dilation'
)
and
attr
[
'dilation'
]
==
[
1
,
1
]:
if
len
(
node
.
dilation
)
==
1
:
if
len
(
node
.
dilation
)
==
1
:
attr
[
'dilation'
]
=
[
1
,
node
.
dilation
[
0
]]
attr
[
'dilation'
]
=
[
1
,
node
.
dilation
[
0
]]
if
c
==
-
1
:
reshape_attr
=
{
"shape"
:
[
0
,
k_size
[
2
],
0
,
0
]}
node
.
fluid_code
.
add_layer
(
"reshape"
,
inputs
=
input
,
output
=
input
,
param_attr
=
reshape_attr
)
node
.
fluid_code
.
add_layer
(
node
.
fluid_code
.
add_layer
(
"conv2d"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
"conv2d"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
if
not
channel_first
:
if
not
channel_first
:
...
@@ -748,11 +757,12 @@ class TFOpMapperNHWC(OpMapper):
...
@@ -748,11 +757,12 @@ class TFOpMapperNHWC(OpMapper):
self
.
add_omit_nodes
(
begin
.
layer_name
,
node
.
layer_name
)
self
.
add_omit_nodes
(
begin
.
layer_name
,
node
.
layer_name
)
begin
=
begin
.
value
.
tolist
()
begin
=
begin
.
value
.
tolist
()
else
:
else
:
begin
=
begin
begin
=
self
.
decoder
.
infer_tensor
(
begin
).
tolist
()
shape
=
begin
.
out_shapes
[
0
]
attr
=
{
"shape"
:
shape
}
# shape = begin.out_shapes[0]
node
.
fluid_code
.
add_layer
(
# attr = {"shape": shape}
"reshape"
,
inputs
=
begin
,
output
=
begin
,
param_attr
=
attr
)
# node.fluid_code.add_layer(
# "reshape", inputs=begin, output=begin, param_attr=attr)
if
size
.
layer_type
==
"Const"
:
if
size
.
layer_type
==
"Const"
:
self
.
add_omit_nodes
(
size
.
layer_name
,
node
.
layer_name
)
self
.
add_omit_nodes
(
size
.
layer_name
,
node
.
layer_name
)
size
=
size
.
value
.
tolist
()
size
=
size
.
value
.
tolist
()
...
...
x2paddle/optimizer/tf_optimizer.py
浏览文件 @
be3d799b
...
@@ -863,6 +863,9 @@ class TFOptimizer(object):
...
@@ -863,6 +863,9 @@ class TFOptimizer(object):
weight
=
numpy
.
expand_dims
(
weight
,
2
)
weight
=
numpy
.
expand_dims
(
weight
,
2
)
weight
=
numpy
.
expand_dims
(
weight
,
3
)
weight
=
numpy
.
expand_dims
(
weight
,
3
)
self
.
op_mapper
.
weights
[
in_nodes3
[
0
].
layer_name
]
=
weight
self
.
op_mapper
.
weights
[
in_nodes3
[
0
].
layer_name
]
=
weight
# fix bug in Paddle1.8.3 and may change in next version.
self
.
op_mapper
.
weights
[
in_nodes3
[
0
].
layer_name
+
'_1'
]
=
weight
.
reshape
(
1
,
-
1
)
in_nodes3
[
0
].
fluid_code
.
layers
[
0
].
param_attr
[
"shape"
]
=
[
in_nodes3
[
0
].
fluid_code
.
layers
[
0
].
param_attr
[
"shape"
]
=
[
1
,
in_shape
[
-
1
],
1
,
1
1
,
in_shape
[
-
1
],
1
,
1
]
]
...
@@ -885,7 +888,7 @@ class TFOptimizer(object):
...
@@ -885,7 +888,7 @@ class TFOptimizer(object):
node
.
fluid_code
.
clear
()
node
.
fluid_code
.
clear
()
attr
=
{
attr
=
{
"mode"
:
string
(
mode
),
"mode"
:
string
(
mode
),
"param_attr"
:
string
(
in_nodes3
[
0
].
layer_name
)
"param_attr"
:
string
(
in_nodes3
[
0
].
layer_name
+
"_1"
)
}
}
node
.
fluid_code
.
add_layer
(
node
.
fluid_code
.
add_layer
(
...
...
x2paddle_model_zoo.md
浏览文件 @
be3d799b
# X2Paddle模型测试库
# X2Paddle模型测试库
> 目前X2Paddle支持
5
0+的TensorFlow OP,40+的Caffe Layer,覆盖了大部分CV分类模型常用的操作。我们在如下模型列表中测试了X2Paddle的转换。
> 目前X2Paddle支持
7
0+的TensorFlow OP,40+的Caffe Layer,覆盖了大部分CV分类模型常用的操作。我们在如下模型列表中测试了X2Paddle的转换。
**注:**
受限于不同框架的差异,部分模型可能会存在目前无法转换的情况,如TensorFlow中包含控制流的模型,NLP模型等。对于CV常见的模型,如若您发现无法转换或转换失败,存在较大diff等问题,欢迎通过
[
ISSUE反馈
](
https://github.com/PaddlePaddle/X2Paddle/issues/new
)
的方式告知我们(模型名,代码实现或模型获取方式),我们会及时跟进:)
**注:**
受限于不同框架的差异,部分模型可能会存在目前无法转换的情况,如TensorFlow中包含控制流的模型,NLP模型等。对于CV常见的模型,如若您发现无法转换或转换失败,存在较大diff等问题,欢迎通过
[
ISSUE反馈
](
https://github.com/PaddlePaddle/X2Paddle/issues/new
)
的方式告知我们(模型名,代码实现或模型获取方式),我们会及时跟进:)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录