提交 9828c2c7 编写于 作者: M Macrobull

Merge remote-tracking branch 'upstream/master'

......@@ -8,6 +8,8 @@ X2Paddle支持将Caffe和TensorFlow模型转至PaddlePaddle模型,同时我们
任何使用问题均可通过[ISSUE](https://github.com/PaddlePaddle/X2Paddle/issues)的方式及时反馈,或者也可直接通过pull request的方式一起更新代码和文档。
> **目前X2Paddle主要支持CV部分模型,对于NLP模型暂未支持。**
## [caffe2fluid](caffe2fluid)
1. 支持将Caffe模型转至PaddlePaddle fluid可加载预测模型
2. 提供Caffe-PaddlePaddle常用API的对比文档[[doc](caffe2fluid/doc)]
......
......@@ -69,7 +69,23 @@ bash tools/diff.sh alexnet ../../alexnet.prototxt \
2. 添加`import mylayer``kaffe/custom_layers/__init__.py`
3. 准备你的pycaffe作为你的定制版本(与以前的env准备相同)
> 选择一:编译你自己的caffe.proto来代替proto/caffe.proto
> 选择一:
1. 编译你自己的caffe.proto来代替proto/caffe.proto
2. 修改./kaffe/caffe/resolver.py
```python
try:
# Try to import PyCaffe first
import caffe
self.caffe = caffe
except ImportError:
# Fall back to the protobuf implementation
self.caffepb = import_caffepb()
show_fallback_warning()
# 将上述代码替换为下列代码:
self.caffepb = import_caffepb()
show_fallback_warning()
```
> 选择二:更换你的pycaffe到特定的版本
4. 按照之前步骤,将Caffe模型转换为PaddlePaddle模型
......
......@@ -72,7 +72,22 @@ In the model conversion, when encounter an unsupported custom layer, users can a
2. Add ```import mylayer``` to `kaffe/custom_layers/__init__.py`
3. Prepare your pycaffe as your customized version(same as previous env prepare)
- (option1) replace `proto/caffe.proto` with your own caffe.proto and compile it
- (option1)
1. replace `proto/caffe.proto` with your own caffe.proto and compile it
2. modify the ./kaffe/caffe/resolver.py
```python
try:
# Try to import PyCaffe first
import caffe
self.caffe = caffe
except ImportError:
# Fall back to the protobuf implementation
self.caffepb = import_caffepb()
show_fallback_warning()
# replace the above code with:
self.caffepb = import_caffepb()
show_fallback_warning()
```
- (option2) change your `pycaffe` to the customized version
4. Convert the Caffe model to Fluid model
......
......@@ -51,8 +51,8 @@ layer {
top: "out3"
slice_param {
axis: 1 # 使用-1效果相同
alice_point: 1
alice_point: 2
slice_point: 1
slice_point: 2
}
}
# 输出3个数组,第一个shape:(2,1),第二个shape:(2,1),第三个shape:(2,4)
......
......@@ -172,7 +172,7 @@ def load_model(exe, place, net_file, net_name, net_weight, debug):
def get_shape(fluid, program, name):
for var in program.list_vars():
if var.name == 'data':
if var.type == 'Input':
return list(var.shape[1:])
raise ValueError('not found shape for input layer[%s], '
......
......@@ -49,7 +49,7 @@ if [[ -z $PYTHON ]];then
PYTHON=`which python`
fi
$PYTHON ../../convert.py \
$proto_file \
--npy_path $proto_file \
--caffemodel $caffemodel_file \
--data-output-path $weight_file\
--code-output-path $net_file
......
import os
import sys
import subprocess
SHARED_CAFFE_RESOLVER = None
......@@ -9,6 +10,10 @@ def import_caffepb():
p = os.path.dirname(p)
p = os.path.join(p, '../../proto')
sys.path.insert(0, p)
pb_version = subprocess.getstatusoutput('protoc --version')[1]
ver_str = pb_version.split(' ')[-1].replace('.', '')
ver_int = int(ver_str)
assert vaer_int >= 360, 'The version of protobuf must be larger than 3.6.0!'
import caffe_pb2
return caffe_pb2
......
......@@ -49,13 +49,13 @@ def detectionoutput_layer(inputs,
pbv = fluid.layers.reshape(x=pbv, shape=[-1, 4])
mbox_loc = inputs[0]
mbox_loc = fluid.layers.reshape(
x=mbox_loc, shape=[-1, mbox_conf_flatten.shape[1], 4])
x=mbox_loc, shape=[0, mbox_conf_flatten.shape[1], 4])
default = {"nms_threshold": 0.3, "top_k": 10, "eta": 1.0}
fields = ['eta', 'top_k', 'nms_threshold']
for f in default.keys():
if not nms_param.has_key(f):
if f not in nms_param:
nms_param[f] = default[f]
nmsed_outs = fluid.layers.detection_output(
......
......@@ -2,7 +2,7 @@
more info can be found here: http://caffe.berkeleyvision.org/tutorial/layers/flatten.html
"""
from .register import register
from functools import reduce
def flatten_shape(input_shape, axis=1, end_axis=-1):
""" calculate the output shape of this layer using input shape
......@@ -29,6 +29,8 @@ def flatten_shape(input_shape, axis=1, end_axis=-1):
% (start_axis, end_axis)
output_shape = input_shape[0:start_axis]
flat_sz = reduce(lambda a, b: a * b, input_shape[start_axis:end_axis])
if flat_sz < 0:
flat_sz = -1
output_shape += [flat_sz]
output_shape += input_shape[end_axis:-1]
......@@ -52,9 +54,8 @@ def flatten_layer(input, name, axis=1, end_axis=-1):
input_shape = list(input.shape)
if input_shape[0] == -1:
input_shape[0] = 1
input_shape[0] = 0
output_shape = flatten_shape(input_shape, axis=axis, end_axis=end_axis)
output_shape[0] = -1
else:
output_shape = flatten_shape(input_shape, axis=axis, end_axis=end_axis)
......
......@@ -2,6 +2,7 @@
more info can be found here: http://caffe.berkeleyvision.org/tutorial/layers/reshape.html
"""
from .register import register
from functools import reduce
def import_fluid():
......@@ -61,43 +62,6 @@ def reshape_shape(input_sp, shape, axis=0, num_axes=-1):
assert len(output_shape) == num_axes_retained + num_new_axes,\
"[Reshape]invalid dims of output shape[%s]" % (str(output_shape))
inferred_axis = -1
copy_axes = []
constant_count = 1
for i in range(num_new_axes):
top_dim = shape['dim'][i]
if top_dim == 0:
copy_axes.append(i)
copy_axis_index = start_axis + i
output_shape[copy_axis_index] = input_shape[copy_axis_index]
elif top_dim == -1:
assert inferred_axis == -1, "[Reshape]new shape contains multiple -1 dims"
inferred_axis = i
else:
constant_count *= top_dim
if inferred_axis >= 0:
explicit_count = constant_count
l = input_shape[0:start_axis]
if len(l) > 0:
explicit_count *= count(l)
l = input_shape[end_axis:]
if len(l) > 0:
explicit_count *= count(l)
for i in range(len(copy_axes)):
explicit_count *= output_shape[start_axis + copy_axes[i]]
assert input_count % explicit_count == 0, "[Reshape]botom count[%d] "\
"must be divisible by product of the specified dimensions[%d] "\
% (input_count, explicit_count)
output_shape[start_axis + inferred_axis] = input_count / explicit_count
output_count = count(output_shape)
assert output_count == input_count, "[Reshape]output count[%d] must match input count[%d]" % (
output_count, input_count)
return output_shape
......@@ -115,19 +79,16 @@ def reshape_layer(input, name, shape, axis=0, num_axes=-1):
output (variable): output variable for this layer
"""
fluid = import_fluid()
input_shape = list(input.shape)
if input_shape[0] == -1:
input_shape[0] = 1
input_shape[0] = 0
output_shape = reshape_shape(input_shape, shape, axis, num_axes)
output_shape[0] = -1
else:
output_shape = reshape_shape(input_shape, shape, axis, num_axes)
output = fluid.layers.reshape(input, shape=output_shape, name=name)
return output
register(kind='Reshape', shape=reshape_shape, layer=reshape_layer)
......@@ -103,7 +103,7 @@ class Network(object):
place = self.paddle_env['place']
exe = self.paddle_env['exe']
data_dict = np.load(data_path).item()
data_dict = np.load(data_path, allow_pickle=True).item()
for op_name in data_dict:
if op_name == 'caffe2fluid_name_trace':
self.name_trace = data_dict[op_name]
......@@ -441,7 +441,7 @@ class Network(object):
need_transpose = True
if need_transpose:
in_order = range(dims)
in_order = list(range(dims))
in_order.remove(axis)
in_order.append(axis)
input = fluid.layers.transpose(
......
......@@ -3,6 +3,9 @@ from collections import namedtuple
from .errors import KaffeError
Tensor5DShape = namedtuple('Tensor5DShape',
['batch_size', 'data1', 'daat2', 'data3', 'data4'])
Tensor4DShape = namedtuple('Tensor4DShape',
['batch_size', 'channels', 'height', 'width'])
......
......@@ -103,6 +103,8 @@ tensorflow2fluid在如下tensorflow模型上测试了模型转换前后的diff
| | ResNet V1 50 | [code](https://github.com/tensorflow/models/blob/master/research/slim/nets/resnet_v1.py) | 1.31E-06 |
| | ResNet V1 101 | [code](https://github.com/tensorflow/models/blob/master/research/slim/nets/resnet_v1.py) | 4.74E-07 |
| | Inception V3 | [code](https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_v3.py) | 1.55E-04 |
| | NASNet_Large | [code](https://github.com/tensorflow/models/blob/master/research/slim/nets/nasnet/nasnet.py) | - |
| | PNASNet_Large | [code](https://github.com/tensorflow/models/blob/master/research/slim/nets/nasnet/pnasnet.py) | - |
| 目标检测 | YOLO-Small | [code](https://github.com/gliese581gg/YOLO_tensorflow) | 1.40E-06 |
| | YOLO-V3 | [code](https://github.com/mystic123/tensorflow-yolo-v3) | 6.20E-04 |
| 语义分割 | Unet | [code](https://github.com/jakeret/tf_unet) | 4.17E-07 |
......
此差异已折叠。
......@@ -4,8 +4,8 @@
| TensorFlow接口 | PaddlePaddle接口 |
|--------------------------|-------------------------------------------------|
|[tf.math.less_equal](https://www.tensorflow.org/api_docs/python/tf/math/less_equal)|运算符`<=`|
|[tf.math.greater](https://www.tensorflow.org/api_docs/python/tf/math/greater)|运算符`>`|
|[tf.math.greater_equal](https://www.tensorflow.org/api_docs/python/tf/math/greater_equal)|运算符`>=`|
|[tf.math.equal](https://www.tensorflow.org/api_docs/python/tf/math/equal)|运算符`==`[paddle.fluid.layers.equal](http://paddlepaddle.org/documentation/docs/zh/1.3/api_cn/layers_cn.html#permalink-7-equal) |
|[tf.math.less](https://www.tensorflow.org/api_docs/python/tf/math/less)|运算符`<`[paddle.fluid.layers.less_than](http://paddlepaddle.org/documentation/docs/zh/1.3/api_cn/layers_cn.html#permalink-11-less_than) |
|[tf.math.less_equal](https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/math/less_equal)|运算符`<=`|
|[tf.math.greater](https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/math/greater)|运算符`>`|
|[tf.math.greater_equal](https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/math/greater_equal)|运算符`>=`|
|[tf.math.equal](https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/math/equal)|运算符`==`[paddle.fluid.layers.equal](http://paddlepaddle.org/documentation/docs/zh/1.3/api_cn/layers_cn.html#permalink-7-equal) |
|[tf.math.less](https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/math/less)|运算符`<`[paddle.fluid.layers.less_than](http://paddlepaddle.org/documentation/docs/zh/1.3/api_cn/layers_cn.html#permalink-11-less_than) |
\ No newline at end of file
## tf.case
### [tf.case](https://www.tensorflow.org/api_docs/python/tf/case)
### [tf.case](https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/case)
```python
tf.case(
......@@ -52,4 +52,4 @@ with fluid.layers.control_flow.Switch() as switch:
with switch.default():
fluid.layers.tensor.assign(input=lr_0, output=lr)
```
```
\ No newline at end of file
## tf.clip_by_global_norm
### [tf.clip_by_global_norm](https://www.tensorflow.org/api_docs/python/tf/clip_by_global_norm)
### [tf.clip_by_global_norm](https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/clip_by_global_norm)
```python
tf.clip_by_global_norm(
......@@ -46,4 +46,4 @@ with fluid.program_guard(main_program=prog_clip):
# 执行裁剪并获取结果
p_g_clip = fluid.clip.append_gradient_clip_ops(p_g_clip)
```
```
\ No newline at end of file
## tf.clip_by_norm
### [tf.clip_by_norm](https://www.tensorflow.org/api_docs/python/tf/clip_by_norm)
### [tf.clip_by_norm](https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/clip_by_norm)
``` python
tf.clip_by_norm(
......@@ -24,4 +24,4 @@ paddle.fluid.layers.clip_by_norm(
#### 计算方式
TensorFlow: 使用参数`axis`指定的轴计算L2范数`l2-norm`,如若`axis`为None,则表示使用整个输入数据的L2范数;
PaddlePaddle:使用整个输入数据的L2范数。
PaddlePaddle:使用整个输入数据的L2范数。
\ No newline at end of file
## tf.contrib.layers.flatten
### [tf.contrib.layers.flatten](https://www.tensorflow.org/api_docs/python/tf/contrib/layers/flatten)
### [tf.contrib.layers.flatten](https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/contrib/layers/flatten)
```python
tf.contrib.layers.flatten(
......@@ -34,4 +34,4 @@ PaddlePaddle:使用`axis`指定两次合并的维度边界,参考下面示
out = fluid.layers.flatten(x, axis=2)
out.shape # [2*3, 4*5]
```
```
\ No newline at end of file
## tf.expand_dims
### [tf.expand_dims](https://www.tensorflow.org/api_docs/python/tf/expand_dims)
### [tf.expand_dims](https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/math/expand_dims)
``` python
tf.expand_dims(
input,
......@@ -39,5 +38,4 @@ out = fluid.layers.unsqueeze(t, [-1])
# 输出 tensor out 的 shape 为[1, 1,3, 4]
out = fluid.layers.unsqueeze(t, [0, 1])
```
```
\ No newline at end of file
## tf.image.non_max_suppression
### [tf.image.non_max_suppression](https://www.tensorflow.org/api_docs/python/tf/image/non_max_suppression)
### [tf.image.non_max_suppression](https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/image/non_max_suppression)
``` python
tf.image.non_max_suppression(
boxes,
......@@ -54,4 +53,4 @@ selected_boxes = fluid.layers.multiclass_nms(
nms_top_k=-1,
keep_top_k=300,
nms_threshold=0.7)
```
```
\ No newline at end of file
## tf.image.resize_images
### [tf.image.resize_images](https://www.tensorflow.org/api_docs/python/tf/image/resize_images)
### [tf.image.resize_images](https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/image/resize_images)
``` python
tf.image.resize_images(
images,
......@@ -38,5 +37,4 @@ inputs = fluid.layers.data(dtype='float32', shape=[3, 300, 300], name='inputs')
# 输出shape为[3, 400, 500]
outputs = fluid.layers.image_reisze(inputs, [400, 500])
```
```
\ No newline at end of file
## tf.layers.conv2d
### [tf.layers.conv2d](https://www.tensorflow.org/api_docs/python/tf/layers/conv2d)
### [tf.layers.conv2d](https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/layers/conv2d)
``` python
tf.layers.conv2d(
inputs,
......@@ -73,7 +72,7 @@ pad_right = pad_size - pad_left
PaddlePaddle:`padding`参数表示在输入图像四周padding的size大小。
#### 参数差异
TensorFlow:深度可分离卷积使用[tf.layers.separable_conv2d](https://www.tensorflow.org/api_docs/python/tf/layers/separable_conv2d)接口;
TensorFlow:深度可分离卷积使用[tf.layers.separable_conv2d](https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/layers/separable_conv2d)接口;
PaddlePaddle: 使用`paddle.fluid.layers.conv2d`,可参考
[PaddlePaddle对卷积的说明文档](http://paddlepaddle.org/documentation/docs/zh/1.4/api_guides/low_level/layers/conv.html), 同时也可参考[tf.nn.separable_conv2d](https://github.com/PaddlePaddle/X2Paddle/blob/master/tensorflow2fluid/doc/tf.nn.separable_conv2d.md)中的代码示例。
......@@ -85,4 +84,4 @@ PaddlePaddle: 使用`paddle.fluid.layers.conv2d`,可参考
# 卷积核Shape: (5, 3, 4, 4)
inputs = paddle.fluid.layers.data(dtype='float32', shape=[3, 200, 200], name='inputs)
pad_inputs = paddle.fluid.layers.pad2d(inputs, paddings=[1, 2, 1, 2])
outputs = paddle.fluid.layers.conv2d(pad_inputs, 5, [4, 4], (1, 1))
outputs = paddle.fluid.layers.conv2d(pad_inputs, 5, [4, 4], (1, 1))
\ No newline at end of file
## tf.layers.dense
### [tf.layers.dense](https://www.tensorflow.org/api_docs/python/tf/layers/dense)
### [tf.layers.dense](https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/layers/dense)
``` python
tf.layers.dense(
inputs,
......@@ -63,4 +62,4 @@ out = fluid.layers.fc(t, size=6, \
# size=6, num_flatten_dims=2,输出tensor的shape为[2, 3, 6]
out = fluid.layers.fc(t, size=6, num_flatten_dims=2)
```
```
\ No newline at end of file
## tf.losses.mean_and_squared_error
### [tf.losses.mean_and_squared_error](https://www.tensorflow.org/api_docs/python/tf/losses/mean_squared_error)
### [tf.losses.mean_and_squared_error](https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/losses/mean_squared_error)
``` python
tf.losses.mean_squared_error(
......@@ -25,4 +25,4 @@ paddle.fluid.layers.square_error_cost(
#### 计算方式
TensorFlow: 提供`weights`参数,通过传入`weights`参数的shape,可实现不同的加权方式;
PaddlePaddle:不支持加权。
PaddlePaddle:不支持加权。
\ No newline at end of file
## tf.losses.sigmoid_cross_entropy
### [tf.losses.sigmoid_cross_entropy](https://www.tensorflow.org/api_docs/python/tf/losses/sigmoid_cross_entropy)
### [tf.losses.sigmoid_cross_entropy](https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/losses/sigmoid_cross_entropy)
```python
tf.losses.sigmoid_cross_entropy(
......@@ -53,4 +53,4 @@ PaddlePaddle:通过设置`normalize`,各样本损失函数会除以除去`ig
out = fluid.layers.sigmoid_cross_entropy_with_logits(x, label)
```
```
\ No newline at end of file
## tf.math.is_finite
### [tf.math.is_finite](https://www.tensorflow.org/api_docs/python/tf/math/is_finite)
### [tf.math.is_finite](https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/math/is_finite)
``` python
tf.math.is_finite(
x,
......@@ -31,4 +30,4 @@ result = tf.is_finite(inputs)
# 输入[2.1, 3.2, 4.5]
# 输出True
result = fluid.layers.isfinite(inputs)
```
```
\ No newline at end of file
## tf.math.rsqrt
### [tf.math.rsqrt](https://www.tensorflow.org/api_docs/python/tf/math/rsqrt)
### [tf.math.rsqrt](https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/math/rsqrt)
``` python
tf.math.rsqrt(
x,
......@@ -23,4 +23,4 @@ inputs = fluid.layers.data(dtype='float32', shape=[1000], name='inputs')
# 调用上述自定义函数
result = rsqrt(inputs)
```
```
\ No newline at end of file
## tf.matmul
### [tf.matmul](https://www.tensorflow.org/api_docs/python/tf/linalg/matmul)
### [tf.matmul](https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/linalg/matmul)
``` python
tf.matmul(
a,
......@@ -60,4 +59,4 @@ fluid.layers.matmul(x, y) # out: [1]
# x: [M], y: [N]
fluid.layers.matmul(x, y, True, True) # out: [M, N]
```
```
\ No newline at end of file
## tf.nn.avg_pool
### [tf.nn.avg_pool](https://www.tensorflow.org/versions/r1.10/api_docs/python/tf/nn/avg_pool)
### [tf.nn.avg_pool](https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/nn/avg_pool)
``` python
tf.nn.avg_pool(
......
## tf.nn.bidirectional_dynamic_rnn
### [tf.nn.bidirectional_dynamic_rnn](https://www.tensorflow.org/api_docs/python/tf/nn/bidirectional_dynamic_rnn)
### [tf.nn.bidirectional_dynamic_rnn](https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/nn/bidirectional_dynamic_rnn)
```python
tf.nn.bidirectional_dynamic_rnn(
......@@ -71,4 +71,4 @@ rev_rev_out = fluid.layers.sequence_reverse(rev_out)
# 合并得到最后的输出,其shape为(-1, 32)
concat_out = layers.concat([out, rev_rev_out], axis=1)
```
```
\ No newline at end of file
## tf.nn.conv2d
### [tf.nn.conv2d](https://www.tensorflow.org/api_docs/python/tf/nn/conv2d)
### [tf.nn.conv2d](https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/nn/conv2d)
```python
tf.nn.conv2d(
......@@ -48,4 +48,4 @@ create_kernel = fluid.layers.create_parameters(shape=[5, 3, 2, 2], dtype='float3
# PaddlePaddle中可通过相同的参数命名引用同一个参数变量
# 通过指定卷积核参数名(param_attr)为'kernel',引用了create_kernel
result = fluid.layers.conv2d(inputs, 5, [2, 2], param_attr='kernel')
```
```
\ No newline at end of file
## tf.nn.conv2d_transpose
### [tf.nn.conv2d_transpose](https://www.tensorflow.org/api_docs/python/tf/nn/conv2d_transpose)
### [tf.nn.conv2d_transpose](https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/nn/conv2d_transpose)
``` python
tf.nn.conv2d_transpose(
value,
......@@ -93,4 +92,4 @@ inputs = fluid.layers.data(dtype='float32', shape=[3, 20, 20], name='inputs)
outputs = fluid.layers.conv2d_transpose(pad_inputs, 3, filter_size=[5, 5],
padding=[1, 1], stride=[2, 2], bias_attr=False)
# 裁剪后结果即为与TensorFlow一致
outputs = fluid.layers.crop(outputs, shape=[-1, 3, 40, 40])
outputs = fluid.layers.crop(outputs, shape=[-1, 3, 40, 40])
\ No newline at end of file
## tf.nn.conv3d_transpose
### [tf.nn.conv3d_transpose](https://www.tensorflow.org/api_docs/python/tf/nn/conv3d_transpose)
### [tf.nn.conv3d_transpose](https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/nn/conv3d_transpose)
``` python
tf.nn.conv3d_transpose(
value,
......@@ -93,4 +92,4 @@ inputs = fluid.layers.data(dtype='float32', shape=[3, 5, 20, 40], name='inputs)
outputs = fluid.layers.conv3d(inputs, 7, filter_size=(2, 4, 5), stride=(1, 2, 2),
padding=(0, 1, 1), bias_attr=False)
# 裁剪后结果即为与TensorFlow一致
outputs = fluid.layers.crop(outputs, shape=[-1, 7, 5, 40, 80])
outputs = fluid.layers.crop(outputs, shape=[-1, 7, 5, 40, 80])
\ No newline at end of file
## tf.nn.depthwise_conv2d
### [tf.nn.depthwise_conv2d](https://www.tensorflow.org/api_docs/python/tf/nn/depthwise_conv2d)
### [tf.nn.depthwise_conv2d](https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/nn/depthwise_conv2d)
```python
tf.nn.depthwise_conv2d(
......@@ -84,4 +84,4 @@ inputs = fluid.layers.data(dtype='float32', shape=[3, 20, 20], name='inputs')
inputs = fluid.layers.pad2d(inputs, paddings=[1, 2, 1, 2])
#输出shape:[-1, 3, 20, 20]
result = fluid.layers.conv2d(inputs, 3, filter_size=[4, 4], groups=3, bias_attr=False)
```
```
\ No newline at end of file
## tf.dropout
### [tf.nn.dropout](https://www.tensorflow.org/api_docs/python/tf/nn/dropout)
### [tf.nn.dropout](https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/nn/dropout)
``` python
tf.nn.dropout(
x,
......@@ -47,4 +46,4 @@ out = fluid.layers.dropout(t, dropout_prob=0.2, dropout_implementation="upscale_
# inference 时关闭dropout
inference_program = fluid.default_main_program().clone(for_test=True)
```
```
\ No newline at end of file
## tf.nn.dynamic_rnn
### [tf.nn.dynamic_rnn](https://www.tensorflow.org/api_docs/python/tf/nn/dynamic_rnn)
### [tf.nn.dynamic_rnn](https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/nn/dynamic_rnn)
``` python
tf.nn.dynamic_rnn(
cell,
......@@ -75,4 +75,4 @@ state = fluid.layers.sequence_last_step(outputs)
为了简化用户定义动态RNN的过程,paddle有如下op可供选择:
- [paddle.fluid.layers.dynamic_lstm](http://www.paddlepaddle.org/documentation/docs/zh/1.4/api_cn/layers_cn.html#dynamic-lstm):相当于 `tf.nn.dynamic_rnn`结合`tf.nn.rnn_cell.LSTMCell`
- [paddle.fluid.layers.dynamic_gru](http://www.paddlepaddle.org/documentation/docs/zh/1.4/api_cn/layers_cn.html#dynamic-gru):相当于`tf.nn.dynamic_rnn`结合`tf.nn.rnn_cell.GRUCell`
- [paddle.fluid.layers.dynamic_gru](http://www.paddlepaddle.org/documentation/docs/zh/1.4/api_cn/layers_cn.html#dynamic-gru):相当于`tf.nn.dynamic_rnn`结合`tf.nn.rnn_cell.GRUCell`
\ No newline at end of file
## tf.nn.l2_normalize
### [tf.nn.l2_normalize](https://www.tensorflow.org/api_docs/python/tf/math/l2_normalize)
### [tf.nn.l2_normalize](https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/math/l2_normalize)
```python
tf.math.l2_normalize(
......@@ -38,4 +37,4 @@ PaddlePaddle:计算方式为`output = x / sqrt(sum(x^2) + epsilon))`。
# out同样是shape[3,2]的张量,axis设置为1,表示将x中每个行向量做归一化
out = fluid.layers.l2_normalize(x, axis=1)
```
```
\ No newline at end of file
## tf.nn.lrn
### [tf.nn.lrn](https://www.tensorflow.org/api_docs/python/tf/nn/local_response_normalization)
### [tf.nn.lrn](https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/nn/local_response_normalization)
```python
tf.nn.local_response_normalization(
......@@ -38,4 +37,4 @@ $$output(i,x,y)=input(i,x,y)/(k+\alpha\sum_{j=max(0,i-\frac{n}{2})}^{min(C,i+\fr
#### 输入格式
TensorFlow: 默认输入`NHWC`格式数据;
PaddlePaddle: 默认输入`NCHW`格式数据,
PaddlePaddle: 默认输入`NCHW`格式数据,
\ No newline at end of file
## tf.nn.max_pool
### [tf.nn.max_pool](https://www.tensorflow.org/api_docs/python/tf/nn/max_pool)
### [tf.nn.max_pool](https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/nn/max_pool)
``` python
tf.nn.max_pool(
......@@ -51,4 +51,4 @@ inputs = fluid.layers.data(dtype='float32', shape=[3, 300, 300], name='inputs')
# 在最右、最下进行padding
pad_res = fluid.layers.pad2d(inputs, padding=[0, 1, 0, 1])
conv_res = fluid.layers.pool2d(pad_res, pool_size=3, pool_type='max', pool_stride=2)
```
```
\ No newline at end of file
## tf.math.reduce_logsumexp
### [tf.math.reduce_logsumexp](https://www.tensorflow.org/api_docs/python/tf/math/reduce_logsumexp)
### [tf.math.reduce_logsumexp](https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/math/reduce_logsumexp)
``` python
tf.math.log_softmax(
logits,
......@@ -26,4 +26,4 @@ inputs = fluid.layers.data(dtype='float32', shape=[1000], name='inputs')
# 调用上述自定义函数
result = reduce_logsumexp(inputs)
```
```
\ No newline at end of file
## tf.contrib.rnn.GRUCell
### [tf.contrib.rnn.GRUCell](https://www.tensorflow.org/api_docs/python/tf/nn/rnn_cell/GRUCell)
### [tf.nn.rnn.GRUCell](https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/nn/rnn_cell/GRUCell)
```python
tf.contrib.rnn.GRUCell(
__init__(
num_units,
activation=None,
reuse=None,
......@@ -13,7 +13,6 @@ tf.contrib.rnn.GRUCell(
dtype=None,
**kwargs
)
```
### [paddle.fluid.layers.gru_unit](http://paddlepaddle.org/documentation/docs/zh/1.4/api_cn/layers_cn.html#gru-unit)
......
## tf.nn.rnn_cell.LSTMCell
### [tf.nn.rnn_cell.LSTMCell](https://www.tensorflow.org/api_docs/python/tf/nn/rnn_cell/LSTMCell)
### [tf.nn.rnn_cell.LSTMCell](https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/nn/rnn_cell/LSTMCell)
```python
tf.nn.rnn_cell.LSTMCell(
......@@ -85,4 +85,4 @@ out = drnn()
# 获取最后时刻的输出
last = fluid.layers.sequence_last(out)
```
```
\ No newline at end of file
## tf.nn.rnn_cell.MultiRNNCell
### [tf.nn.rnn_cell.MultiRNNCell](https://www.tensorflow.org/api_docs/python/tf/nn/rnn_cell/MultiRNNCell)
### [tf.nn.rnn_cell.MultiRNNCell](https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/nn/rnn_cell/MultiRNNCell)
```python
tf.nn.rnn_cell.MultiRNNCell(
__init__(
cells,
state_is_tuple=True
)
......
## tf.nn.separable_conv2d
### [tf.nn.separable_conv2d](https://www.tensorflow.org/api_docs/python/tf/nn/separable_conv2d)
### [tf.nn.separable_conv2d](https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/nn/separable_conv2d)
``` python
tf.nn.separable_conv2d(
input,
......@@ -30,4 +30,4 @@ depthwise_result = fluid.layers.conv2d(input, 3, filter_size=[4, 4],
pointwise_result = fluid.layers.conv2d(depthwise_result, filter_size=[1, 1],
stride=[1, 1], bias_attr=False)
```
```
\ No newline at end of file
## tf.nn.softmax_cross_entropy_with_logits
### [tf.nn.rnn_cell.MultiRNNCell](https://www.tensorflow.org/api_docs/python/tf/nn/softmax_cross_entropy_with_logits)
### [tf.nn.rnn_cell.MultiRNNCell](https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/nn/softmax_cross_entropy_with_logits)
```python
tf.nn.softmax_cross_entropy_with_logits(
......@@ -20,7 +20,8 @@ paddle.fluid.layers.softmax_with_cross_entropy(
soft_label=False,
ignore_index=-100,
numeric_stable_mode=False,
return_softmax=False
return_softmax=False,
axis=-1
)
```
......
## tf.nn.top_k
### [tf.nn.top_k](https://www.tensorflow.org/api_docs/python/tf/nn/top_k)
### [tf.nn.top_k](https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/nn/top_k)
``` python
tf.math.top_k(
input,
......@@ -32,4 +31,4 @@ PaddlePaddle: 对返回的top-k tensor进行降序排序;`k`没有默认值,
# 当k=2时,输出 tensor out 为[[6,3], [8,3]],index为[[1,2],[2,0]]
out, index = fluid.layers.topk(t, k=1)
```
```
\ No newline at end of file
## tf.one_hot
### [tf.one_hot](https://www.tensorflow.org/api_docs/python/tf/one_hot)
### [tf.one_hot](https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/one_hot)
``` python
tf.one_hot(
indices,
......@@ -38,4 +37,4 @@ PaddlePaddle:无对应配置选项,即为默认的`1`和`0`。
# depth 为3时,输出 tensor out 为[[0, 1, 0], [0, 0, 1]]
out = fluid.layers.one_hot(t, 3)
```
```
\ No newline at end of file
## tf.pad
### [tf.pad](https://www.tensorflow.org/api_docs/python/tf/pad)
### [tf.pad](https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/pad)
``` python
tf.pad(
tensor,
......@@ -34,4 +33,4 @@ PaddlePaddle:目前仅支持采用常量进行padding;指定padding长度时
# 第0维前面padding长度为0,后面padding长度为1;第1维前面padding长度为1,后面padding长度为2
out = fluid.layers.pad(t, paddings=[0,1,1,2])
```
```
\ No newline at end of file
## tf.placeholder
### [tf.placeholder](https://www.tensorflow.org/api_docs/python/tf/placeholder)
### [tf.placeholder](https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/placeholder)
``` python
tf.placeholder(
dtype,
......@@ -36,4 +35,4 @@ out = fluid.layers.data('out', shape=[3, 4], dtype='float32')
# 创建输入型tensor out,其shape为[3, -1, 4], 数据类型为float32
out = fluid.layers.data('out', shape=[3, -1, 4], append_batch_size=False, dtype='float32')
```
```
\ No newline at end of file
## tf.pow
### [tf.pow](https://www.tensorflow.org/api_docs/python/tf/math/pow)
### [tf.pow](https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/math/pow)
```python
tf.math.pow(
......@@ -33,4 +33,4 @@ PaddlePaddle:`x`为tensor,`factor`为浮点数,返回值为`x`每个元素
# x为张量 [2, 3]
out = fluid.layers.pow(x, 2.0) # [4,9]
```
```
\ No newline at end of file
## tf.print
### [tf.print](https://www.tensorflow.org/api_docs/python/tf/print)
### [tf.print](https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/print)
```python
tf.print(
......@@ -47,4 +47,4 @@ PaddlePaddle:通过设置`print_phase`,可以控制是否打印`input`的梯
# 打印input的内容,如果有梯度的话也将打印梯度
print(input, message="content of input")
```
```
\ No newline at end of file
## tf.reshape
### [tf.reshape](https://www.tensorflow.org/api_docs/python/tf/reshape)
### [tf.reshape](https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/reshape)
``` python
tf.reshape(
tensor,
......@@ -37,5 +36,4 @@ out = fluid.layers.reshape(t, [-1, 6])
# 输出 tensor out 的 shape 为[3, 2, 2]
out = fluid.layers.reshape(t, [0, 2, 2])
```
```
\ No newline at end of file
## tf.reverse_sequence
### [tf.reverse_sequence](https://www.tensorflow.org/api_docs/python/tf/reverse_sequence)
### [tf.reverse_sequence](https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/reverse_sequence)
```python
tf.reverse_sequence(
......@@ -44,4 +44,4 @@ PaddlePaddle:由于`LoDTensor`本身已经携带序列信息,因而不需要
# out[0:2, 6] = x[2:0:-1, 6]
# out[2:5, 6] = x[5:2:-1, 6]
out = fluid.layers.sequence_reverse(x)
```
```
\ No newline at end of file
## tf.scatter_update
### [tf.scatter_update](https://www.tensorflow.org/api_docs/python/tf/scatter_update)
### [tf.scatter_update](https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/scatter_update)
```python
tf.scatter_update(
......@@ -19,7 +19,8 @@ paddle.fluid.layers.scatter(
input,
index,
updates,
name=None
name=None,
overwrite=True
)
```
......@@ -32,7 +33,7 @@ PaddlePaddle:`index`只支持1-d Variable。
#### 其他
Tensorflow:`updates`支持numpy-style broadcasting;
PaddlePaddle:`updates`要求其rank与`input`相同,同时`updates.shape[0]`等于`index.shape[0]`
PaddlePaddle:`updates`要求其rank与`input`相同,同时`updates.shape[0]`等于`index.shape[0]`此外`overwrite`参数提供了当存在重复index时,两种不同的梯度更新策略。
### 代码示例
```
......
## tf.slice
### [tf.slice](https://www.tensorflow.org/api_docs/python/tf/slice)
### [tf.slice](https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/slice)
``` python
tf.slice(
input_,
......@@ -40,4 +39,4 @@ out = fluid.layers.slice(t, axes=[0,1], starts=[0,1], ends=[2,3])
# 输出 tensor out 为[[1,2],[5,6],[9,10]]
out = fluid.layers.slice(t, axes=[1], starts=[1], ends=[3])
```
```
\ No newline at end of file
## tf.split
### [tf.split](https://www.tensorflow.org/api_docs/python/tf/split)
### [tf.split](https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/split)
```python
tf.split(
......@@ -39,4 +39,4 @@ x0.shape # [3, 3, 5]
x1.shape # [3, 3, 5]
x2.shape # [3, 3, 5]
```
```
\ No newline at end of file
## tf.squared_difference
### [tf.squared_diffenrece](https://www.tensorflow.org/api_docs/python/tf/math/squared_difference)
### [tf.squared_diffenrece](https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/math/squared_difference)
``` python
tf.math.squared_difference(
x,
......@@ -24,4 +24,4 @@ input_x = fluid.layers.data(dtype='float32', shape=[1000], name='input_x')
input_y = fluid.layers.data(dtype='float32', shape=[1000], name='input_y')
# 调用上述自定义函数
result = squared_difference(input_x, input_y)
```
```
\ No newline at end of file
## tf.stop_gradient
### [tf.stop_gradient](https://www.tensorflow.org/api_docs/python/tf/stop_gradient)
### [tf.stop_gradient](https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/stop_gradient)
``` python
tf.stop_gradient(
input,
......@@ -15,4 +14,4 @@ TensorFlow中,使用`stop_gradient`表示该tensor不需要进行bp。而在Pa
## 代码示例
```python
# 将tensor t设置成不需要bp
t.stop_gradient = True
t.stop_gradient = True
\ No newline at end of file
## tf.while_loop
### [tf.while_loop](https://www.tensorflow.org/api_docs/python/tf/while_loop)
### [tf.while_loop](https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/while_loop)
```python
tf.while_loop(
......@@ -53,4 +53,4 @@ with while_op.block():
i = layers.increment(x=i, in_place=True)
# 更新条件状态
layers.less_than(x=i, y=limit, cond=cond)
```
```
\ No newline at end of file
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册