提交 ac9ef6a8 编写于 作者: J jiangjiajun

add paddle2onnx

上级 9250c63b
__version__ = "0.7.1"
__version__ = "0.7.2"
......@@ -19,32 +19,38 @@ import sys
def arg_parser():
parser = argparse.ArgumentParser()
parser.add_argument("--model",
"-m",
type=_text_type,
default=None,
help="define model file path for tensorflow or onnx")
parser.add_argument("--prototxt",
"-p",
type=_text_type,
default=None,
help="prototxt file of caffe model")
parser.add_argument("--weight",
"-w",
type=_text_type,
default=None,
help="weight file of caffe model")
parser.add_argument("--save_dir",
"-s",
type=_text_type,
default=None,
help="path to save translated model")
parser.add_argument(
"--model",
"-m",
type=_text_type,
default=None,
help="define model file path for tensorflow or onnx")
parser.add_argument(
"--prototxt",
"-p",
type=_text_type,
default=None,
help="prototxt file of caffe model")
parser.add_argument(
"--weight",
"-w",
type=_text_type,
default=None,
help="weight file of caffe model")
parser.add_argument(
"--save_dir",
"-s",
type=_text_type,
default=None,
help="path to save translated model")
parser.add_argument(
"--framework",
"-f",
type=_text_type,
default=None,
help="define which deeplearning framework(tensorflow/caffe/onnx)")
help=
"define which deeplearning framework(tensorflow/caffe/onnx/paddle2onnx)"
)
parser.add_argument(
"--caffe_proto",
"-c",
......@@ -52,27 +58,30 @@ def arg_parser():
default=None,
help="optional: the .py file compiled by caffe proto file of caffe model"
)
parser.add_argument("--version",
"-v",
action="store_true",
default=False,
help="get version of x2paddle")
parser.add_argument(
"--version",
"-v",
action="store_true",
default=False,
help="get version of x2paddle")
parser.add_argument(
"--without_data_format_optimization",
"-wo",
action="store_true",
default=False,
help="tf model conversion without data format optimization")
parser.add_argument("--define_input_shape",
"-d",
action="store_true",
default=False,
help="define input shape for tf model")
parser.add_argument("--params_merge",
"-pm",
action="store_true",
default=False,
help="define whether merge the params")
parser.add_argument(
"--define_input_shape",
"-d",
action="store_true",
default=False,
help="define input shape for tf model")
parser.add_argument(
"--params_merge",
"-pm",
action="store_true",
default=False,
help="define whether merge the params")
return parser
......@@ -177,6 +186,14 @@ def onnx2paddle(model_path, save_dir, params_merge=False):
mapper.save_inference_model(save_dir, params_merge)
def paddle2onnx(model_path, save_dir):
from x2paddle.decoder.paddle_decoder import PaddleDecoder
from x2paddle.op_mapper.paddle_op_mapper import PaddleOpMapper
model = PaddleDecoder(model_path, '__model__', '__params__')
mapper = PaddleOpMapper()
mapper.convert(model.program, save_dir)
def main():
if len(sys.argv) < 2:
print("Use \"x2paddle -h\" to print the help information")
......@@ -249,8 +266,14 @@ def main():
if args.params_merge:
params_merge = True
onnx2paddle(args.model, args.save_dir, params_merge)
elif args.framework == "paddle2onnx":
assert args.model is not None, "--model should be defined while translating paddle model to onnx"
paddle2onnx(args.model, args.save_dir)
else:
raise Exception("--framework only support tensorflow/caffe/onnx now")
raise Exception(
"--framework only support tensorflow/caffe/onnx/paddle2onnx now")
if __name__ == "__main__":
......
import paddle.fluid as fluid
class PaddleDecoder(object):
def __init__(self,
model_dir,
model_filename='__model__',
params_filename=None):
exe = fluid.Executor(fluid.CPUPlace())
[self.program, feed, fetchs] = fluid.io.load_inference_model(
model_dir,
exe,
model_filename=model_filename,
params_filename=params_filename)
import math
import x2paddle
import os
import numpy as np
import paddle.fluid.core as core
import paddle.fluid as fluid
import onnx
from onnx import helper, onnx_pb
class PaddleOpMapper(object):
def __init__(self):
self.paddle_onnx_dtype_map = {
core.VarDesc.VarType.FP32: onnx_pb.TensorProto.FLOAT,
core.VarDesc.VarType.FP64: onnx_pb.TensorProto.DOUBLE,
core.VarDesc.VarType.INT32: onnx_pb.TensorProto.INT32,
core.VarDesc.VarType.INT16: onnx_pb.TensorProto.INT16,
core.VarDesc.VarType.INT16: onnx_pb.TensorProto.UINT16,
core.VarDesc.VarType.INT64: onnx_pb.TensorProto.INT64,
core.VarDesc.VarType.BOOL: onnx_pb.TensorProto.BOOL
}
self.name_counter = dict()
def get_name(self, op_name, var_name):
name = 'p2o.{}.{}'.format(op_name, var_name)
if name not in self.name_counter:
self.name_counter[name] = 0
else:
self.name_counter[name] += 1
return name + '.{}'.format(self.name_counter[name])
def make_constant_node(self, name, dtype, value=None):
if isinstance(value, list):
dims = (len(value), )
elif value is None:
dims = ()
value = []
else:
dims = ()
value = [value]
tensor = helper.make_tensor(
name=name, data_type=dtype, dims=dims, vals=value)
node = helper.make_node(
'Constant', inputs=[], outputs=[name], value=tensor)
return node
def conv2d(self, op, block):
kernel_shape = block.var(op.input('Filter')[0]).shape
node = helper.make_node(
'Conv',
inputs=op.input('Input') + op.input('Filter'),
outputs=op.output('Output'),
dilations=op.attr('dilations'),
kernel_shape=kernel_shape[-2:],
strides=op.attr('strides'),
group=op.attr('groups'),
pads=op.attr('paddings') + op.attr('paddings'))
return node
def relu(self, op, block):
node = helper.make_node(
'Relu', inputs=op.input('X'), outputs=op.output('Out'))
return node
def elementwise_add(self, op, block):
axis = op.attr('axis')
x_shape = block.var(op.input('X')[0]).shape
y_shape = block.var(op.input('Y')[0]).shape
if len(y_shape) == 1 and axis == 1:
shape_name = self.get_name(op.type, 'shape')
shape_value = [1] * len(x_shape)
shape_value[axis] = y_shape[0]
shape_node = self.make_constant_node(
shape_name, onnx_pb.TensorProto.INT64, shape_value)
temp_value = self.get_name(op.type, 'temp')
y_node = helper.make_node(
'Reshape',
inputs=[op.input('Y')[0], shape_name],
outputs=[temp_value])
node = helper.make_node(
'Add',
inputs=[op.input('X')[0], temp_value],
outputs=op.output('Out'))
return [shape_node, y_node, node]
elif len(x_shape) == len(y_shape):
node = helper.make_node(
'Add',
inputs=[op.input('X')[0], op.input('Y')[0]],
outputs=op.output('Out'))
return node
else:
raise Excpetion("Unexpected situation happend in elementwise_add")
def pool2d(self, op, block):
pool_type = {
'max': ('MaxPool', 'GlobalMaxPool'),
'avg': ('AveragePool', 'GlobalAveragePool')
}
if op.attr('global_pooling'):
node = helper.make_node(
pool_type[op.attr('pooling_type')][1],
inputs=op.input('X'),
outputs=op.output('Out'),
)
else:
node = helper.make_node(
pool_type[op.attr('pooling_type')][0],
inputs=op.input('X'),
outputs=op.output('Out'),
kernel_shape=op.attr('ksize'),
strides=op.attr('strides'),
pads=op.attr('paddings') + op.attr('paddings'))
return node
def softmax(self, op, block):
node = helper.make_node(
'Softmax',
inputs=op.input('X'),
outputs=op.output('Out'),
axis=op.attr('axis'))
return node
def scale(self, op, block):
scale = op.attr('scale')
bias = op.attr('bias')
if math.fabs(scale - 1.0) < 1e-06 and math.fabs(bias - 0.0) < 1e-06:
node = helper.make_node(
'Identity', inputs=op.input('X'), outputs=op.output('Out'))
return node
else:
scale_name = self.get_name(op.type, 'scale')
bias_name = self.get_name(op.type, 'bias')
scale_node = self.make_constant_node(
scale_name, onnx_pb.TensorProto.FLOAT, scale)
bias_node = self.make_constant_node(bias_name,
onnx_pb.TensorProto.FLOAT, bias)
temp_tensor_name = self.get_name(op.type, 'temporary')
if op.attr('bias_after_scale'):
node1 = helper.make_node(
'Mul',
inputs=[scale_name, op.input('X')[0]],
outputs=[temp_tensor_name])
node2 = helper.make_node(
'Add',
inputs=[bias_name, temp_tensor_name],
outputs=op.output('Out'))
else:
node1 = helper.make_node(
'Add',
inputs=[bias_name, op.input('X')[0]],
outputs=temp_tensor_name)
node2 = helper.make_node(
'Mul',
inputs=[scale_name, temp_tensor_name],
outputs=[op.output('Out')])
return [scale_node, bias_node, node1, node2]
def mul(self, op, block):
x_shape = block.var(op.input('X')[0]).shape
y_shape = block.var(op.input('Y')[0]).shape
out_shape = list(block.var(op.output('Out')[0]).shape)
x_num_col_dims = op.attr('x_num_col_dims')
y_num_col_dims = op.attr('y_num_col_dims')
flatten_x_name = 'flatten_{}'.format(op.input('X')[0])
flatten_y_name = 'flatten_{}'.format(op.input('Y')[0])
shape_name = 'temp_shape_{}'.format(op.output('Out')[0])
temp_out_name = 'temp_{}'.format(op.output('Out')[0])
flatten_x = helper.make_node(
'Flatten',
inputs=op.input('X'),
outputs=[flatten_x_name],
axis=x_num_col_dims)
flatten_y = helper.make_node(
'Flatten',
inputs=op.input('Y'),
outputs=[flatten_y_name],
axis=y_num_col_dims)
shape_node = self.make_constant_node(
shape_name, onnx_pb.TensorProto.INT64, out_shape)
node = helper.make_node(
'MatMul',
inputs=[flatten_x_name, flatten_y_name],
outputs=[temp_out_name])
reshape_out = helper.make_node(
'Reshape',
inputs=[temp_out_name, shape_name],
outputs=op.output('Out'))
return [flatten_x, flatten_y, shape_node, node, reshape_out]
def batch_norm(self, op, block):
kwargs = {
'epsilon': op.attr('epsilon'),
'momentum': op.attr('momentum')
}
inputs = op.input('X') + op.input('Scale') + op.input(
'Bias') + op.input('Mean') + op.input('Variance')
node = helper.make_node(
'BatchNormalization',
inputs=inputs,
outputs=op.output('Y'),
**kwargs)
return node
def concat(self, op, block):
node = helper.make_node(
'Concat',
inputs=op.input('X'),
outputs=op.output('Out'),
axis=op.attr('axis'))
return node
def depthwise_conv2d(self, op, block):
return self.conv2d(op, block)
def relu6(self, op, block):
min_name = self.get_name(op.type, 'min')
max_name = self.get_name(op.type, 'max')
min_node = self.make_constant_node(min_name, onnx_pb.TensorProto.FLOAT,
0)
max_node = self.make_constant_node(max_name, onnx_pb.TensorProto.FLOAT,
op.attr('threshold'))
node = helper.make_node(
'Clip',
inputs=[op.input('X')[0], min_name, max_name],
outputs=op.output('Out'),
)
return [min_node, max_node, node]
def shape(self, op, block):
node = helper.make_node(
'Shape', inputs=op.input('Input'), outputs=op.output('Out'))
return node
def split(self, op, block):
sections = op.attr('sections')
if len(sections) > 0:
node = helper.make_node(
'Split',
inputs=op.input('X'),
outputs=op.output('Out'),
axis=op.attr('axis'),
split=sections)
else:
node = helper.make_node(
'Split',
inputs=op.input('X'),
outputs=op.output('Out'),
axis=op.attr('axis'))
def slice(self, op, block):
axes = op.attr('axes')
starts = op.attr('starts')
ends = op.attr('ends')
axes_name = get_name(op.type, 'axes')
starts_name = get_name(op.type, 'starts')
ends_name = get_name(op.type, 'ends')
axes_node = make_constant_node(axes_name, onnx_pb.TensorProto.INT64,
axes)
starts_node = make_constant_node(starts_name, onnx_pb.TensorProto.INT64,
starts)
ends_node = make_constant_node(ends_name, onnx_pb.TensorProto.INT64,
ends)
node = helper.make_node(
"Slice",
inputs=[op.input('Input')[0], starts_name, ends_name, axes_name],
outputs=op.output('Out'),
)
return [starts_node, ends_node, axes_node, node]
def fill_constant(self, op, block):
value = op.attr('value')
dtype = op.attr('dtype')
shape = op.attr('shape')
value = np.ones(shape) * value
node = helper.make_node(
'Constant',
inputs=[],
outputs=op.attr('Out'),
value=helper.make_tensor(
name=op.attr('Out'),
data_type=self.paddle_onnx_dtype_map[dtype],
dims=shape,
vals=value.tolist()))
return node
def transpose2(self, op, block):
node = helper.make_node(
'Transpose',
inputs=op.input('X'),
outputs=op.output('Out'),
perm=op.attr('perm'))
return node
def reshape2(self, op, block):
input_names = op.input_names
if 'Shape' in input_names and len(op.input('Shape')) > 0:
node = helper.make_node(
'Reshape',
inputs=[op.input('X')[0],
op.input('Shape')[0]],
outputs=op.output('Out'))
else:
shape = op.attr('shape')
shape_name = get_name(op.type, 'shape')
shape_node = make_constant_node(shape_name,
onnxpb.TensorProto.INT64, shape)
node = helper.make_node(
'Reshape',
inputs=[op.input('X')[0], shape_name],
outputs=op.output('Out'))
return [shape_node, node]
return node
def dropout(self, op, block):
dropout_mode = op.attr('dropout_implementation')
dropout_prob = op.attr('dropout_prob')
if dropout_mode == 'upscale_in_train':
node = helper.make_node(
'Identity', inputs=op.input('X'), outputs=op.output('Out'))
return node
elif dropout_mode == 'downgrade_in_infer':
scale_name = self.get_name(op.type, 'scale')
scale_node = self.make_constant_node(
scale_name, onnx_pb.TensorProto.FLOAT, 1 - dropout_prob)
node = helper.make_node(
"Mul",
inputs=[op.input('X')[0], scale_name],
outputs=op.output('Out'))
return [scale_node, node]
else:
raise Exception("Unexpected situation happend")
def reduce_mean(self, op, block):
node = helper.make_node(
'ReduceMean',
inputs=op.input('X'),
outputs=op.output('Out'),
axes=op.attr('axes'),
keepdims=op.attr('keep_dim'))
return node
def nearest_interp(self, op, block):
input_names = op.input_names
if 'OutSize' in input_names and len(op.input('OutSize')) > 0:
node = helper.make_node(
'Resize',
inputs=[op.input('X')[0], '',
op.input('OutSize')[0]],
outputs=op.output('Out'))
elif 'Scale' in input_names and len(op.input('Scale')) > 0:
node = helper.make_node(
'Resize',
inputs=[op.input('X')[0],
op.input('Scale')[0]],
outputs=op.output('Out'))
else:
out_shape = [op.attr('out_h'), op.attr('out_w')]
scale = op.attr('scale')
if out_shape.count(-1) > 0:
scale_name = self.get_name(op.type, 'scale')
scale_node = self.make_constant_node(
scale_name, onnx_pb.TensorProto.FLOAT, [1, 1, scale, scale])
roi_name = self.get_name(op.type, 'roi')
roi_node = self.make_constant_node(roi_name,
onnx_pb.TensorProto.FLOAT,
[1, 1, 1, 1, 1, 1, 1, 1])
node = helper.make_node(
'Resize',
inputs=[op.input('X')[0], roi_name, scale_name],
outputs=op.output('Out'),
mode='nearest')
return [scale_node, roi_node, node]
else:
raise Exception("Unexpected situation happend")
return node
def hard_sigmoid(self, op, block):
slope = op.attr('slope')
offset = op.attr('offset')
node = helper.make_node(
'HardSigmoid',
inputs=op.input('X'),
outputs=op.output('Out'),
alpha=slope,
beta=offset)
return node
def elementwise_mul(self, op, block):
axis = op.attr('axis')
x_shape = block.var(op.input('X')[0]).shape
y_shape = block.var(op.input('Y')[0]).shape
if len(y_shape) == 1 and axis == 1:
shape_name = self.get_name(op.type, 'shape')
shape_value = [1] * len(x_shape)
shape_value[axis] = y_shape[0]
shape_node = self.make_constant_node(
shape_name, onnx_pb.TensorProto.INT64, shape_value)
temp_value = self.get_name(op.type, 'temp')
y_node = helper.make_node(
'Reshape',
inputs=[op.input('Y')[0], shape_name],
outputs=[temp_value])
node = helper.make_node(
'Mul',
inputs=[op.input('X')[0], temp_value],
outputs=op.output('Out'))
return [shape_node, y_node, node]
elif len(x_shape) == len(y_shape):
node = helper.make_node(
'Mul',
inputs=[op.input('X')[0], op.input('Y')[0]],
outputs=op.output('Out'))
return node
else:
raise Excpetion("Unexpected situation happend in elementwise_add")
return node
def feed(self, op, block):
name = op.output('Out')[0]
var = block.var(name)
tensor_info = helper.make_tensor_value_info(
name=name,
shape=var.shape,
elem_type=self.paddle_onnx_dtype_map[var.dtype])
return tensor_info
def fetch(self, op, block):
name = op.input('X')[0]
var = block.var(name)
tensor_info = helper.make_tensor_value_info(
name=name,
shape=var.shape,
elem_type=self.paddle_onnx_dtype_map[var.dtype])
return tensor_info
def convert_weights(self, program):
var_names = program.global_block().vars
nodes = list()
for name in var_names:
var = program.global_block().var(name)
if name.endswith('feed') or name.endswith('fetch'):
continue
if not var.persistable:
continue
weight = np.array(fluid.global_scope().find_var(name).get_tensor())
tensor = helper.make_tensor(
name=name,
dims=var.shape,
data_type=self.paddle_onnx_dtype_map[var.dtype],
vals=weight.flatten().tolist())
node = helper.make_node(
'Constant', inputs=[], outputs=[name], value=tensor)
nodes.append(node)
return nodes
def convert(self, program, save_dir):
weight_nodes = self.convert_weights(program)
op_nodes = list()
input_nodes = list()
output_nodes = list()
unsupported_ops = set()
for block in program.blocks:
for op in block.ops:
print('Translating op: {}'.format(op.type))
if not hasattr(self, op.type):
unsupported_ops.add(op.type)
continue
if len(unsupported_ops) > 0:
continue
node = getattr(self, op.type)(op, block)
if op.type == 'feed':
input_nodes.append(node)
elif op.type == 'fetch':
output_nodes.append(node)
else:
if isinstance(node, list):
op_nodes = op_nodes + node
else:
op_nodes.append(node)
if len(unsupported_ops) > 0:
print("There's {} ops are not supported yet".format(
len(unsupported_ops)))
for op in unsupported_ops:
print("=========== {} ===========".format(op))
return
graph = helper.make_graph(
nodes=weight_nodes + op_nodes,
name='onnx_model_from_paddle',
initializer=[],
inputs=input_nodes,
outputs=output_nodes)
model = helper.make_model(graph, producer_name='X2Paddle')
onnx.checker.check_model(model)
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
with open(os.path.join(save_dir, 'x2paddle_model.onnx'), 'wb') as f:
f.write(model.SerializeToString())
print("Translated model saved in {}".format(
os.path.join(save_dir, 'x2paddle_model.onnx')))
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册