未验证 提交 9be89747 编写于 作者: J Jason 提交者: GitHub

Merge pull request #479 from SunAhong1993/onnx

add onnx op
...@@ -210,9 +210,12 @@ class PaddleGraph(object): ...@@ -210,9 +210,12 @@ class PaddleGraph(object):
if self.edges_in.get(layer_id, 0) == 0 and self.edges_out.get( if self.edges_in.get(layer_id, 0) == 0 and self.edges_out.get(
layer_id, 0) == 0 and layer.kernel != "prim.assert" \ layer_id, 0) == 0 and layer.kernel != "prim.assert" \
and layer.kernel != "prim.exception" \ and layer.kernel != "prim.exception" \
and layer.kernel != "prim.warnings": and layer.kernel != "prim.warnings" \
if layer.kernel == "paddle.to_tensor": and layer.outputs[0] not in self.outputs:
if layer.kernel == "paddle.to_tensor" and layer.outputs[0] in self.inputs_info:
self.inputs_info.pop(layer.outputs[0]) self.inputs_info.pop(layer.outputs[0])
if layer.outputs[0] in self.inputs:
self.inputs.pop(self.inputs.index(layer.outputs[0]))
invalid_list.append(layer_id) invalid_list.append(layer_id)
for layer_id in invalid_list: for layer_id in invalid_list:
self.layers.pop(layer_id) self.layers.pop(layer_id)
...@@ -322,6 +325,9 @@ class PaddleGraph(object): ...@@ -322,6 +325,9 @@ class PaddleGraph(object):
if self.source_type == "caffe": if self.source_type == "caffe":
custom_import = "from x2paddle.op_mapper.static.caffe2paddle " + \ custom_import = "from x2paddle.op_mapper.static.caffe2paddle " + \
"import caffe_custom_layer as x2paddle_nn" "import caffe_custom_layer as x2paddle_nn"
elif self.source_type == "onnx":
custom_import = "from x2paddle.op_mapper.static.onnx2paddle " + \
"import onnx_custom_layer as x2paddle_nn"
else: else:
custom_import = "" custom_import = ""
...@@ -351,7 +357,9 @@ class PaddleGraph(object): ...@@ -351,7 +357,9 @@ class PaddleGraph(object):
remove_default_attrs(layer.kernel, layer.attrs) remove_default_attrs(layer.kernel, layer.attrs)
edges_in = self.edges_in.get(layer_id, []) edges_in = self.edges_in.get(layer_id, [])
edges_out = self.edges_out.get(layer_id, []) edges_out = self.edges_out.get(layer_id, [])
if len(edges_in) == 0 and len(edges_out) == 0: if len(edges_in) == 0 and len(edges_out) == 0 and layer.outputs[0] not in self.outputs:
if layer.outputs[0] in self.inputs:
self.inputs.pop(self.inputs.index(layer.outputs[0]))
continue continue
line = "" line = ""
...@@ -471,6 +479,9 @@ class PaddleGraph(object): ...@@ -471,6 +479,9 @@ class PaddleGraph(object):
elif self.source_type == "pytorch": elif self.source_type == "pytorch":
custom_import = "from x2paddle.op_mapper.dygraph.pytorch2paddle " + \ custom_import = "from x2paddle.op_mapper.dygraph.pytorch2paddle " + \
"import pytorch_custom_layer as x2paddle_nn" "import pytorch_custom_layer as x2paddle_nn"
elif self.source_type == "onnx":
custom_import = "from x2paddle.op_mapper.dygraph.onnx2paddle " + \
"import onnx_custom_layer as x2paddle_nn"
else: else:
custom_import = "" custom_import = ""
self.head = gen_codes( self.head = gen_codes(
......
...@@ -31,6 +31,7 @@ import numpy as np ...@@ -31,6 +31,7 @@ import numpy as np
from copy import deepcopy from copy import deepcopy
import logging as _logging import logging as _logging
import os import os
import copy
default_op_domain = 'ai.onnx' default_op_domain = 'ai.onnx'
_logger = _logging.getLogger(__name__) _logger = _logging.getLogger(__name__)
...@@ -125,6 +126,17 @@ class ONNXGraphDataNode(GraphNode): ...@@ -125,6 +126,17 @@ class ONNXGraphDataNode(GraphNode):
shape.append(dim.dim_value) shape.append(dim.dim_value)
out_shapes.append(shape) out_shapes.append(shape)
return out_shapes return out_shapes
elif isinstance(self.layer, TensorProto):
values = self.layer.dims
out_shapes = list()
shape = list()
for dim in values:
if dim == 0:
shape.append(-1)
else:
shape.append(dim)
out_shapes.append(shape)
return out_shapes
else: else:
values = self.layer.dims values = self.layer.dims
out_shapes = list() out_shapes = list()
...@@ -234,11 +246,12 @@ class ONNXGraph(Graph): ...@@ -234,11 +246,12 @@ class ONNXGraph(Graph):
""" """
generate output_nodes node of ONNX model generate output_nodes node of ONNX model
""" """
inner_nodes = self.get_inner_nodes()
output_nodes = [value.name for value in self.graph.output] output_nodes = [value.name for value in self.graph.output]
for opt_data in output_nodes: for opt_data in output_nodes:
if opt_data not in inner_nodes: n = super(ONNXGraph, self).get_node(opt_data)
self.output_nodes.append(opt_data) if n is None:
self.topo_sort.append(self.node_map[opt_data])
self.output_nodes.append(opt_data)
def is_place_holder_nodes(self, layer): def is_place_holder_nodes(self, layer):
""" """
...@@ -286,7 +299,7 @@ class ONNXGraph(Graph): ...@@ -286,7 +299,7 @@ class ONNXGraph(Graph):
#generate topo #generate topo
super(ONNXGraph, self).build() super(ONNXGraph, self).build()
self.input_nodes = self.place_holder_nodes self.input_nodes = copy.deepcopy(self.place_holder_nodes)
def build_connection(self, layer_name, node): def build_connection(self, layer_name, node):
""" """
...@@ -403,10 +416,8 @@ class ONNXDecoder(object): ...@@ -403,10 +416,8 @@ class ONNXDecoder(object):
check_model(onnx_model) check_model(onnx_model)
onnx_model = self.optimize_model_skip_op(onnx_model) onnx_model = self.optimize_model_skip_op(onnx_model)
onnx_model = self.optimize_model_strip_initializer(onnx_model)
onnx_model = self.optimize_node_name(onnx_model) onnx_model = self.optimize_node_name(onnx_model)
self.graph = ONNXGraph(onnx_model) self.graph = ONNXGraph(onnx_model)
#self.onnx_model = onnx_model
def build_value_refs(self, nodes): def build_value_refs(self, nodes):
""" """
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .one_hot import OneHot
from .pad_two_input import PadWithTwoInput
from .pad_all_dim2 import PadAllDim2
from .pad_all_dim4 import PadAllDim4
from .pad_all_dim4_one_input import PadAllDim4WithOneInput
\ No newline at end of file
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
class OneHot(object):
def __init__(self, axis):
self.axis = axis
def __call__(self, indices, depth, values):
indices_shape = indices.shape
rank = len(indices.shape)
real_axis = self.axis
if self.axis < 0:
real_axis = self.axis + rank + 1
depth_range = paddle.arange(end=depth)
ls = tuple(indices_shape[0: real_axis])
rs = tuple(indices_shape[real_axis: rank])
targets = paddle.reshape(depth_range, (1,) * (real_axis-0) + tuple(depth_range.shape) + (1,) * (rank-real_axis))
mod = paddle.mod(indices, depth)
v = paddle.reshape(mod, ls + (1,) + rs)
out = targets == v
out = paddle.cast(out, "float32")
on_value = paddle.slice(values, axes=[0], starts=[1], ends=[2])
off_value = paddle.slice(values, axes=[0], starts=[0], ends=[1])
out = out * (on_value - off_value) + off_value
return out
\ No newline at end of file
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
from x2paddle.core.util import *
class PadAllDim2(object):
def __init__(self, value, mode):
self.layer_attrs = {}
self.layer_attrs['mode'] = mode
self.layer_attrs['data_format'] = 'NCHW'
self.layer_attrs['value'] = value
def __call__(self, x, pad):
pad = paddle.reshape(pad, shape=[2, -1])
pad = paddle.transpose(pad, perm=[1, 0])
pad = paddle.reverse(pad, axis=[0])
pad = paddle.flatten(pad)
pad = paddle.cast(pad, dtype="int32")
x = paddle.unsqueeze(x, axis=[0, 1])
out = paddle.nn.functional.pad(x=x, pad=pad, **self.layer_attrs)
out = paddle.squeeze(out, axis=[0, 1])
return out
\ No newline at end of file
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
from x2paddle.core.util import *
class PadAllDim4(object):
def __init__(self, value, mode):
self.layer_attrs = {}
self.layer_attrs['mode'] = mode
self.layer_attrs['data_format'] = 'NCHW'
self.layer_attrs['value'] = value
def __call__(self, x, pad):
pad = paddle.reshape(pad, shape=[2, -1])
pad = paddle.transpose(pad, perm=[1, 0])
pad = paddle.reverse(pad, axis=[0])
pad = paddle.flatten(pad)
pad = paddle.cast(pad, dtype="int32")
pad1, pad2 = paddle.split(pad, num_or_sections=2, axis=0)
x = paddle.nn.functional.pad(x=x, pad=pad1, **self.layer_attrs)
x = paddle.transpose(x, perm=[2, 3, 0, 1])
x = paddle.nn.functional.pad(x=x, pad=pad2, **self.layer_attrs)
out = paddle.transpose(x, perm=[2, 3, 0, 1])
return out
\ No newline at end of file
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
from x2paddle.core.util import *
class PadAllDim4WithOneInput(object):
def __init__(self, pad, value, mode):
self.layer_attrs = {}
self.layer_attrs['mode'] = mode
self.layer_attrs['data_format'] = 'NCHW'
self.layer_attrs['value'] = value
self.pad1 = pad[0: 4]
self.pad2 = pad[4: 9]
def __call__(self, x):
x = paddle.nn.functional.pad(x=x, pad=self.pad1, **self.layer_attrs)
x = paddle.transpose(x, perm=[2, 3, 0, 1])
x = paddle.nn.functional.pad(x=x, pad=self.pad2, **self.layer_attrs)
out = paddle.transpose(x, perm=[2, 3, 0, 1])
return out
\ No newline at end of file
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
from x2paddle.core.util import *
class PadWithTwoInput(object):
def __init__(self, value, mode, data_format):
self.layer_attrs = {}
self.layer_attrs['mode'] = mode
self.layer_attrs['data_format'] = data_format
self.layer_attrs['value'] = value
def __call__(self, x, pad):
pad = paddle.reshape(pad, shape=[2, -1])
pad = paddle.transpose(pad, perm=[1, 0])
pad = paddle.reverse(pad, axis=[0])
pad = paddle.flatten(pad)
pad = paddle.cast(pad, dtype="int32")
out = paddle.nn.functional.pad(x=x, pad=pad, **self.layer_attrs)
return out
\ No newline at end of file
...@@ -13,8 +13,6 @@ ...@@ -13,8 +13,6 @@
# limitations under the License. # limitations under the License.
import paddle import paddle
from itertools import product
import numpy as np
class Gather(object): class Gather(object):
def __init__(self, dim): def __init__(self, dim):
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .one_hot import one_hot
from .pad_two_input import pad_with_two_input
from .pad_all_dim2 import pad_all_dim2
from .pad_all_dim4 import pad_all_dim4
from .pad_all_dim4_one_input import pad_all_dim4_one_input
\ No newline at end of file
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
def one_hot(indices, depth, values, axis):
indices_shape = indices.shape
rank = len(indices.shape)
real_axis = axis
if axis < 0:
real_axis = axis + rank + 1
depth_range = paddle.arange(end=depth)
ls = tuple(indices_shape[0: real_axis])
rs = tuple(indices_shape[real_axis: rank])
targets = paddle.reshape(depth_range, (1,) * (real_axis-0) + tuple(depth_range.shape) + (1,) * (rank-real_axis))
mod = paddle.mod(indices, depth)
v = paddle.reshape(mod, ls + (1,) + rs)
out = targets == v
out = paddle.cast(out, "float32")
on_value = paddle.slice(values, axes=[0], starts=[1], ends=[2])
off_value = paddle.slice(values, axes=[0], starts=[0], ends=[1])
out = out * (on_value - off_value) + off_value
return out
\ No newline at end of file
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
def pad_all_dim2(x, pad, value, mode):
pad = paddle.reshape(pad, shape=[2, -1])
pad = paddle.transpose(pad, perm=[1, 0])
pad = paddle.reverse(pad, axis=[0])
pad = paddle.flatten(pad)
pad = paddle.cast(pad, dtype="int32")
x = paddle.unsqueeze(x, axis=[0, 1])
out = paddle.nn.functional.pad(x=x,
pad=pad,
mode=mode,
data_format='NCHW',
value=value)
out = paddle.squeeze(out, axis=[0, 1])
return out
\ No newline at end of file
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
def pad_all_dim4(x, pad, value, mode):
pad = paddle.reshape(pad, shape=[2, -1])
pad = paddle.transpose(pad, perm=[1, 0])
pad = paddle.reverse(pad, axis=[0])
pad = paddle.flatten(pad)
pad = paddle.cast(pad, dtype="int32")
pad1, pad2 = paddle.split(pad, num_or_sections=2, axis=0)
x = paddle.nn.functional.pad(x=x,
pad=pad1,
mode=mode,
data_format='NCHW',
value=value)
x = paddle.transpose(x, perm=[2, 3, 0, 1])
x = paddle.nn.functional.pad(x=x,
pad=pad2,
mode=mode,
data_format='NCHW',
value=value)
out = paddle.transpose(x, perm=[2, 3, 0, 1])
return out
\ No newline at end of file
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
def pad_all_dim4_one_input(x, pad, value, mode):
x = paddle.nn.functional.pad(x=x,
pad=pad[0: 4],
mode=mode,
data_format='NCHW',
value=value)
x = paddle.transpose(x, perm=[2, 3, 0, 1])
x = paddle.nn.functional.pad(x=x,
pad=pad[4: 9],
mode=mode,
data_format='NCHW',
value=value)
out = paddle.transpose(x, perm=[2, 3, 0, 1])
return out
\ No newline at end of file
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
def pad_with_two_input(x, pad, value, mode, data_format):
pad = paddle.reshape(pad, shape=[2, -1])
pad = paddle.transpose(pad, perm=[1, 0])
pad = paddle.reverse(pad, axis=[0])
pad = paddle.flatten(pad)
pad = paddle.cast(pad, dtype="int32")
out = paddle.nn.functional.pad(x=x,
pad=pad,
value=value,
mode=mode,
data_format=data_format)
return out
\ No newline at end of file
...@@ -106,6 +106,9 @@ class OpSet9(): ...@@ -106,6 +106,9 @@ class OpSet9():
'ReduceMax': ['paddle.max', 'ReduceMax': ['paddle.max',
dict(axes='axis', keepdims='keepdim'), dict(axes='axis', keepdims='keepdim'),
dict(keepdim=1)], dict(keepdim=1)],
'ReduceProd': ['paddle.prod',
dict(axes='axis', keepdims='keepdim'),
dict(keepdim=1)],
# active function # active function
'Relu': ['paddle.nn.functional.relu'], 'Relu': ['paddle.nn.functional.relu'],
'LeakyRelu': ['paddle.nn.functional.leaky_relu', 'LeakyRelu': ['paddle.nn.functional.leaky_relu',
...@@ -203,7 +206,7 @@ class OpSet9(): ...@@ -203,7 +206,7 @@ class OpSet9():
node = parameter node = parameter
dtype = node.dtype dtype = node.dtype
shape = node.out_shapes[0] shape = node.out_shapes[0]
if len(node.weight.shape) == 0: if hasattr(node.weight, "shape") and len(node.weight.shape) == 0:
self.paddle_graph.add_layer( self.paddle_graph.add_layer(
"paddle.full", "paddle.full",
inputs={}, inputs={},
...@@ -286,6 +289,10 @@ class OpSet9(): ...@@ -286,6 +289,10 @@ class OpSet9():
attrs.update({"align_corners": False, attrs.update({"align_corners": False,
"mode": string(mode), "mode": string(mode),
"align_mode": 1}) "align_mode": 1})
val_x_shape = val_x.out_shapes[0]
if mode == "linear" and len(val_x_shape) == 4:
attrs["mode"] = string("bilinear")
attrs["align_corners"] = True
self.paddle_graph.add_layer( self.paddle_graph.add_layer(
kernel="paddle.nn.functional.interpolate", kernel="paddle.nn.functional.interpolate",
inputs=inputs, inputs=inputs,
...@@ -368,61 +375,136 @@ class OpSet9(): ...@@ -368,61 +375,136 @@ class OpSet9():
def Pad(self, node, op_independent=True): def Pad(self, node, op_independent=True):
val_x = self.graph.get_input_node(node, idx=0, copy=True) val_x = self.graph.get_input_node(node, idx=0, copy=True)
pads = node.get_attr('pads') pads = node.get_attr('pads')
is_pads_attr = True
if pads is None:
val_pad = self.graph.get_input_node(node, idx=1, copy=True)
pad_shape = val_pad.out_shapes[0]
is_pads_attr = False
pads = _const_weight_or_none(val_pad)
if pads is not None:
is_pads_attr = True
mode = node.get_attr('mode', 'constant') mode = node.get_attr('mode', 'constant')
value = node.get_attr('value', 0.) value = node.get_attr('value', 0.)
data_shape = val_x.out_shapes[0] data_shape = val_x.out_shapes[0]
output_shape = node.out_shapes[0] output_shape = node.out_shapes[0]
assume_pad2d = False assume_pad = False
layer_attrs = {} layer_attrs = {}
layer_attrs['mode'] = string(mode) layer_attrs['mode'] = string(mode)
paddings = [] layer_attrs['value'] = value
if len(pads) == 4: if not op_independent:
assume_pad2d |= mode != 'constant' output_name = node.name + '_paded'
if data_shape:
assume_pad2d |= data_shape and len(data_shape) == 4 # NCHW
if output_shape:
assume_pad2d |= output_shape and len(output_shape) == 4 # NCHW
if assume_pad2d:
paddle_op = 'paddle.nn.functional.pad'
layer_attrs['data_format'] = string('NCHW')
layer_attrs['value'] = value
else: else:
paddle_op = 'paddle.fluid.layers.pad' output_name = node.name
layer_attrs["pad_value"] = value layer_outputs = [output_name]
if len(pads) == 4: if is_pads_attr:
paddings = np.array(pads).reshape( paddings = []
(-1, 2)).transpose().flatten().tolist() # SSEE -> SESE paddle_op = 'paddle.nn.functional.pad'
elif len(pads) == 8: if len(pads) in [2, 4, 6]:
paddings = np.array(pads).reshape( if data_shape:
(-1, 4)).transpose().flatten().tolist() # SSEE -> SESE assume_pad |= data_shape and 2 * (len(data_shape) - 2) == len(pads) # NCHW
if sum(paddings[:4]) == 0: if output_shape:
paddle_op = 'paddle.nn.functional.pad' assume_pad |= output_shape and 2 * (len(output_shape) - 2) == len(pads) # NCHW
paddings = paddings[4:] if assume_pad:
layer_attrs['value'] = value if len(pads) == 2:
if 'pad_value' in layer_attrs: data_format = "NCL"
layer_attrs.pop('pad_value') elif len(pads) == 4:
tmp_paddings = copy.deepcopy(paddings) data_format = "NCHW"
paddings[0] = tmp_paddings[2] else:
paddings[1] = tmp_paddings[3] data_format = "NCDHW"
paddings[2] = tmp_paddings[0]
paddings[3] = tmp_paddings[1] paddings = np.array(pads).reshape(
if paddle_op == 'paddle.nn.functional.pad': (2, -1)).transpose().astype("int32")
layer_attrs['pad'] = paddings paddings = np.flip(paddings, axis=0).flatten().tolist()
else: layer_attrs['pad'] = paddings
layer_attrs['paddings'] = paddings layer_attrs['data_format'] = data_format
if op_independent: else:
if data_shape:
assume_pad |= data_shape and 2 * len(data_shape) == len(pads) # NCHW
if output_shape:
assume_pad |= output_shape and 2 * len(output_shape) == len(pads) # NCHW
if assume_pad:
paddings = np.array(pads).reshape(
(2, -1)).transpose().astype("int32").flatten().tolist()
layer_attrs['pad'] = paddings
else:
raise Exception("The padding value {} is wrong!".format(pads))
elif len(pads) == 8:
if data_shape:
assume_pad |= data_shape and 2 * len(data_shape) == len(pads) # NCHW
if output_shape:
assume_pad |= output_shape and 2 * len(output_shape) == len(pads) # NCHW
if assume_pad:
paddings = np.array(pads).reshape(
(2, -1)).transpose().astype("int32")
paddings = np.flip(paddings, axis=0).flatten().tolist()
if sum(paddings[:4]) == 0:
paddings = paddings[4:]
layer_attrs['pad'] = paddings
else:
layer_attrs['pad'] = paddings
paddle_op = "custom_layer:pad_all_dim4_one_input"
else:
raise Exception("The padding value {} is wrong!".format(pads))
self.paddle_graph.add_layer( self.paddle_graph.add_layer(
paddle_op, paddle_op,
inputs={'x': val_x.name}, inputs={'x': val_x.name},
outputs=[node.name], outputs=layer_outputs,
**layer_attrs) **layer_attrs)
if not op_independent:
return node.name + '_paded'
else: else:
self.paddle_graph.add_layer( pads_len = val_pad.out_shapes[0][0]
paddle_op, if pads_len in [2, 4, 6]:
inputs={'x': val_x.name}, if data_shape:
outputs=[node.name + '_paded'], assume_pad |= data_shape and 2 * (len(data_shape) - 2) == pads_len # NCHW
**layer_attrs) if output_shape:
return node.name + '_paded' assume_pad |= output_shape and 2 * (len(output_shape) - 2) == pads_len # NCHW
if assume_pad:
if pads_len == 2:
data_format = "NCL"
elif pads_len == 4:
data_format = "NCHW"
else:
data_format = "NCDHW"
self.paddle_graph.add_layer(
"custom_layer:pad_with_two_input",
inputs={'x': val_x.name, 'pad': val_pad.name},
outputs=layer_outputs,
value=value,
mode=string(mode),
data_format=string(data_format))
else:
if data_shape:
assume_pad |= data_shape and 2 * len(data_shape) == pads_len # NCHW
if output_shape:
assume_pad |= output_shape and 2 * len(output_shape) == pads_len # NCHW
if assume_pad:
if pads_len == 4:
self.paddle_graph.add_layer(
"custom_layer:pad_all_dim2",
inputs={'x': val_x.name, 'pad': val_pad.name},
outputs=layer_outputs,
value=value,
mode=string(mode))
else:
raise Exception("The padding value is wrong!")
elif pads_len == 8:
if data_shape:
assume_pad |= data_shape and 2 * len(data_shape) == pads_len # NCHW
if output_shape:
assume_pad |= output_shape and 2 * len(output_shape) == pads_len # NCHW
if assume_pad:
self.paddle_graph.add_layer(
"custom_layer:pad_all_dim4",
inputs={'x': val_x.name, 'pad': val_pad.name},
outputs=layer_outputs,
value=value,
mode=string(mode))
else:
print(pads_len)
raise Exception("The padding value is wrong!")
if not op_independent:
return node.name + '_paded'
@print_mapping_info @print_mapping_info
def Unsqueeze(self, node): def Unsqueeze(self, node):
...@@ -622,17 +704,13 @@ class OpSet9(): ...@@ -622,17 +704,13 @@ class OpSet9():
self.paddle_graph.add_layer( self.paddle_graph.add_layer(
'paddle.cast', 'paddle.cast',
inputs={"x": indices.name}, inputs={"x": indices.name},
outputs=indices_cast, outputs=[indices_cast],
dtype=string('int64')) dtype=string('int64'))
op_name = name_generator("embedding", self.nn_name2id)
output_name = node.name
layer_outputs = [op_name, output_name]
self.paddle_graph.add_layer( self.paddle_graph.add_layer(
'paddle.nn.Embedding', 'paddle.nn.functional.embedding',
inputs={"x": indices_cast}, inputs={"x": indices_cast,
outputs=layer_outputs, "weight": val_x.name},
param_attr=string(val_x.name), outputs=[node.name])
size=val_x.out_shapes[0])
else: else:
from functools import reduce from functools import reduce
reshape_shape = reduce(lambda x, y: x * y, indices_shape) reshape_shape = reduce(lambda x, y: x * y, indices_shape)
...@@ -804,20 +882,27 @@ class OpSet9(): ...@@ -804,20 +882,27 @@ class OpSet9():
starts = self.graph.get_input_node(node, idx=1, copy=True) starts = self.graph.get_input_node(node, idx=1, copy=True)
ends = self.graph.get_input_node(node, idx=2, copy=True) ends = self.graph.get_input_node(node, idx=2, copy=True)
starts_value = _const_weight_or_none(starts) starts_value = _const_weight_or_none(starts)
if starts_value is not None:
starts_value = starts_value.tolist()
ends_value = _const_weight_or_none(ends) ends_value = _const_weight_or_none(ends)
if ends_value is not None:
ends_value = ends_value.tolist()
if len(node.inputs) > 2:
s_len = len(val_x.out_shapes[0])
axes = list(range(s_len))
if len(node.inputs) > 3: if len(node.inputs) > 3:
axes = self.graph.get_input_node(node, idx=3, copy=True) axes_node = self.graph.get_input_node(node, idx=3, copy=True)
axes = _const_weight_or_none(axes, necessary=True) axes = _const_weight_or_none(axes_node, necessary=True).tolist()
if len(node.inputs) > 4: if len(node.inputs) > 4:
steps = self.graph.get_input_node(node, idx=4, copy=True) steps = self.graph.get_input_node(node, idx=4, copy=True)
steps = _const_weight_or_none(steps) steps = _const_weight_or_none(steps).tolist()
layer_attrs = { layer_attrs = {
"axes": axes, "axes": axes,
"starts": starts.name, "starts": starts.name,
"ends": ends.name "ends": ends.name
} }
if starts_value is not None and ends_value is not None: if starts_value is not None and ends_value is not None and axes is not None:
starts_value = starts_value.copy() starts_value = starts_value.copy()
ends_value = ends_value.copy() ends_value = ends_value.copy()
#for idx in range(len(ends_value)): #for idx in range(len(ends_value)):
...@@ -847,6 +932,8 @@ class OpSet9(): ...@@ -847,6 +932,8 @@ class OpSet9():
layer_attrs['starts'] = starts_cast layer_attrs['starts'] = starts_cast
if ends.dtype != 'int32': if ends.dtype != 'int32':
ends_cast = ends.name + '_cast' ends_cast = ends.name + '_cast'
else:
ends_cast = ends.name
self.paddle_graph.add_layer( self.paddle_graph.add_layer(
'paddle.cast', 'paddle.cast',
inputs={"x": ends.name}, inputs={"x": ends.name},
...@@ -862,6 +949,7 @@ class OpSet9(): ...@@ -862,6 +949,7 @@ class OpSet9():
ends[idx] = 2**31 - 1 ends[idx] = 2**31 - 1
layer_attrs = {"axes": axes, "starts": starts, "ends": ends} layer_attrs = {"axes": axes, "starts": starts, "ends": ends}
if steps is not None: if steps is not None:
layer_attrs['strides'] = steps layer_attrs['strides'] = steps
self.paddle_graph.add_layer( self.paddle_graph.add_layer(
...@@ -986,11 +1074,17 @@ class OpSet9(): ...@@ -986,11 +1074,17 @@ class OpSet9():
inputs={'x': val_shape.name}, inputs={'x': val_shape.name},
outputs=[val_shape.name], outputs=[val_shape.name],
shape=val_shape.out_shapes[0]) shape=val_shape.out_shapes[0])
if val_shape.dtype != "int32":
self.paddle_graph.add_layer(
'paddle.cast',
inputs={'x': val_shape.name},
outputs=[val_shape.name],
dtype=string("int32"))
self.paddle_graph.add_layer( self.paddle_graph.add_layer(
'paddle.reshape', 'paddle.reshape',
inputs={'x': val_x.name, inputs={'x': val_x.name,
'shape': val_shape.name}, 'shape': val_shape.name},
outputs=node) outputs=[node.name])
@print_mapping_info @print_mapping_info
def Cast(self, node): def Cast(self, node):
...@@ -1221,7 +1315,10 @@ class OpSet9(): ...@@ -1221,7 +1315,10 @@ class OpSet9():
@print_mapping_info @print_mapping_info
def Transpose(self, node): def Transpose(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True) val_x = self.graph.get_input_node(node, idx=0, copy=True)
perm = node.get_attr('perm') s_len = len(val_x.out_shapes[0])
perm_default = list(range(s_len))
perm_default.reverse()
perm = node.get_attr('perm', perm_default)
self.paddle_graph.add_layer( self.paddle_graph.add_layer(
"paddle.transpose", "paddle.transpose",
inputs={"x": val_x.name}, inputs={"x": val_x.name},
...@@ -1230,9 +1327,6 @@ class OpSet9(): ...@@ -1230,9 +1327,6 @@ class OpSet9():
@print_mapping_info @print_mapping_info
def PRelu(self, node): def PRelu(self, node):
op_name = name_generator("prelu", self.nn_name2id)
output_name = node.name
layer_outputs = [op_name, output_name]
val_x = self.graph.get_input_node(node, idx=0, copy=True) val_x = self.graph.get_input_node(node, idx=0, copy=True)
val_slope = self.graph.get_input_node(node, idx=1, copy=True) val_slope = self.graph.get_input_node(node, idx=1, copy=True)
...@@ -1240,20 +1334,27 @@ class OpSet9(): ...@@ -1240,20 +1334,27 @@ class OpSet9():
shape_slope = val_slope.out_shapes[0] shape_slope = val_slope.out_shapes[0]
if shape_slope == [1]: if shape_slope == [1]:
mode = 'all' mode = 'all'
elif len(shape_slope) > 2:
raise Exception("The 'element' mode is not supported yet!") if mode == "element":
self.paddle_graph.add_layer(
if mode == 'channel' and len(shape_slope) == 1: "paddle.static.nn.prelu",
# paddle params shape need be [1, channel] inputs={"x": val_x.name,
slope_data = _const_weight_or_none(val_slope) "param_attr": val_slope.name},
slope_data = np.reshape(slope_data, [1] + shape_slope) outputs=[node.name],
self.params[val_slope.name] = slope_data mode="element")
else:
self.paddle_graph.add_layer( if mode == 'channel':
"paddle.nn.functional.prelu", if len(shape_slope) > 1:
inputs={"x": val_x.name, self.paddle_graph.add_layer(
"weight": val_slope.name}, "paddle.reshape",
outputs=[node.name]) inputs={"x": val_slope.name},
outputs=[val_slope.name],
shape=[shape_slope[0]])
self.paddle_graph.add_layer(
"paddle.nn.functional.prelu",
inputs={"x": val_x.name,
"weight": val_slope.name},
outputs=[node.name])
@print_mapping_info @print_mapping_info
def Squeeze(self, node): def Squeeze(self, node):
...@@ -1521,6 +1622,16 @@ class OpSet9(): ...@@ -1521,6 +1622,16 @@ class OpSet9():
} }
if has_bias: if has_bias:
layer_inputs["bias"] = val_b.name layer_inputs["bias"] = val_b.name
input_shape = val_x.out_shapes[0]
if reduce(lambda x,y:x*y, input_shape) in [1, -1] and 1 not in input_shape:
input_shape[1] = num_in_channels * num_groups
input_shape[0] = 0
input_shape[2] = 0
self.paddle_graph.add_layer(
"paddle.reshape",
inputs={"x": layer_inputs["x"]},
outputs=[layer_inputs["x"]],
shape=input_shape)
self.paddle_graph.add_layer( self.paddle_graph.add_layer(
paddle_op, paddle_op,
inputs=layer_inputs, inputs=layer_inputs,
...@@ -1587,4 +1698,63 @@ class OpSet9(): ...@@ -1587,4 +1698,63 @@ class OpSet9():
'paddle.argmax', 'paddle.argmax',
inputs={"x": val_x.name}, inputs={"x": val_x.name},
outputs=[node.name], outputs=[node.name],
**layer_attrs) **layer_attrs)
\ No newline at end of file
@print_mapping_info
def Size(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
self.paddle_graph.add_layer(
"paddle.shape",
inputs={"input": val_x.name},
outputs=[node.name])
self.paddle_graph.add_layer(
'paddle.cast',
inputs={"x": node.name},
outputs=[node.name],
dtype=string('int64'))
self.paddle_graph.add_layer(
"paddle.prod",
inputs={"x": node.name},
outputs=[node.name])
@print_mapping_info
def Sign(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
if node.dtype not in ["float16", "float32", "float64"]:
self.paddle_graph.add_layer(
"paddle.cast",
inputs={"x": val_x.name},
outputs=[val_x.name],
dtype=string("float32"))
self.paddle_graph.add_layer(
"paddle.sign",
inputs={"x": val_x.name},
outputs=[node.name])
if node.dtype not in ["float16", "float32", "float64"]:
self.paddle_graph.add_layer(
"paddle.cast",
inputs={"x": node.name},
outputs=[node.name],
dtype=string(node.dtype))
@print_mapping_info
def OneHot(self, node):
indices = self.graph.get_input_node(node, idx=0, copy=True)
depth = self.graph.get_input_node(node, idx=1, copy=True)
values = self.graph.get_input_node(node, idx=2, copy=True)
axis = node.get_attr('axis', -1)
self.paddle_graph.add_layer(
"custom_layer:one_hot",
inputs={"indices": indices.name,
"depth": depth.name,
"values": values.name},
outputs=[node.name],
axis=axis)
@print_mapping_info
def Reciprocal(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
self.paddle_graph.add_layer(
"paddle.reciprocal",
inputs={"x": val_x.name},
outputs=[node.name])
\ No newline at end of file
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册