Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
X2Paddle
提交
b8fe0843
X
X2Paddle
项目概览
PaddlePaddle
/
X2Paddle
1 年多 前同步成功
通知
328
Star
698
Fork
167
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
26
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
X
X2Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
26
Issue
26
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b8fe0843
编写于
7月 25, 2019
作者:
S
SunAhong1993
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add custom layer v1
上级
11f5f1c2
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
741 addition
and
2 deletion
+741
-2
x2paddle/decoder/caffe_shape.py
x2paddle/decoder/caffe_shape.py
+223
-0
x2paddle/op_mapper/caffe_op_mapper.py
x2paddle/op_mapper/caffe_op_mapper.py
+518
-2
未找到文件。
x2paddle/decoder/caffe_shape.py
浏览文件 @
b8fe0843
...
...
@@ -230,3 +230,226 @@ def shape_batchnorm(layer, input_shape):
def
shape_scale
(
layer
,
input_shape
):
return
input_shape
def
shape_reshape
(
layer
,
input_shape
):
def
count
(
num_list
):
return
reduce
(
lambda
a
,
b
:
a
*
b
,
num_list
)
inshape
=
input_shape
[
0
]
params
=
layer
.
reshape_param
axis
=
params
.
axis
if
hasattr
(
params
,
axis
)
else
0
num_axes
=
params
.
num_axes
if
hasattr
(
params
,
num_axes
)
else
-
1
if
inshape
[
0
]
==
-
1
:
inshape
[
0
]
=
1
input_count
=
count
(
inshape
)
input_num_axes
=
len
(
inshape
)
input_start_axis
=
axis
start_axis
=
input_start_axis
if
input_start_axis
>=
0
\
else
input_num_axes
+
input_start_axis
+
1
assert
start_axis
>=
0
,
"[Reshape]axis %d out of range"
%
(
input_start_axis
)
assert
start_axis
<=
input_num_axes
,
"[Reshape]axis %d out of range for %d-D input data"
\
%
(
input_start_axis
,
input_num_axes
)
assert
num_axes
>=
-
1
,
"[Reshape]num_axes must be >= 0, or -1 for all"
end_axis
=
input_num_axes
if
num_axes
==
-
1
else
start_axis
+
num_axes
assert
end_axis
<=
input_num_axes
,
"end_axis[%d] = axis[%d] + num_axes[%d] is out of range"
\
%
(
end_axis
,
start_axis
,
num_axes
)
num_axes_replaced
=
end_axis
-
start_axis
num_axes_retained
=
input_num_axes
-
num_axes_replaced
num_new_axes
=
len
(
shape
[
'dim'
])
outshape
=
[]
for
i
in
range
(
start_axis
):
outshape
.
append
(
inshape
[
i
])
for
i
in
range
(
num_new_axes
):
outshape
.
append
(
shape
[
'dim'
][
i
])
for
i
in
range
(
end_axis
,
input_num_axes
):
outshape
.
append
(
inshape
[
i
])
assert
len
(
outshape
)
==
num_axes_retained
+
num_new_axes
,
\
"[Reshape]invalid dims of output shape[%s]"
%
(
str
(
outshape
))
inferred_axis
=
-
1
copy_axes
=
[]
constant_count
=
1
for
i
in
range
(
num_new_axes
):
top_dim
=
shape
[
'dim'
][
i
]
if
top_dim
==
0
:
copy_axes
.
append
(
i
)
copy_axis_index
=
start_axis
+
i
outshape
[
copy_axis_index
]
=
inshape
[
copy_axis_index
]
elif
top_dim
==
-
1
:
assert
inferred_axis
==
-
1
,
"[Reshape]new shape contains multiple -1 dims"
inferred_axis
=
i
else
:
constant_count
*=
top_dim
if
inferred_axis
>=
0
:
explicit_count
=
constant_count
l
=
inshape
[
0
:
start_axis
]
if
len
(
l
)
>
0
:
explicit_count
*=
count
(
l
)
l
=
inshape
[
end_axis
:]
if
len
(
l
)
>
0
:
explicit_count
*=
count
(
l
)
for
i
in
range
(
len
(
copy_axes
)):
explicit_count
*=
outshape
[
start_axis
+
copy_axes
[
i
]]
assert
input_count
%
explicit_count
==
0
,
"[Reshape]botom count[%d] "
\
"must be divisible by product of the specified dimensions[%d] "
\
%
(
input_count
,
explicit_count
)
outshape
[
start_axis
+
inferred_axis
]
=
input_count
/
explicit_count
output_count
=
count
(
outshape
)
assert
output_count
==
input_count
,
"[Reshape]output count[%d] must match input count[%d]"
%
(
output_count
,
input_count
)
if
inshape
[
0
]
==
-
1
:
outshape
[
0
]
=
-
1
return
[
outshape
]
def
shape_argmax
(
layer
,
input_shape
):
inshape
=
input_shape
[
0
]
params
=
layer
.
argmax_param
out_max_val
=
params
.
out_max_val
if
hasattr
(
params
,
out_max_val
)
else
False
top_k
=
params
.
top_k
if
hasattr
(
params
,
top_k
)
else
1
axis
=
parmas
.
axis
if
hasattr
(
params
,
axis
)
else
-
1
if
axis
<
0
:
axis
+=
len
(
inshape
)
assert
(
axis
+
1
==
len
(
inshape
)
),
'only can be applied on the last dimension[axis:%d, %s] now,'
\
'make sure you have set axis param in xxx.prototxt file'
\
%
(
axis
,
str
(
inshape
))
outshape
=
inshape
outshape
[
-
1
]
=
top_k
if
out_max_val
is
True
:
outshape
[
-
1
]
*=
2
return
[
outshape
]
def
shape_axpy
(
layer
,
input_shape
):
assert
len
(
input_shapes
)
==
3
,
"not valid input shape for axpy layer"
assert
len
(
input_shapes
[
0
])
==
len
(
input_shapes
[
1
]),
'should have same dims'
output_shape
=
input_shapes
[
1
]
assert
(
input_shapes
[
2
]
==
output_shape
),
\
"shape not consistent for axpy[%s <--> %s]"
\
%
(
str
(
output_shape
),
str
(
input_shapes
[
2
]))
return
[
output_shape
]
def
shape_crop
(
layer
,
input_shape
):
assert
len
(
input_shape
)
==
2
,
"the number of crop's inputs must be 2"
return
[
input_shape
[
1
]]
def
shape_detectionoutput
(
layer
,
input_shape
):
return
[[
-
1
,
6
]]
def
shape_flatten
(
layer
,
input_shape
):
assert
len
(
input_shape
)
==
1
,
"the number of flatten's inputs must be 1"
params
=
layer
.
flatten_param
start_axis
=
params
.
axis
end_axis
=
params
.
end_axis
if
start_axis
<
0
:
start_axis
+=
len
(
input_shape
[
0
])
if
end_axis
<
0
:
end_axis
+=
len
(
input_shape
[
0
])
+
1
assert
start_axis
<=
end_axis
,
'invalid axis[%d] or end_axis[%d] params'
\
%
(
start_axis
,
end_axis
)
output_shape
=
[
0
]
*
(
start_axis
-
0
)
+
[
-
1
]
+
[
0
]
*
(
len
(
input_shape
[
0
])
-
end_axis
)
return
[
output_shape
]
def
shape_normalize
(
layer
,
input_shape
):
return
input_shape
def
shape_permute
(
layer
,
input_shape
):
params
=
layer
.
permute_param
order
=
list
(
params
.
order
)
inshape
=
input_shape
[
0
]
output_shape
=
[]
for
ii
in
order
:
assert
ii
<
len
(
inshape
),
"invalid order for permute[%s]"
%
(
name
)
output_shape
.
append
(
inshape
[
ii
])
return
[
output_shape
]
def
shape_power
(
layer
,
input_shape
):
return
input_shape
def
shape_priorbox
(
layer
,
input_shape
):
params
=
layer
.
prior_box_param
min_size
=
list
(
params
.
min_size
)
max_size
=
list
(
params
.
max_size
)
aspect_ratio
=
list
(
params
.
aspect_ratio
)
assert
len
(
input_shapes
[
0
])
==
2
,
"invalid inputs for Priorbox[%s]"
%
(
name
)
fc_shape
=
input_shapes
[
0
][
0
]
N
=
1
if
not
max_size
==
None
:
N
+=
1
if
not
aspect_ratio
==
None
:
N
+=
2
*
len
(
aspect_ratio
)
N_bbx
=
fc_shape
[
2
]
*
fc_shape
[
3
]
*
N
output_shape
=
[[
1
,
2
,
4
*
N_bbx
]]
return
output_shape
def
shape_reduction
(
layer
,
input_shape
):
params
=
layer
.
reduction_param
axis
=
params
.
axis
if
axis
<
0
:
axis
+=
len
(
input_shape
[
0
])
+
1
assert
axis
<=
len
(
input_shape
[
0
]),
'invalid axis[%d] error'
%
(
axis
)
return
[
input_shape
[
0
:
axis
]]
def
shape_roipooling
(
layer
,
input_shape
):
params
=
layer
.
roi_pooling_param
pooled_w
=
params
.
pooled_w
pooled_h
=
params
.
pooled_h
spatial_scale
=
params
.
spatial_scale
assert
len
(
input_shapes
[
0
])
==
2
,
"not valid input shape for roipooling layer"
base_fea_shape
=
input_shapes
[
0
][
0
]
rois_shape
=
input_shapes
[
0
][
1
]
output_shape
=
base_fea_shape
output_shape
[
0
]
=
rois_shape
[
0
]
output_shape
[
2
]
=
pooled_h
output_shape
[
3
]
=
pooled_w
return
[
output_shape
]
def
shape_select
(
layer
,
input_shape
):
input_shape
=
list
(
input_shape
[
0
])
params
=
layer
.
select_param
axis
=
params
.
axis
slice_point
=
list
(
params
.
slice_point
)
start
=
slice_point
[
0
]
if
len
(
slice_point
)
==
2
:
end
=
slice_point
[
1
]
else
:
end
=
input_shape
[
axis
]
assert
end
>
start
,
"invalid slice_point with [start:%d, end:%d]"
\
%
(
start
,
end
)
output_shape
=
input_shape
output_shape
[
axis
]
=
end
-
start
return
[
output_shape
]
x2paddle/op_mapper/caffe_op_mapper.py
浏览文件 @
b8fe0843
...
...
@@ -267,6 +267,7 @@ class CaffeOpMapper(OpMapper):
def
Pooling
(
self
,
node
):
params
=
node
.
layer
.
pooling_param
ceil_mode
=
getattr
(
params
,
'ceil_mode'
,
True
)
global_pool
=
getattr
(
params
,
'global_pooling'
,
False
)
kernel_default
=
[
1
,
1
]
channel
,
kernel
,
stride
,
pad
,
dilation
,
group
=
self
.
get_kernel_parameters
(
...
...
@@ -286,7 +287,7 @@ class CaffeOpMapper(OpMapper):
'pool_size'
:
kernel
,
'pool_stride'
:
stride
,
'pool_padding'
:
pad
,
'ceil_mode'
:
Tru
e
,
'ceil_mode'
:
ceil_mod
e
,
'pool_type'
:
string
(
pool_type
),
'exclusive'
:
True
,
'global_pooling'
:
global_pool
,
...
...
@@ -737,7 +738,7 @@ class CaffeOpMapper(OpMapper):
else
:
self
.
weights
[
node
.
layer_name
+
'_scale'
]
=
np
.
squeeze
(
nose
.
data
[
0
])
self
.
weights
[
node
.
layer_name
+
'_offset'
]
=
np
.
squeeze
(
node
.
data
[
1
])
params
=
node
.
layer
.
scale_param
s
params
=
node
.
layer
.
scale_param
axis
=
params
.
axis
num_axes
=
params
.
num_axes
assert
num_axes
==
1
,
"layer scale not support this num_axes[%d] now"
%
(
...
...
@@ -811,3 +812,518 @@ class CaffeOpMapper(OpMapper):
node
.
layer_name
,
node
.
layer_name
),
output
=
node
,
param_attr
=
attr
)
def
Reshape
(
self
,
node
):
assert
len
(
node
.
inputs
)
==
1
and
len
(
node
.
outputs
)
==
1
,
'The count of Reshape node
\'
s input and output is not 1.'
input
=
self
.
graph
.
get_bottom_node
(
node
,
idx
=
0
,
copy
=
True
)
top_count
=
len
(
input
.
layer
.
top
)
if
self
.
is_Scale
(
input
):
tmp
=
self
.
graph
.
get_bottom_node
(
input
,
idx
=
0
,
copy
=
True
)
if
self
.
is_BN
(
tmp
):
input
=
tmp
is_inplace
,
=
False
if
top_count
==
1
else
True
output_shape
=
node
.
output_shape
[
0
]
attr
=
{
'shape'
:
output_shape
,
'inplace'
:
is_inplace
,
'name'
:
string
(
node
.
layer_name
)
}
node
.
fluid_code
.
add_layer
(
"reshape"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
def
ArgMax
(
self
,
node
):
assert
len
(
node
.
inputs
)
==
1
and
len
(
node
.
outputs
)
==
1
,
'The count of ArgMax node
\'
s input and output is not 1.'
input
=
self
.
graph
.
get_bottom_node
(
node
,
idx
=
0
,
copy
=
True
)
if
self
.
is_Scale
(
input
):
tmp
=
self
.
graph
.
get_bottom_node
(
input
,
idx
=
0
,
copy
=
True
)
if
self
.
is_BN
(
tmp
):
input
=
tmp
input_shape
=
node
.
input_shape
[
0
]
params
=
node
.
layer
.
argmax_param
out_max_val
=
params
.
out_max_val
if
hasattr
(
params
,
out_max_val
)
else
False
top_k
=
params
.
top_k
if
hasattr
(
params
,
top_k
)
else
1
axis
=
parmas
.
axis
if
hasattr
(
params
,
axis
)
else
-
1
if
axis
<
0
:
axis
+=
len
(
input_shape
)
if
out_max_val
is
True
:
attr
=
{
'k'
:
top_k
,
'name'
:
string
(
node
.
layer_name
+
'_topk'
)}
node
.
fluid_code
.
add_layer
(
"topk"
,
inputs
=
input
,
output
=
'{}_topk_var, {}_index_var'
.
format
(
node
.
layer_name
,
node
.
layer_name
),
param_attr
=
attr
)
attr
=
{
'dtype'
:
'{}_topk_var.dtype'
.
format
(
node
.
layer_name
)}
node
.
fluid_code
.
add_layer
(
"cast"
,
inputs
=
'{}_index_var'
.
format
(
node
.
layer_name
),
output
=
'{}_index_var'
.
format
(
node
.
layer_name
),
param_attr
=
attr
)
attr
=
{
'axis'
:
axis
,
'name'
:
string
(
node
.
layer_name
)}
node
.
fluid_code
.
add_layer
(
"concat"
,
inputs
=
'{}_topk_var, {}_index_var'
.
format
(
node
.
layer_name
,
node
.
layer_name
),
output
=
node
,
param_attr
=
attr
)
else
:
attr
=
{
'k'
:
top_k
,
'name'
:
string
(
node
.
layer_name
)}
node
.
fluid_code
.
add_layer
(
"topk"
,
inputs
=
input
,
output
=
'_, {}'
.
format
(
node
.
layer_name
),
param_attr
=
attr
)
def
Axpy
(
self
,
node
):
assert
len
(
node
.
inputs
)
==
3
,
'The count of Axpy node
\'
s input is not 3.'
alpha
=
self
.
graph
.
get_bottom_node
(
node
,
idx
=
0
,
copy
=
True
)
if
self
.
is_Scale
(
alpha
):
tmp
=
self
.
graph
.
get_bottom_node
(
alpha
,
idx
=
0
,
copy
=
True
)
if
self
.
is_BN
(
tmp
):
alpha
=
tmp
x
=
self
.
graph
.
get_bottom_node
(
node
,
idx
=
1
,
copy
=
True
)
if
self
.
is_Scale
(
x
):
tmp
=
self
.
graph
.
get_bottom_node
(
x
,
idx
=
0
,
copy
=
True
)
if
self
.
is_BN
(
tmp
):
x
=
tmp
y
=
self
.
graph
.
get_bottom_node
(
node
,
idx
=
2
,
copy
=
True
)
if
self
.
is_Scale
(
y
):
tmp
=
self
.
graph
.
get_bottom_node
(
y
,
idx
=
0
,
copy
=
True
)
if
self
.
is_BN
(
tmp
):
y
=
tmp
attr
=
{
'axis'
:
0
,
'name'
:
string
(
node
.
layer_name
+
'_mul'
)}
node
.
fluid_code
.
add_layer
(
"elementwise_mul"
,
inputs
=
{
'x'
:
alpha
,
'y'
:
x
},
output
=
node
,
param_attr
=
attr
)
attr
=
{
'name'
:
string
(
node
.
layer_name
+
'_add'
)}
node
.
fluid_code
.
add_layer
(
"elementwise_add"
,
inputs
=
{
'x'
:
node
,
'y'
:
y
},
output
=
node
,
param_attr
=
attr
)
def
Crop
(
self
,
node
):
assert
len
(
node
.
inputs
)
==
2
,
'The count of Crop node
\'
s input is not 2.'
input
=
self
.
graph
.
get_bottom_node
(
node
,
idx
=
0
,
copy
=
True
)
if
self
.
is_Scale
(
input
):
tmp
=
self
.
graph
.
get_bottom_node
(
input
,
idx
=
0
,
copy
=
True
)
if
self
.
is_BN
(
tmp
):
input
=
tmp
example
=
self
.
graph
.
get_bottom_node
(
node
,
idx
=
1
,
copy
=
True
)
if
self
.
is_Scale
(
example
):
tmp
=
self
.
graph
.
get_bottom_node
(
example
,
idx
=
0
,
copy
=
True
)
if
self
.
is_BN
(
tmp
):
example
=
tmp
params
=
node
.
layer
.
crop_param
axis
=
parmas
.
axis
input_shape
=
node
.
input_shape
[
0
]
if
axis
<
0
:
axis
+=
len
(
input_shape
)
offset_real
=
[
0
]
*
len
(
input_shape
)
if
hasattr
(
params
,
offset
):
offset
=
list
(
params
.
offset
)
assert
(
len
(
input_shape
)
-
axis
)
==
len
(
offset
),
"invalid offset[%s] in crop layer"
%
(
str
(
offset
))
offset_real
=
[
0
]
*
axis
+
offset
attr
=
{
'offsets'
:
offset_real
,
'name'
:
string
(
node
.
layer_name
)}
node
.
fluid_code
.
add_layer
(
"crop"
,
inputs
=
{
'x'
:
input
,
'y'
:
example
},
output
=
node
,
param_attr
=
attr
)
def
DetectionOutput
(
self
,
node
):
assert
len
(
node
.
inputs
)
==
3
,
'The count of DetectionOutput node
\'
s input is not 3.'
mbox_loc
=
self
.
graph
.
get_bottom_node
(
node
,
idx
=
0
,
copy
=
True
)
if
self
.
is_Scale
(
mbox_loc
):
tmp
=
self
.
graph
.
get_bottom_node
(
mbox_loc
,
idx
=
0
,
copy
=
True
)
if
self
.
is_BN
(
tmp
):
mbox_loc
=
tmp
mbox_conf_flatten
=
self
.
graph
.
get_bottom_node
(
node
,
idx
=
1
,
copy
=
True
)
if
self
.
is_Scale
(
mbox_conf_flatten
):
tmp
=
self
.
graph
.
get_bottom_node
(
mbox_conf_flatten
,
idx
=
0
,
copy
=
True
)
if
self
.
is_BN
(
tmp
):
mbox_conf_flatten
=
tmp
mbox_priorbox
=
self
.
graph
.
get_bottom_node
(
node
,
idx
=
2
,
copy
=
True
)
if
self
.
is_Scale
(
mbox_priorbox
):
tmp
=
self
.
graph
.
get_bottom_node
(
mbox_priorbox
,
idx
=
0
,
copy
=
True
)
if
self
.
is_BN
(
tmp
):
mbox_priorbox
=
tmp
params
=
node
.
layer
.
detection_output_param
nms_threshold
=
0.3
top_k
=
10
eta
=
1.0
if
hasattr
(
params
,
'nms_param'
):
nms_threshold
=
getattr
(
params
.
nms_param
,
'nms_threshold'
,
0.3
)
top_k
=
getattr
(
params
.
nms_param
,
'top_k'
,
10
)
eta
=
getattr
(
params
.
nms_param
,
'eta'
,
1.0
)
background_label
=
getattr
(
params
,
'background_label_id'
,
0
)
share_location
=
getattr
(
params
,
'share_location'
,
True
)
keep_top_k
=
getattr
(
params
,
'keep_top_k'
,
100
)
confidence_threshold
=
getattr
(
params
,
'confidence_threshold'
,
0.1
)
attr
=
{
'num_or_sections'
:
2
,
'dim'
:
1
,
'name'
:
string
(
node
.
layer_name
+
'_split'
)
}
node
.
fluid_code
.
add_layer
(
"split"
,
inputs
=
mbox_priorbox
,
output
=
'mbox_priorbox_list'
,
param_attr
=
attr
)
node
.
fluid_code
.
add_note
(
'pb = mbox_priorbox_list[0]'
)
node
.
fluid_code
.
add_note
(
'pbv = mbox_priorbox_list[1]'
)
attr
=
{
'shape'
:
[
-
1
,
4
],
'name'
:
string
(
node
.
layer_name
+
'_reshape1'
)}
node
.
fluid_code
.
add_layer
(
"reshape"
,
inputs
=
'pb'
,
output
=
'pb'
,
param_attr
=
attr
)
attr
=
{
'shape'
:
[
-
1
,
4
],
'name'
:
string
(
node
.
layer_name
+
'_reshape2'
)}
node
.
fluid_code
.
add_layer
(
"reshape"
,
inputs
=
'pbv'
,
output
=
'pbv'
,
param_attr
=
attr
)
# TODO(syf): need chaeck
attr
=
{
'shape'
:
[
-
1
,
node
.
input_shape
[
1
][
1
],
4
],
'name'
:
string
(
node
.
layer_name
+
'_reshape3'
)
}
node
.
fluid_code
.
add_layer
(
"reshape"
,
inputs
=
mbox_loc
,
output
=
'mbox_loc'
,
param_attr
=
attr
)
attr
=
{
'background_label'
:
background_label
,
'nms_threshold'
:
nms_threshold
,
'nms_top_k'
:
top_k
,
'keep_top_k'
:
keep_top_k
,
'score_threshold'
:
confidence_threshold
,
'nms_eta'
:
eta
}
inputs_str
=
get_input_name
(
mbox_conf_flatten
)
+
', mbox_loc, pb, pbv'
node
.
fluid_code
.
add_layer
(
"detection_output"
,
inputs
=
inputs_str
,
output
=
node
,
param_attr
=
attr
)
def
Flatten
(
self
,
noed
):
assert
len
(
node
.
inputs
)
==
1
,
'The count of DetectionOutput node
\'
s input is not 1.'
input
=
self
.
graph
.
get_bottom_node
(
node
,
idx
=
0
,
copy
=
True
)
if
self
.
is_Scale
(
input
):
tmp
=
self
.
graph
.
get_bottom_node
(
input
,
idx
=
0
,
copy
=
True
)
if
self
.
is_BN
(
tmp
):
input
=
tmp
shape
=
node
.
output_shape
[
0
]
attr
=
{
'shape'
:
shape
,
'name'
:
string
(
node
.
layer_name
)}
node
.
fluid_code
.
add_layer
(
"reshape"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
def
Normalize
(
self
,
node
):
assert
len
(
node
.
inputs
)
==
1
,
'The count of Normalize node
\'
s input is not 1.'
input
=
self
.
graph
.
get_bottom_node
(
node
,
idx
=
0
,
copy
=
True
)
if
self
.
is_Scale
(
input
):
tmp
=
self
.
graph
.
get_bottom_node
(
input
,
idx
=
0
,
copy
=
True
)
if
self
.
is_BN
(
tmp
):
input
=
tmp
params
=
node
.
layer
.
norm_param
across_spatial
=
params
.
across_spatial
channel_shared
=
params
.
channel_shared
assert
across_spatial
==
False
,
"Only support across_spatial == False for Normalize"
attr
=
{
'axis'
:
1
,
'name'
:
string
(
node
.
layer_name
+
'_l2'
)}
node
.
fluid_code
.
add_layer
(
"l2_normalize"
,
inputs
=
input
,
output
=
node
.
layer_name
+
'_l2'
,
param_attr
=
attr
)
input_name
=
self
.
get_input_name
(
input
)
data
=
node
.
data
data
=
self
.
adjust_parameters
(
node
,
data
)
self
.
weights
[
node
.
layer_name
+
'_scale'
]
=
data
[
0
]
node
.
fluid_code
.
add_note
(
'{}_scale_attr = ParamAttr(name=
\'
{}
\'
)'
.
format
(
node
.
layer_name
,
node
.
layer_name
+
'_scale'
))
attr
=
{
'shape'
:
[
1
]
if
channel_shared
else
[
node
.
input_shape
[
0
][
1
]],
'dtype'
:
'{}.dtype'
.
format
(
input_name
),
'attr'
:
'{}_scale_attr'
.
format
(
node
.
layer_name
),
'name'
:
string
(
node
.
layer_name
+
'_param'
)
}
node
.
fluid_code
.
add_layer
(
"create_parameter"
,
inputs
=
None
,
output
=
node
.
layer_name
+
'_scale_param'
,
param_attr
=
attr
)
attr
=
{
'axis'
:
-
1
if
channel_shared
else
1
,
'name'
:
string
(
node
.
layer_name
+
'_mul'
)
}
node
.
fluid_code
.
add_layer
(
"elementwise_mul"
,
inputs
=
node
.
layer_name
+
'_l2, '
+
node
.
layer_name
+
'_scale_param'
,
output
=
node
,
param_attr
=
attr
)
def
Permute
(
self
,
node
):
assert
len
(
node
.
inputs
)
==
1
,
'The count of Permute node
\'
s input is not 1.'
input
=
self
.
graph
.
get_bottom_node
(
node
,
idx
=
0
,
copy
=
True
)
if
self
.
is_Scale
(
input
):
tmp
=
self
.
graph
.
get_bottom_node
(
input
,
idx
=
0
,
copy
=
True
)
if
self
.
is_BN
(
tmp
):
input
=
tmp
params
=
node
.
layer
.
permute_param
order
=
list
(
params
.
order
)
attr
=
{
'order'
:
order
,
'name'
:
string
(
node
.
layer_name
)}
node
.
fluid_code
.
add_layer
(
"transpose"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
def
Power
(
self
,
node
):
assert
len
(
node
.
inputs
)
==
1
,
'The count of Permute node
\'
s input is not 1.'
input
=
self
.
graph
.
get_bottom_node
(
node
,
idx
=
0
,
copy
=
True
)
if
self
.
is_Scale
(
input
):
tmp
=
self
.
graph
.
get_bottom_node
(
input
,
idx
=
0
,
copy
=
True
)
if
self
.
is_BN
(
tmp
):
input
=
tmp
params
=
node
.
layer
.
power_param
power
=
params
.
power
scale
=
params
.
scale
shift
=
params
.
shift
attr
=
{
'scale'
:
scale
,
'bias'
:
shift
,
'bias_after_scale'
:
True
,
'name'
:
string
(
node
.
layer_name
+
'_scale'
)
}
node
.
fluid_code
.
add_layer
(
"scale"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
attr
=
{
'factor'
:
power
,
'name'
:
string
(
node
.
layer_name
)}
node
.
fluid_code
.
add_layer
(
"pow"
,
inputs
=
node
,
output
=
node
,
param_attr
=
attr
)
def
PriorBox
(
self
,
node
):
assert
len
(
node
.
inputs
)
==
2
,
'The count of PriorBox node
\'
s input is not 2.'
input1
=
self
.
graph
.
get_bottom_node
(
node
,
idx
=
0
,
copy
=
True
)
if
self
.
is_Scale
(
input1
):
tmp
=
self
.
graph
.
get_bottom_node
(
input1
,
idx
=
0
,
copy
=
True
)
if
self
.
is_BN
(
tmp
):
input1
=
tmp
input2
=
self
.
graph
.
get_bottom_node
(
node
,
idx
=
1
,
copy
=
True
)
if
self
.
is_Scale
(
input2
):
tmp
=
self
.
graph
.
get_bottom_node
(
input2
,
idx
=
0
,
copy
=
True
)
if
self
.
is_BN
(
tmp
):
input2
=
tmp
input_dict
=
{
'input'
:
input1
,
'image'
:
input2
}
params
=
node
.
layer
.
prior_box_param
step
=
getattr
(
params
,
'step'
,
0.0
)
offset
=
getattr
(
params
,
'offset'
,
0.5
)
min_size
=
list
(
params
.
min_size
)
max_size
=
list
(
params
.
max_size
)
aspect_ratio
=
list
(
params
.
aspect_ratio
)
flip
=
getattr
(
params
,
'flip'
,
False
)
clip
=
getattr
(
params
,
'clip'
,
False
)
variance
=
list
(
getattr
(
params
,
'variance'
,
[
0.1
,
0.1
,
0.2
,
0.2
]))
steps
=
tuple
(
step
)
if
type
(
step
)
is
list
or
type
(
step
)
is
tuple
else
(
step
,
step
)
attr
=
{
'min_sizes'
:
min_size
,
'max_sizes'
:
max_size
,
'aspect_ratios'
:
aspect_ratio
,
'variance'
:
variance
,
'flip'
:
flip
,
'clip'
:
clip
,
'step'
:
steps
,
'offset'
:
offset
,
'min_max_aspect_ratios_order'
:
True
,
'name'
:
string
(
node
.
layer_name
)
}
node
.
fluid_code
.
add_layer
(
"prior_box"
,
inputs
=
input_dict
,
output
=
'{}_box, {}_var'
.
format
(
node
.
layer_name
,
node
.
layer_name
),
param_attr
=
attr
)
attr
=
{
'shape'
:
[
1
,
1
,
-
1
],
}
node
.
fluid_code
.
add_layer
(
"reshape"
,
inputs
=
'{}_box'
.
format
(
node
.
layer_name
),
output
=
'{}_box'
.
format
(
node
.
layer_name
),
param_attr
=
attr
)
attr
=
{
'shape'
:
[
1
,
1
,
-
1
],
}
node
.
fluid_code
.
add_layer
(
"reshape"
,
inputs
=
'{}_var'
.
format
(
node
.
layer_name
),
output
=
'{}_var'
.
format
(
node
.
layer_name
),
param_attr
=
attr
)
attr
=
{
'axis'
:
1
,
'name'
:
string
(
node
.
layer_name
+
'_concat'
)}
node
.
fluid_code
.
add_layer
(
"concat"
,
inputs
=
'[{}_box, {}_var]'
.
format
(
node
.
layer_name
,
node
.
layer_name
),
output
=
node
,
param_attr
=
attr
)
def
Reduction
(
self
,
node
):
assert
len
(
node
.
inputs
)
==
1
,
'The count of Reduction node
\'
s input is not 1.'
input
=
self
.
graph
.
get_bottom_node
(
node
,
idx
=
0
,
copy
=
True
)
if
self
.
is_Scale
(
input
):
tmp
=
self
.
graph
.
get_bottom_node
(
input
,
idx
=
0
,
copy
=
True
)
if
self
.
is_BN
(
tmp
):
input
=
tmp
params
=
node
.
layer
.
reduction_param
operation
=
params
.
operation
axis
=
params
.
axis
coeff
=
params
.
coeff
assert
operation
>=
1
and
operation
<=
4
,
"reduction reduction [%s] error"
%
(
operation
)
input_len
=
len
(
node
.
input_shape
[
0
])
if
axis
<
0
:
axis
+=
input_len
+
1
dim
=
list
(
range
(
input_len
))
if
operation
==
1
:
## operation = SUM
attr
=
{
'dim'
:
dim
[
axis
:],
'keep_dim'
:
False
,
'name'
:
string
(
node
.
layer_name
)
}
node
.
fluid_code
.
add_layer
(
"reduce_sum"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
elif
operation
==
2
:
## operation = ASUM
attr
=
{
'name'
:
string
(
node
.
layer_name
+
'_abs'
)}
node
.
fluid_code
.
add_layer
(
"abs"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
attr
=
{
'dim'
:
dim
[
axis
:],
'keep_dim'
:
False
,
'name'
:
string
(
node
.
layer_name
)
}
node
.
fluid_code
.
add_layer
(
"reduce_sum"
,
inputs
=
node
,
output
=
node
,
param_attr
=
attr
)
elif
operation
==
3
:
## operation = SUMSQ
attr
=
{
'factor'
:
2.0
,
'name'
:
string
(
node
.
layer_name
+
'_pow'
)}
node
.
fluid_code
.
add_layer
(
"pow"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
attr
=
{
'dim'
:
dim
[
axis
:],
'keep_dim'
:
False
,
'name'
:
string
(
node
.
layer_name
)
}
node
.
fluid_code
.
add_layer
(
"reduce_sum"
,
inputs
=
node
,
output
=
node
,
param_attr
=
attr
)
else
:
## operation = MEAN
attr
=
{
'dim'
:
dim
[
axis
:],
'keep_dim'
:
False
,
'name'
:
string
(
node
.
layer_name
)
}
node
.
fluid_code
.
add_layer
(
"reduce_mean"
,
inputs
=
node
,
output
=
node
,
param_attr
=
attr
)
attr
=
{
'scale'
:
coeff
}
node
.
fluid_code
.
add_layer
(
"scale"
,
inputs
=
node
,
output
=
node
,
param_attr
=
attr
)
def
ROIPooling
(
self
,
node
):
assert
len
(
node
.
inputs
)
==
2
,
'The count of ROIPooling node
\'
s input is not 2.'
input1
=
self
.
graph
.
get_bottom_node
(
node
,
idx
=
0
,
copy
=
True
)
if
self
.
is_Scale
(
input1
):
tmp
=
self
.
graph
.
get_bottom_node
(
input1
,
idx
=
0
,
copy
=
True
)
if
self
.
is_BN
(
tmp
):
input1
=
tmp
input2
=
self
.
graph
.
get_bottom_node
(
node
,
idx
=
1
,
copy
=
True
)
if
self
.
is_Scale
(
input2
):
tmp
=
self
.
graph
.
get_bottom_node
(
input2
,
idx
=
0
,
copy
=
True
)
if
self
.
is_BN
(
tmp
):
input2
=
tmp
attr
=
{
'axes'
:
[
1
],
'starts'
:
[
1
],
'ends'
:
[
5
]}
node
.
fluid_code
.
add_layer
(
"slice"
,
inputs
=
input2
,
output
=
input2
,
param_attr
=
attr
)
input_dict
=
{
'input'
:
input1
,
'rois'
:
input2
}
params
=
node
.
layer
.
roi_pooling_param
attr
=
{
'pooled_w'
:
params
.
pooled_w
,
'pooled_h'
:
params
.
pooled_h
,
'spatial_scale'
:
params
.
spatial_scale
,
'name'
:
string
(
node
.
layer_name
)
}
node
.
fluid_code
.
add_layer
(
"roi_pool"
,
inputs
=
input_dict
,
output
=
node
,
param_attr
=
attr
)
def
Select
(
self
,
node
):
assert
len
(
node
.
inputs
)
==
1
,
'The count of Select node
\'
s input is not 2.'
input
=
self
.
graph
.
get_bottom_node
(
node
,
idx
=
0
,
copy
=
True
)
if
self
.
is_Scale
(
input
):
tmp
=
self
.
graph
.
get_bottom_node
(
input
,
idx
=
0
,
copy
=
True
)
if
self
.
is_BN
(
tmp
):
input
=
tmp
params
=
node
.
layer
.
select_param
slice_point
=
list
(
params
.
slice_point
)
axis
=
params
.
axis
maxint32
=
2147483647
slice_point
=
[
0
]
+
slice_point
slice_point
.
append
(
maxint32
)
i
=
0
node
.
fluid_code
.
add_note
(
'{} = []'
.
format
(
node
.
layer_name
))
for
i
in
range
(
len
(
slice_point
)):
attr
=
{
'axes'
:
[
axis
],
'starts'
:
[
slice_point
[
i
]],
'ends'
:
[
slice_point
[
i
+
1
]],
'name'
:
string
(
node
.
layer_name
+
'_'
+
str
(
i
))
}
node
.
fluid_code
.
add_layer
(
"slice"
,
inputs
=
input
,
output
=
string
(
node
.
layer_name
+
'_'
+
str
(
i
)),
param_attr
=
attr
)
node
.
fluid_code
.
add_note
(
'{}.append({})'
.
format
(
node
.
layer_name
,
node
.
layer_name
+
'_'
+
str
(
i
)))
if
i
==
len
(
slice_point
)
-
2
:
break
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录