提交 a538420a 编写于 作者: M Macrobull

rebase from develop and update readme

上级 07c35bed
......@@ -2,59 +2,82 @@
[![License](https://img.shields.io/badge/license-Apache%202-blue.svg)](LICENSE)
onnx2fluid支持将onnx模型转换为PaddlePaddle模型,并用于预测,用户也可以通过将PyTorch模型导出为ONNX格式模型,再使用onnx2fluid将模型转为PaddlePaddle模型。
onnx2fluid支持将ONNX模型转换为PaddlePaddle模型,并用于预测,用户也可以通过将PyTorch模型导出为ONNX模型,再使用onnx2fluid将模型转为PaddlePaddle模型。
## 环境安装
## 特色
工具开发过程中,我们在如下环境配置中测试模型转换:
* 导出Python代码和fluid ProgramDesc模型
* 权重可嵌入支持的算子中
* 转换验证打包三合一
* 转换过程不依赖PaddlePaddle
* 可自由扩展算子
## 环境配置
在如下环境配置中测试成功:
* python 3.5+
* onnx == 1.4.0
* paddlepaddle == 1.3.0
建议使用[anaconda](https://docs.anaconda.com/anaconda/install):
* paddlepaddle == 1.3.0 (可选,仅用于验证)
使用[Anaconda](https://docs.anaconda.com/anaconda/install):
``` shell
# 安装onnx
# 也可参考https://github.com/onnx/onnx
conda install -c conda-forge onnx
pip install paddlepaddle==1.3.0
```
## 使用说明
```shell
# 安装
git clone https://github.com/PaddlePaddle/X2Paddle.git
cd X2Paddle/onnx2fluid
## 动手玩
测试ONNX官方预训练模型,包含alexnet, googlenet, caffenet, rcnn
inception_v1, inception_v2, resnet50, shufflenet, squeezenet,
vgg19, zfnet512等:
``` shell
python setup.py install
cd examples
sh onnx_model_zoo.sh
```
# 模型转换
python -m onnx2fluid -o /path/to/export_dir/ /path/of/onnx/model.onnx
使用PyTorch搭建模型,导出ONNX,转换并验证:
``` shell
python setup.py install
cd examples
python gen_some_samples.py
onnx2fluid sample_1.onnx -t sample_1.npz
```
**示例:VGG19模型**
## 使用说明
onnx2fluid:
```shell
wget https://s3.amazonaws.com/download.onnx/models/opset_9/vgg19.tar.gz
tar xzvf vgg19.tar.gz
onnx2fluid [-dexy] [-o /path/to/export_dir/] [-z archive.zip] [-t test_data.npz] /path/to/onnx/model.onnx
python -m onnx2fluid -o paddle_model vgg19/model.onnx
optional arguments:
--debug, -d 启用调试
--embed_params, -e 尝试权重内嵌
--no-pedantic, -x 转换扩展的ONNX算子
--skip-version-conversion, -y
跳过ONNX算子版本转换
--output_dir, -o 指定输出目录
--archive [ARCHIVE], -z [ARCHIVE]
如果验证通过,打包到指定的ZIP文件
```
转换后的PaddlePaddle模型加载可参考文档[加载预测模型](http://www.paddlepaddle.org/documentation/docs/zh/1.3/api_guides/low_level/inference.html#id4)
## 模型测试
目录[examples](examples)中集成了部分ONNX预训练模型的转换测试
转换工具onnx2fluid.conversion:
```shell
cd examples
# 测试和验证各onnx模型的转换
sh onnx_model_zoo.sh
onnx2fluid.conversion [-dexy] [-o /path/to/export_dir/] /path/to/onnx/model.onnx
```
目前测试脚本中已包含的测试模型如下,
1. [bvlc_alexnet](https://s3.amazonaws.com/download.onnx/models/opset_9/bvlc_alexnet.tar.gz)
2. [bvlc_googlenet](https://s3.amazonaws.com/download.onnx/models/opset_9/bvlc_googlenet.tar.gz)
3. [bvlc_reference_caffenet](https://s3.amazonaws.com/download.onnx/models/opset_9/bvlc_reference_caffenet.tar.gz)
4. [bvlc_reference_rcnn_ilsvrc13](https://s3.amazonaws.com/download.onnx/models/opset_9/bvlc_reference_rcnn_ilsvrc13.tar.gz)
5. [inception_v1](https://s3.amazonaws.com/download.onnx/models/opset_9/inception_v1.tar.gz)
6. [inception_v2](https://s3.amazonaws.com/download.onnx/models/opset_9/inception_v2.tar.gz)
7. [resnet50](https://s3.amazonaws.com/download.onnx/models/opset_9/resnet50.tar.gz)
8. [shufflenet](https://s3.amazonaws.com/download.onnx/models/opset_9/shufflenet.tar.gz)
9. [squeezenet](https://s3.amazonaws.com/download.onnx/models/opset_9/squeezenet.tar.gz)
10. [vgg19](https://s3.amazonaws.com/download.onnx/models/opset_9/vgg19.tar.gz)
11. [zfnet512](https://s3.amazonaws.com/download.onnx/models/opset_9/zfnet512.tar.gz)
验证工具onnx2fluid.validate:
```shell
onnx2fluid.validate [-d] [-t test_data.npz] [-p 1e-3] /path/to/onnx/model.onnx
```
## 参考
* PaddlePaddle [算子](http://www.paddlepaddle.org/documentation/docs/zh/1.4/api_cn/layers_cn.html)
* PaddlePaddle [加载预测模型](http://www.paddlepaddle.org/documentation/docs/zh/1.4/api_guides/low_level/inference.html#id4)
......@@ -2,13 +2,25 @@
[![License](https://img.shields.io/badge/license-Apache%202-blue.svg)](LICENSE)
onnx2fluid supports converting ONNX model to PaddlePaddle Model for prediction.
onnx2fluid supports converting ONNX model to PaddlePaddle fluid model for prediction.
## Running Environment
PyTorch to Paddlepaddle model conversion can be easily achieved with PyTorch ONNX export functions.
* python 3.5+ (python 2 working in progress)
## Features
* Python code + ProgramDesc proto generation, flexible and compatible
* fluid layer weight embedding support
* conversion, validation, archiving all in one
* convert without PaddlePaddle dependency
* export and validation helper functions for PyTorch to PaddlePaddle conversion
* extra ONNX operator optimization for inference
* easily extensible for user-defined operators
## Environment and dependency
* python 3.5+ (python 2 not fully supported yet)
* onnx == 1.4.0
* paddlepaddle == 1.3.0
* paddlepaddle == 1.3.0 (optional for validation)
## Get started
......@@ -20,26 +32,50 @@ cd examples
sh onnx_model_zoo.sh
```
Try exporting from PyTorch to Paddle fluid:
Try exporting and validating from PyTorch to PaddlePaddle fluid:
``` shell
python setup.py install
cd examples
python gen_some_samples.py
onnx2fluid sample_1.onnx -t sample_1.npz
python gen_unet.py
onnx2fluid sample_unet.onnx -t sample_unet.npz
```
## Usage
onnx2fluid (all in one):
```shell
onnx2fluid [-dexy] -o /path/to/export_dir/ /path/of/onnx/model.onnx
onnx2fluid [-dexy] [-o /path/to/export_dir/] [-z archive.zip] [-t test_data.npz] /path/to/onnx/model.onnx
optional arguments:
--embed_params, -e try to embed parameters for trainable Paddle fluid layers
--debug, -d enable debug logging and checking
--embed_params, -e try to embed parameters for trainable PaddlePaddle fluid layers
--no-pedantic, -x process non-standard ONNX ops
--skip-version-conversion, -y
skip ONNX op version conversion, workaround for
RumtimeErrors
skip ONNX op version conversion, workaround for RumtimeErrors
--output_dir, -o output directory
--archive [ARCHIVE], -z [ARCHIVE]
compress outputs to ZIP file if conversion successed
```
onnx2fluid.conversion:
```shell
onnx2fluid.conversion [-dexy] [-o /path/to/export_dir/] /path/to/onnx/model.onnx
```
onnx2fluid.validate:
```shell
onnx2fluid.validate [-d] [-t test_data.npz] [-p 1e-3] /path/to/onnx/model.onnx
```
## Reference
* [PaddlePaddle fluid operators](http://www.paddlepaddle.org/documentation/docs/en/1.4/api/layers.html)
* load converted model via [load_inference_model](http://www.paddlepaddle.org/documentation/docs/en/1.4/api/io.html#permalink-1-load_inference_model)
......@@ -6,9 +6,7 @@ Created on Wed Mar 27 11:50:03 2019
@author: Macrobull
"""
# import os, sys
import os
import sys
import os, sys
import numpy as np
import onnx
import onnx.numpy_helper as numpy_helper
......
......@@ -7,7 +7,6 @@ Created on Fri Mar 22 11:19:45 2019
Not all ops in this file are supported by both PyTorch and ONNX
This only demostrates the conversion/validation workflow from PyTorch to ONNX to Paddle fluid
"""
from __future__ import print_function
......
......@@ -4,7 +4,6 @@
Created on Fri Mar 22 11:19:45 2019
@author: Macrobull
"""
from __future__ import print_function
......
......@@ -4,7 +4,6 @@
Created on Fri Mar 22 11:19:45 2019
@author: Macrobull
"""
from __future__ import print_function
......
......@@ -97,8 +97,8 @@ bvlc_reference_rcnn_ilsvrc13()
do
echo "converting $pb_dir"
python convert_data_pb_0.py "$pb_dir" data_0 fc-rcnn_1
python -m onnx2fluid.validation $validate_flags1 -t $(dirname "$pb_dir/x").npz -p 0
python -m onnx2fluid.validation $validate_flags2 -t $(dirname "$pb_dir/x").npz -p 0
python -m onnx2fluid.validation $validate_flags1 -t $(dirname "$pb_dir/x").npz
python -m onnx2fluid.validation $validate_flags2 -t $(dirname "$pb_dir/x").npz
done
}
......
......@@ -16,10 +16,7 @@ from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
# import argparse, logging, sys
import argparse
import logging
import sys
import argparse, logging, sys
parser = argparse.ArgumentParser(
description='onnx2fluid',
......@@ -86,11 +83,17 @@ parser.add_argument(
help='compress outputs to ZIP file if conversion successed',
)
parser.add_argument(
'--precision',
'--atol',
'-p',
type=float,
default=3.,
help='assertion decimal for validation',
default=1e-3,
help='assertion absolute tolerance for validation',
)
parser.add_argument(
'--rtol',
type=float,
default=1e-4,
help='assertion relative tolerance for validation',
)
args = parser.parse_args()
......@@ -98,12 +101,6 @@ logging_format = '[%(levelname)8s]%(name)s::%(funcName)s:%(lineno)04d: %(message
logging_level = logging.DEBUG if args.debug else logging.INFO
logging.basicConfig(format=logging_format, level=logging_level)
try:
from . import cmdline
except ImportError:
import cmdline
# imports
main = cmdline.main
from .cmdline import main
sys.exit(main(**args.__dict__))
......@@ -17,9 +17,6 @@ from __future__ import print_function
from __future__ import unicode_literals
import logging, shutil, zipfile
#import logging
#import shutil
#import zipfile
__all__ = [
'main',
......@@ -33,31 +30,23 @@ DEFAULT_MODEL_FUNC = 'inference'
def main(**kwargs):
"""主程序入口"""
try:
from . import conversion
except ImportError:
import conversion
# imports
convert = conversion.convert
from .conversion import convert
logger = logging.getLogger('onnx2fluid')
debug = kwargs.get('debug', False)
# debug = kwargs.get('debug', False)
# prepare arguments
filename = kwargs['model'][0]
filename = kwargs.pop('model')[0]
basepath, _ = shutil.os.path.splitext(filename)
save_dir = kwargs.get('output_dir', '')
save_dir = kwargs.pop('output_dir', '')
# model.onnx -> model/
save_dir = (save_dir.rstrip(shutil.os.sep)
if save_dir else basepath) + shutil.os.sep
model_basename = DEFAULT_MODEL_MODULE + '.py'
model_func_name = DEFAULT_MODEL_FUNC
embed_params = kwargs.get('embed_params', False)
onnx_opset_version = DEFAULT_ONNX_OPSET_VERSION
onnx_opset_pedantic = kwargs.get('pedantic', True)
onnx_skip_version_conversion = kwargs.get('skip_version_conversion', False)
archive = kwargs.get('archive', None)
onnx_opset_pedantic = kwargs.pop('pedantic', True)
onnx_skip_version_conversion = kwargs.pop('skip_version_conversion', False)
# convert
convert(
......@@ -65,49 +54,35 @@ def main(**kwargs):
save_dir,
model_basename=model_basename,
model_func_name=model_func_name,
embed_params=embed_params,
onnx_opset_version=onnx_opset_version,
onnx_opset_pedantic=onnx_opset_pedantic,
onnx_skip_version_conversion=onnx_skip_version_conversion,
debug=debug)
**kwargs)
# validate
passed = True
golden_data_filename = kwargs.get('test_data', '')
golden_data_filename = kwargs.pop('test_data', '')
if golden_data_filename:
try:
from . import validation
except ImportError:
import validation
# imports
validate = validation.validate
# in fact fluid can not fully clear the context
# continuous validation may be inaccurate
decimal = kwargs.get('precision', 3.)
from .validation import validate
logger.info('starting validation on desc ...')
passed &= validate(
shutil.os.path.join(save_dir, '__model__'),
golden_data_filename,
decimal=decimal,
)
shutil.os.path.join(save_dir, '__model__'), golden_data_filename,
**kwargs)
logger.info('starting validation on code ...')
passed &= validate(
shutil.os.path.join(save_dir, model_basename),
golden_data_filename,
model_func_name=model_func_name,
decimal=decimal,
save_inference_model=debug, # this overwrite desc file for test
)
**kwargs)
if not passed:
logger.error('validation failed, exit')
return
# create zip file
archive = kwargs.pop('archive', None)
if archive is not None:
if archive == '':
archive = save_dir.rstrip(shutil.os.sep) + '.zip'
......@@ -132,6 +107,10 @@ if __name__ == '__main__':
level=logging.DEBUG,
)
del main
from onnx2fluid.cmdline import main
main(
model=['../examples/t1.onnx'],
output_dir='/tmp/export/',
......
......@@ -9,8 +9,6 @@ Created on Mon Feb 25 09:50:35 2019
from __future__ import division
import logging, shutil
#import logging
#import shutil
__all__ = [
'convert',
......@@ -25,7 +23,8 @@ def convert(onnx_model_filename,
onnx_opset_version=9,
onnx_opset_pedantic=True,
onnx_skip_version_conversion=False,
debug=False):
debug=False,
**kwargs):
"""
convert an ONNX model to Paddle fluid Python code and desc pb
"""
......@@ -37,21 +36,14 @@ def convert(onnx_model_filename,
from onnx.utils import polish_model
from onnx.version_converter import convert_version
try:
from . import onnx_utils, writer
except ImportError:
import onnx_utils, writer
# imports
DEFAULT_OP_DOMAIN = onnx_utils.DEFAULT_OP_DOMAIN
graph_ops, graph_weights = onnx_utils.graph_ops, onnx_utils.graph_weights
inferred_model_value_info = onnx_utils.inferred_model_value_info
optimize_model_skip_op_for_inference = onnx_utils.optimize_model_skip_op_for_inference
optimize_model_strip_initializer = onnx_utils.optimize_model_strip_initializer
optimize_model_cast = onnx_utils.optimize_model_cast
optimize_model_slice = onnx_utils.optimize_model_slice
Program, Writer = writer.Program, writer.Writer
make_var_name = writer.make_var_name
from .onnx_utils import DEFAULT_OP_DOMAIN
from .onnx_utils import graph_ops, graph_weights
from .onnx_utils import inferred_model_value_info
from .onnx_utils import optimize_model_skip_op_for_inference
from .onnx_utils import optimize_model_strip_initializer
from .onnx_utils import optimize_model_cast, optimize_model_slice
from .writer import Program, Writer
from .writer import make_var_name
logger = logging.getLogger('convert')
......@@ -94,6 +86,8 @@ def convert(onnx_model_filename,
model = onnx.shape_inference.infer_shapes(onnx_model)
debug_model_filename, _ = shutil.os.path.splitext(onnx_model_filename)
onnx.save(model, debug_model_filename + '.optimized_and_inffered.onnx')
# onnx.save(model, '/tmp/export/optimized_and_inffered.onnx')
# I/O instances
......@@ -218,12 +212,13 @@ def convert(onnx_model_filename,
logger.info('conversion finished')
# globals().update(locals())
if __name__ == '__main__':
del convert
import argparse
from onnx2fluid.conversion import convert
parser = argparse.ArgumentParser(
description='onnx2fluid.convert',
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
......@@ -280,7 +275,10 @@ if __name__ == '__main__':
debug = args.debug
model_filename = args.model[0]
basepath, _ = shutil.os.path.splitext(model_filename)
save_dir = args.output_dir
save_dir = (save_dir.rstrip(shutil.os.sep)
if save_dir else basepath) + shutil.os.sep
embed_params = args.embed_params
pedantic = args.pedantic
skip_version_conversion = args.skip_version_conversion
......
......@@ -13,7 +13,7 @@ Created on Mon Feb 25 09:33:43 2019
from __future__ import division
import logging as _logging
import numpy as np
import numpy as _np
from collections import OrderedDict as _dict
from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE
......@@ -164,7 +164,7 @@ def _make_var_name(name):
def _dtype(value_infos, val_name):
return np.dtype(value_infos[val_name]['dtype'])
return _np.dtype(value_infos[val_name]['dtype'])
def _dtype_or_none(value_infos, val_name):
......@@ -173,7 +173,7 @@ def _dtype_or_none(value_infos, val_name):
value_info = value_infos[val_name]
if 'dtype' not in value_info:
return None
return np.dtype(value_info['dtype'])
return _np.dtype(value_info['dtype'])
def _shape(value_infos, val_name):
......@@ -268,14 +268,13 @@ def _default(prog, op_type, inputs, outputs, attrs, *args, name='', **kwargs):
(var_outs, *fluid_output_args), fluid_attrs)
def _assign(prog, attrs):
mapping = attrs['mapping'] # additional
def _assign(prog, mapping):
fluid_op = 'assign'
for val_dst, val_src in mapping.items():
var_dst = _make_var_name(val_dst)
var_src = _make_var_name(val_src)
prog.Code('{} = {}'.format(var_dst, var_src))
prog.Code('{} = {} # assign'.format(var_dst, var_src))
# prog.Code('{} = layers.{}({})'
# .format(var_dst,
# fluid_op,
......@@ -774,7 +773,7 @@ def Cast(prog, inputs, outputs, attrs, value_infos, *args, **kwargs):
# interpretation
dtype = attrs['to'] # required
if not isinstance(dtype, np.dtype): # additional: possible np.dtype
if not isinstance(dtype, _np.dtype): # additional: possible np.dtype
dtype = TENSOR_TYPE_TO_NP_TYPE[dtype]
output_dtype = _dtype_or_none(value_infos, val_output)
if output_dtype:
......@@ -851,13 +850,13 @@ def Constant(prog, inputs, outputs, attrs, value_infos, *args, **kwargs):
# interpretation
value = attrs['value'] # required
dtype = np.dtype(value.dtype)
dtype = _np.dtype(value.dtype)
output_dtype = _dtype_or_none(value_infos, val_output)
if output_dtype:
assert dtype == output_dtype, 'tensor dtype unmatches storage dtype'
# dtype = np.dtype('float32') # HINT: force to float32
# dtype = _np.dtype('float32') # HINT: force to float32
shape = attrs.get('shape', None) #
if shape is None:
shape = _shape_or_none(value_infos, val_output)
......@@ -1160,7 +1159,7 @@ def ConvTranspose(prog,
# val_output, = outputs[:1]
#
# _assign(prog,
# dict(mapping=dict([(val_output, val_data)])),
# dict([(val_output, val_data)]),
# value_infos,
# )
......@@ -1215,13 +1214,13 @@ def Gemm(prog, inputs, outputs, attrs, value_infos, name, *args, **kwargs):
if beta.is_integer():
vm_dtype = _dtype_or_none(value_infos, val_c)
if vm_dtype is None:
vm_dtype = np.dtype('float32')
vm_dtype = _np.dtype('float32')
_logger.warning(
'in %s(%s -> Gemm -> %s): '
'attribute "beta" seems to be an interger, '
'however dtype can not be inferred, '
'still use float32', name, inputs, outputs)
beta = np.dtype(vm_dtype).type(beta)
beta = _np.dtype(vm_dtype).type(beta)
prog.Op(
'',
'Constant',
......@@ -1387,7 +1386,7 @@ def Pad(prog, inputs, outputs, attrs, value_infos, name='', *args, **kwargs):
mode)
fluid_op = 'pad'
pad2d_attr = ''
paddings = np.array(pads).reshape(
paddings = _np.array(pads).reshape(
(-1, 2)).transpose().flatten().tolist() # SSEE -> SESE
od_attrs['paddings'] = paddings
name_attr = ', name={}'.format(repr(name)) if name else ''
......@@ -1525,7 +1524,7 @@ def Reshape(prog, inputs, outputs, attrs, value_infos, name, *args, **kwargs):
'Cast',
[val_shape],
[val_shape_int32], # var
dict(to=np.dtype('int32')), # use np.dtype
dict(to=_np.dtype('int32')), # use np.dtype
value_infos=value_infos,
name=(name + '_cast'),
)
......@@ -1840,7 +1839,9 @@ if __name__ == '__main__':
)
logger = _logging.getLogger('symbolic_test')
from writer import Program
import numpy as np
from onnx2fluid.writer import Program
prog = Program()
AdaptiveAveragePool(
......
......@@ -8,11 +8,6 @@ Created on Fri Mar 22 12:17:19 2019
import importlib, logging, os, sys
#import importlib
#import logging
#import os
#import sys
def _flatten_dict(obj, out=None):
assert isinstance(obj, dict)
......@@ -37,8 +32,10 @@ def _ensure_list(obj):
def validate(fluid_model_filename,
golden_data_filename,
model_func_name='inference',
decimal=3,
save_inference_model=False):
atol=1e-3,
rtol=1e-4,
save_inference_model=False,
**kwargs):
"""
inference the converted Paddle fluid model, validate with given golden data
"""
......@@ -125,7 +122,13 @@ def validate(fluid_model_filename,
for (name, truth), output in zip(output_data.items(), outputs):
logger.info('testing output {} ...'.format(name))
try:
np.testing.assert_almost_equal(output, truth, decimal=decimal)
np.testing.assert_allclose(
output,
truth,
rtol=rtol,
atol=atol,
equal_nan=False,
verbose=True)
except AssertionError as e:
passed = False
logger.error('failed: %s\n', e)
......@@ -134,10 +137,9 @@ def validate(fluid_model_filename,
else:
logger.info('accuracy not passed')
# globals().update(locals())
return passed
if __name__ == '__main__':
import argparse
......@@ -163,11 +165,17 @@ if __name__ == '__main__':
help='I/O golden data for validation, e.g. test.npy, test.npz',
)
parser.add_argument(
'--precision',
'--atol',
'-p',
type=float,
default=3.,
help='assertion decimal for validation',
default=1e-3,
help='assertion absolute tolerance for validation',
)
parser.add_argument(
'--rtol',
type=float,
default=1e-4,
help='assertion relative tolerance for validation',
)
args = parser.parse_args()
......@@ -178,10 +186,11 @@ if __name__ == '__main__':
debug = args.debug
fluid_model_filename = args.model[0]
golden_data_filename = args.test_data
decimal = args.precision
atol, rtol = args.atol, args.rtol
validate(
fluid_model_filename,
golden_data_filename,
decimal=decimal,
atol=atol,
rtol=rtol,
save_inference_model=debug)
......@@ -9,27 +9,17 @@ Created on Sun Feb 24 20:44:43 2019
from __future__ import division
import logging, os
#import logging
#import os
import numpy as np
logger = logging.getLogger(__name__)
try:
from . import symbolic
except ImportError:
import symbolic
# imports
make_var_name = symbolic._make_var_name
from . import symbolic
from .symbolic import _make_var_name as make_var_name
try:
import paddle.fluid.proto.framework_pb2 as framework_pb2
except ImportError:
try:
from . import framework_pb2
except ImportError:
import framework_pb2
from . import framework_pb2
logger.warning('importing paddle.fluid.proto.framework_pb2d failed,'
'using fallback framework_pb2')
......@@ -215,11 +205,9 @@ class Program(object):
name,
persistable=False,
value_info=None,
remove_batch=None,
dummy_dtype='float32'):
remove_batch=None):
"""
add VarDesc,
dummy_dtype: WORKAROUND for Netron viewer
"""
var_desc = framework_pb2.VarDesc()
......@@ -238,9 +226,6 @@ class Program(object):
not persistable)
if remove_batch:
tensor_desc.dims[0] = -1
else: # REMOVEIT: WORKAROUND: Netron: null.tensor error
tensor_desc = var_desc.type.lod_tensor.tensor
tensor_desc.data_type = self.Dtype(dummy_dtype) # required
self.var_descs.append(var_desc)
......
-e .
onnx>=1.4.0
onnx>=1.4
paddlepaddle
......@@ -7,7 +7,7 @@ name = onnx2fluid
author = Macrobull
# author_email = .Github@github.com
# 项目版本号,1.0以上版本才视为正式版
version = 0.1.0
version = 0.1.1
# 项目概要描述信息,一句话让用户明白项目概要,不支持中文
description = Inference model conversion from ONNX/PyTorch to Paddle fluid
# 项目的详细描述内容和格式,包括readme和changelog等,通常使用md或rst等格式
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册