Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
X2Paddle
提交
aa7ba3e4
X
X2Paddle
项目概览
PaddlePaddle
/
X2Paddle
大约 1 年 前同步成功
通知
328
Star
698
Fork
167
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
26
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
X
X2Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
26
Issue
26
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
aa7ba3e4
编写于
11月 19, 2020
作者:
J
Jason
提交者:
GitHub
11月 19, 2020
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #437 from SunAhong1993/develop
add tf optimizer
上级
f469f493
3ca4aed5
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
150 addition
and
17 deletion
+150
-17
tools/README.md
tools/README.md
+0
-1
x2paddle/convert.py
x2paddle/convert.py
+3
-0
x2paddle/op_mapper/tf_op_mapper.py
x2paddle/op_mapper/tf_op_mapper.py
+20
-10
x2paddle/optimizer/tensorflow/batch_norm.py
x2paddle/optimizer/tensorflow/batch_norm.py
+4
-6
x2paddle/optimizer/tensorflow/prelu.py
x2paddle/optimizer/tensorflow/prelu.py
+123
-0
未找到文件。
tools/README.md
浏览文件 @
aa7ba3e4
...
...
@@ -6,7 +6,6 @@ python tools/check_for_lite.py paddle_model/inference_model/__model__
```
> 附:check_for_lite工具并不能完全判断模型是否被支持,PaddleLite详细支持的算子请参考[PaddleLite支持算子集](https://github.com/PaddlePaddle/Paddle-Lite/blob/develop/docs/introduction/support_operation_list.md)
### 二、模型参数合并
X2Paddle转换后产出的路径下包括两个目录,
1.
`model_with_code`
: 包含保存的参数文件和模型python代码文件,供用户debug
...
...
x2paddle/convert.py
浏览文件 @
aa7ba3e4
...
...
@@ -117,6 +117,7 @@ def tf2paddle(model_path,
from
x2paddle.optimizer.tensorflow.bias
import
BiasOpt
from
x2paddle.optimizer.tensorflow.transpose
import
TransposeOpt
from
x2paddle.optimizer.tensorflow.batch_norm
import
BatchNormOpt
from
x2paddle.optimizer.tensorflow.prelu
import
PReLUOpt
print
(
"Now translating model from tensorflow to paddle."
)
model
=
TFDecoder
(
model_path
,
define_input_shape
=
define_input_shape
)
...
...
@@ -125,8 +126,10 @@ def tf2paddle(model_path,
bias_opt
=
BiasOpt
()
transpose_opt
=
TransposeOpt
()
batch_norm_opt
=
BatchNormOpt
()
prelu_opt
=
PReLUOpt
()
bias_opt
.
run
(
program
)
batch_norm_opt
.
run
(
program
)
prelu_opt
.
run
(
program
)
transpose_opt
.
run
(
program
)
program
.
gen_model
(
save_dir
)
...
...
x2paddle/op_mapper/tf_op_mapper.py
浏览文件 @
aa7ba3e4
...
...
@@ -882,7 +882,7 @@ class TFOpMapper(OpMapper):
begin
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
])
size
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
2
])
inputs
=
{
"
x
"
:
input
.
name
}
inputs
=
{
"
input
"
:
input
.
name
}
attrs
=
{}
if
begin
.
layer_type
==
"Const"
:
begin
=
begin
.
value
.
tolist
()
...
...
@@ -901,20 +901,30 @@ class TFOpMapper(OpMapper):
if
size
.
layer_type
==
"Const"
:
size
=
size
.
value
.
tolist
()
attrs
[
'shape'
]
=
size
shape
=
size
else
:
shape
=
size
.
out_shapes
[
0
]
reshape_name
=
gen_name
(
"slice"
,
"reshape"
)
program
.
add_layer
(
kernel
=
"fluid.layers.reshape"
,
inputs
=
{
"x"
:
size
.
name
},
outputs
=
[
reshape_name
],
shape
=
shape
)
inputs
[
'shape'
]
=
reshape_name
# reshape_name = gen_name("slice", "reshape")
# program.add_layer(
# kernel="fluid.layers.reshape",
# inputs={"x": size.name},
# outputs=[reshape_name],
# shape=shape)
# inputs['shape'] = reshape_name
# inputs.pop('shape')
program
.
add_layer
(
kernel
=
"fluid.layers.
crop_tensor
"
,
kernel
=
"fluid.layers.
slice
"
,
inputs
=
inputs
,
outputs
=
[
node
.
name
],
**
attrs
)
axes
=
list
(
range
(
len
(
attrs
[
'offsets'
]))),
starts
=
attrs
[
'offsets'
],
ends
=
[
attrs
[
'offsets'
][
i
]
+
shape
[
i
]
for
i
in
range
(
len
(
shape
))])
# program.add_layer(
# kernel="fluid.layers.crop_tensor",
# inputs=inputs,
# outputs=[node.name],
# **attrs)
def
ResizeNearestNeighbor
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
...
...
x2paddle/optimizer/tensorflow/batch_norm.py
浏览文件 @
aa7ba3e4
...
...
@@ -20,10 +20,12 @@ class BatchNormOpt:
input_ids0
=
graph
.
edges_in
[
layer_id
]
mul_layer0
=
graph
.
layers
[
input_ids0
[
0
]]
sub_layer0
=
graph
.
layers
[
input_ids0
[
1
]]
if
mul_layer0
.
kernel
!=
"fluid.layers.elementwise_mul"
:
continue
if
sub_layer0
.
kernel
!=
"fluid.layers.elementwise_sub"
:
continue
axis
=
mul_layer0
.
attrs
.
get
(
'axis'
,
-
1
)
if
axis
!=
-
1
and
axis
!=
3
:
continue
...
...
@@ -116,7 +118,7 @@ class BatchNormOpt:
other
=
graph
.
layers
[
input_ids6
[
1
]]
if
variance
.
kernel
!=
"fluid.layers.create_parameter"
:
continue
if
other
.
kernel
!=
"fluid.layers.
create_parameter
"
:
if
other
.
kernel
!=
"fluid.layers.
fill_constant
"
:
continue
if
len
(
graph
.
edges_out
.
get
(
input_ids6
[
0
],
[]))
!=
1
:
continue
...
...
@@ -127,10 +129,6 @@ class BatchNormOpt:
variance_shape
=
graph
.
parameters
[
variance
.
outputs
[
0
]].
shape
if
variance_shape
!=
beta_shape
:
continue
if
other
.
outputs
[
0
]
not
in
graph
.
parameters
:
continue
if
graph
.
parameters
[
other
.
outputs
[
0
]].
size
!=
1
:
continue
ids
=
set
([
layer_id
,
mul_layer0
.
id
,
sub_layer0
.
id
,
mul_layer1
.
id
,
beta
.
id
,
...
...
@@ -163,7 +161,7 @@ class BatchNormOpt:
kernel
=
"fluid.layers.batch_norm"
,
inputs
=
{
"input"
:
"transpose_for_bn"
},
outputs
=
layer
.
outputs
,
epsilon
=
graph
.
parameters
[
other
.
outputs
[
0
]
],
epsilon
=
other
.
attrs
[
"value"
],
param_attr
=
"'{}'"
.
format
(
gamma
.
outputs
[
0
]),
bias_attr
=
"'{}'"
.
format
(
beta
.
outputs
[
0
]),
moving_mean_name
=
"'{}'"
.
format
(
mean
.
outputs
[
0
]),
...
...
x2paddle/optimizer/tensorflow/prelu.py
0 → 100644
浏览文件 @
aa7ba3e4
import
copy
import
numpy
as
np
from
collections
import
OrderedDict
from
x2paddle.core.program
import
PaddleLayer
from
x2paddle.core.util
import
*
class
PReLUOpt
:
def
__init__
(
self
):
pass
def
run
(
self
,
graph
):
print
(
"Optimize: PReLUOpt..."
)
layers
=
copy
.
deepcopy
(
graph
.
layers
)
for
layer_id
,
layer
in
layers
.
items
():
if
layer
.
kernel
!=
"fluid.layers.elementwise_add"
:
continue
axis
=
layer
.
attrs
.
get
(
'axis'
,
-
1
)
if
axis
!=
-
1
and
axis
!=
3
:
continue
input_ids0
=
graph
.
edges_in
[
layer_id
]
relu_layer0
=
graph
.
layers
[
input_ids0
[
0
]]
mul_layer0
=
graph
.
layers
[
input_ids0
[
1
]]
if
relu_layer0
.
kernel
!=
"fluid.layers.relu"
:
continue
if
mul_layer0
.
kernel
!=
"fluid.layers.elementwise_mul"
:
continue
axis
=
mul_layer0
.
attrs
.
get
(
'axis'
,
-
1
)
if
axis
!=
-
1
and
axis
!=
3
:
continue
if
len
(
graph
.
edges_out
.
get
(
input_ids0
[
0
],
[]))
!=
1
:
continue
if
len
(
graph
.
edges_out
.
get
(
input_ids0
[
1
],
[]))
!=
1
:
continue
input_ids1_0
=
graph
.
edges_in
[
input_ids0
[
0
]]
input_ids1_1
=
graph
.
edges_in
[
input_ids0
[
1
]]
fill_layer
=
graph
.
layers
[
input_ids1_1
[
1
]]
mul_layer1
=
graph
.
layers
[
input_ids1_1
[
0
]]
if
fill_layer
.
kernel
!=
"fluid.layers.fill_constant"
:
continue
if
mul_layer1
.
kernel
!=
"fluid.layers.elementwise_mul"
:
continue
axis
=
mul_layer1
.
attrs
.
get
(
'axis'
,
-
1
)
if
axis
!=
-
1
and
axis
!=
0
:
continue
if
len
(
graph
.
edges_out
.
get
(
input_ids1_1
[
1
],
[]))
!=
1
:
continue
if
len
(
graph
.
edges_out
.
get
(
input_ids1_0
[
0
],
[]))
!=
3
:
continue
input_ids2
=
graph
.
edges_in
[
input_ids1_1
[
0
]]
alpha
=
graph
.
layers
[
input_ids2
[
0
]]
sub_layer
=
graph
.
layers
[
input_ids2
[
1
]]
if
alpha
.
kernel
!=
"fluid.layers.create_parameter"
:
continue
if
sub_layer
.
kernel
!=
"fluid.layers.elementwise_sub"
:
continue
axis
=
sub_layer
.
attrs
.
get
(
'axis'
,
-
1
)
if
axis
!=
-
1
and
axis
!=
3
:
continue
if
len
(
graph
.
edges_out
.
get
(
input_ids2
[
0
],
[]))
!=
1
:
continue
if
len
(
graph
.
edges_out
.
get
(
input_ids2
[
1
],
[]))
!=
1
:
continue
if
alpha
.
outputs
[
0
]
not
in
graph
.
parameters
:
continue
input_ids3
=
graph
.
edges_in
[
input_ids2
[
1
]]
add_layer
=
graph
.
layers
[
input_ids3
[
0
]]
abs_layer
=
graph
.
layers
[
input_ids3
[
1
]]
if
abs_layer
.
kernel
!=
"fluid.layers.abs"
:
continue
if
len
(
graph
.
edges_out
.
get
(
input_ids3
[
1
],
[]))
!=
1
:
continue
ids
=
set
([
layer
.
id
,
relu_layer0
.
id
,
mul_layer0
.
id
,
fill_layer
.
id
,
mul_layer1
.
id
,
alpha
.
id
,
sub_layer
.
id
,
abs_layer
.
id
])
for
id
in
ids
:
del
graph
.
layers
[
id
]
if
id
in
graph
.
edges_in
:
del
graph
.
edges_in
[
id
]
if
id
in
graph
.
edges_out
:
del
graph
.
edges_out
[
id
]
copy_layers
=
copy
.
deepcopy
(
graph
.
layers
)
graph
.
layers
=
OrderedDict
()
for
k
,
v
in
copy_layers
.
items
():
if
k
!=
add_layer
.
id
:
graph
.
layers
[
k
]
=
v
continue
graph
.
layers
[
k
]
=
v
transpose0
=
PaddleLayer
(
id
=
'{}_1'
.
format
(
k
),
kernel
=
"fluid.layers.transpose"
,
inputs
=
{
"x"
:
v
.
outputs
[
0
]},
outputs
=
[
"transpose_for_prelu"
],
perm
=
[
0
,
3
,
1
,
2
])
prelu
=
PaddleLayer
(
id
=
'{}_2'
.
format
(
k
),
kernel
=
"fluid.layers.prelu"
,
inputs
=
{
"x"
:
"transpose_for_prelu"
},
outputs
=
layer
.
outputs
,
mode
=
string
(
"channel"
),
param_attr
=
"'{}'"
.
format
(
alpha
.
outputs
[
0
]))
transpose1
=
PaddleLayer
(
id
=
layer_id
,
kernel
=
"fluid.layers.transpose"
,
inputs
=
{
"x"
:
layer
.
outputs
[
0
]},
outputs
=
layer
.
outputs
,
perm
=
[
0
,
2
,
3
,
1
])
graph
.
layers
[
transpose0
.
id
]
=
transpose0
graph
.
layers
[
prelu
.
id
]
=
prelu
graph
.
layers
[
transpose1
.
id
]
=
transpose1
graph
.
parameters
[
alpha
.
outputs
[
0
]]
=
np
.
expand_dims
(
graph
.
parameters
[
alpha
.
outputs
[
0
]],
0
)
graph
.
build
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录