提交 96fb50ad 编写于 作者: M mamingjie-China

support paddlepaddle 1.6.0

上级 ffd443da
...@@ -382,7 +382,6 @@ class TFOpMapper(OpMapper): ...@@ -382,7 +382,6 @@ class TFOpMapper(OpMapper):
data_format = node.get_attr("data_format").decode() data_format = node.get_attr("data_format").decode()
pad_mode = node.get_attr("padding").decode() pad_mode = node.get_attr("padding").decode()
channel_first = data_format == "NCHW" channel_first = data_format == "NCHW"
padding = 0
if not channel_first: if not channel_first:
in_shape = [in_shape[i] for i in [0, 3, 1, 2]] in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
...@@ -391,22 +390,10 @@ class TFOpMapper(OpMapper): ...@@ -391,22 +390,10 @@ class TFOpMapper(OpMapper):
else: else:
self.graph.data_format_propagation(node) self.graph.data_format_propagation(node)
if pad_mode == "SAME":
pad_h = get_same_padding(in_shape[2], k_size[2], strides[2])
pad_w = get_same_padding(in_shape[3], k_size[3], strides[3])
pad_h = pad_h[0] + pad_h[1]
pad_w = pad_w[0] + pad_w[1]
if pad_h != 0 or pad_w != 0:
attr = {"paddings": [0, pad_h, 0, pad_w], "pad_value": -10000.0}
node.fluid_code.add_layer("pad2d",
inputs=input,
output=node,
param_attr=attr)
input = node
attr = { attr = {
"pool_size": k_size[2:4], "pool_size": k_size[2:4],
"pool_type": string("max"), "pool_type": string("max"),
"pool_padding": padding, "pool_padding": string(pad_mode),
"pool_stride": strides[2:4] "pool_stride": strides[2:4]
} }
node.fluid_code.add_layer("pool2d", node.fluid_code.add_layer("pool2d",
...@@ -432,7 +419,6 @@ class TFOpMapper(OpMapper): ...@@ -432,7 +419,6 @@ class TFOpMapper(OpMapper):
data_format = node.get_attr("data_format").decode() data_format = node.get_attr("data_format").decode()
pad_mode = node.get_attr("padding").decode() pad_mode = node.get_attr("padding").decode()
channel_first = data_format == "NCHW" channel_first = data_format == "NCHW"
padding = 0
self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose( self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose(
kernel.value, (3, 2, 0, 1)) kernel.value, (3, 2, 0, 1))
...@@ -444,18 +430,6 @@ class TFOpMapper(OpMapper): ...@@ -444,18 +430,6 @@ class TFOpMapper(OpMapper):
else: else:
self.graph.data_format_propagation(node) self.graph.data_format_propagation(node)
if pad_mode == "SAME":
pad_h = get_same_padding(in_shape[2], k_size[0], strides[2])
pad_w = get_same_padding(in_shape[3], k_size[1], strides[3])
if pad_h[0] == pad_h[1] and pad_w[0] == pad_w[1]:
padding = [pad_h[0], pad_w[0]]
else:
attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}
node.fluid_code.add_layer("pad2d",
inputs=input,
output=node,
param_attr=attr)
input = node
attr = { attr = {
"bias_attr": False, "bias_attr": False,
"param_attr": string(kernel.layer_name), "param_attr": string(kernel.layer_name),
...@@ -463,7 +437,7 @@ class TFOpMapper(OpMapper): ...@@ -463,7 +437,7 @@ class TFOpMapper(OpMapper):
"filter_size": k_size[0:2], "filter_size": k_size[0:2],
"stride": strides[2:4], "stride": strides[2:4],
"dilation": dilations[2:4], "dilation": dilations[2:4],
"padding": padding "padding": string(pad_mode)
} }
node.fluid_code.add_layer("conv2d", node.fluid_code.add_layer("conv2d",
inputs=input, inputs=input,
...@@ -535,7 +509,6 @@ class TFOpMapper(OpMapper): ...@@ -535,7 +509,6 @@ class TFOpMapper(OpMapper):
data_format = node.get_attr("data_format").decode() data_format = node.get_attr("data_format").decode()
pad_mode = node.get_attr("padding").decode() pad_mode = node.get_attr("padding").decode()
channel_first = data_format == "NCHW" channel_first = data_format == "NCHW"
padding = 0
self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose( self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose(
kernel.value, (2, 3, 0, 1)) kernel.value, (2, 3, 0, 1))
...@@ -547,19 +520,6 @@ class TFOpMapper(OpMapper): ...@@ -547,19 +520,6 @@ class TFOpMapper(OpMapper):
else: else:
self.data_format_propagation(node) self.data_format_propagation(node)
if pad_mode == "SAME":
pad_h = get_same_padding(in_shape[2], k_size[0], strides[2])
pad_w = get_same_padding(in_shape[3], k_size[1], strides[3])
if pad_h[0] == pad_h[1] and pad_w[0] == pad_w[1]:
padding = [pad_h[0], pad_w[0]]
else:
attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}
node.fluid_code.add_layer("pad2d",
inputs=input,
output=node,
param_attr=attr)
input = node
attr = { attr = {
"bias_attr": False, "bias_attr": False,
"param_attr": string(kernel.layer_name), "param_attr": string(kernel.layer_name),
...@@ -569,7 +529,7 @@ class TFOpMapper(OpMapper): ...@@ -569,7 +529,7 @@ class TFOpMapper(OpMapper):
"dilation": dilations[2:4], "dilation": dilations[2:4],
"groups": k_size[3] * in_shape[1], "groups": k_size[3] * in_shape[1],
"use_cudnn": False, "use_cudnn": False,
"padding": padding "padding": string(pad_mode)
} }
node.fluid_code.add_layer("conv2d", node.fluid_code.add_layer("conv2d",
inputs=input, inputs=input,
...@@ -691,14 +651,9 @@ class TFOpMapper(OpMapper): ...@@ -691,14 +651,9 @@ class TFOpMapper(OpMapper):
attr = { attr = {
"pool_size": k_size[2:4], "pool_size": k_size[2:4],
"pool_type": string("avg"), "pool_type": string("avg"),
"pool_stride": strides[2:4] "pool_stride": strides[2:4],
"pool_padding": string(pad_mode)
} }
if pad_mode == "SAME":
pad_h = get_same_padding(in_shape[2], k_size[2], strides[2])
pad_w = get_same_padding(in_shape[3], k_size[3], strides[3])
assert pad_h[0] == pad_h[1] and pad_w[0] == pad_w[
1], "Cannot map AvgPool"
attr["pool_padding"] = [pad_h[0], pad_w[0]]
node.fluid_code.add_layer("pool2d", node.fluid_code.add_layer("pool2d",
inputs=input, inputs=input,
output=node, output=node,
...@@ -993,20 +948,6 @@ class TFOpMapper(OpMapper): ...@@ -993,20 +948,6 @@ class TFOpMapper(OpMapper):
else: else:
self.data_format_propagation(node) self.data_format_propagation(node)
padding = 0
if pad_mode == "SAME":
pad_h = get_same_padding(in_shape[2], k_size[0], strides[2])
pad_w = get_same_padding(in_shape[3], k_size[1], strides[3])
if pad_h[0] == pad_h[1] and pad_w[0] == pad_w[1]:
padding = [pad_h[0], pad_w[0]]
else:
attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}
node.fluid_code.add_layer("pad2d",
inputs=input,
output=node,
param_attr=attr)
input = node
attr = { attr = {
"bias_attr": False, "bias_attr": False,
"param_attr": string(kernel.layer_name), "param_attr": string(kernel.layer_name),
...@@ -1014,29 +955,14 @@ class TFOpMapper(OpMapper): ...@@ -1014,29 +955,14 @@ class TFOpMapper(OpMapper):
"filter_size": k_size[0:2], "filter_size": k_size[0:2],
"stride": strides[2:4], "stride": strides[2:4],
"dilation": dilations[2:4], "dilation": dilations[2:4],
"padding": padding "padding": string(pad_mode),
"output_size": out_shape[1:3]
} }
node.fluid_code.add_layer("conv2d_transpose", node.fluid_code.add_layer("conv2d_transpose",
inputs=input, inputs=input,
output=node, output=node,
param_attr=attr) param_attr=attr)
if pad_mode == "SAME":
if node.tf_data_format == "NHWC":
out_shape = [out_shape[i] for i in [0, 3, 1, 2]]
for i in range(4):
if out_shape[i] < 0:
out_shape[i] = 999999
attr = {
"axes": [0, 1, 2, 3],
"starts": [0, 0, 0, 0],
"ends": out_shape
}
node.fluid_code.add_layer("slice",
inputs=node,
output=node,
param_attr=attr)
def Max(self, node): def Max(self, node):
input = self.graph.get_node(node.layer.input[0], copy=True) input = self.graph.get_node(node.layer.input[0], copy=True)
reduce_idx = self.graph.get_node(node.layer.input[1], copy=True) reduce_idx = self.graph.get_node(node.layer.input[1], copy=True)
......
...@@ -321,22 +321,11 @@ class TFOpMapperNHWC(OpMapper): ...@@ -321,22 +321,11 @@ class TFOpMapperNHWC(OpMapper):
k_size = [k_size[i] for i in [0, 3, 1, 2]] k_size = [k_size[i] for i in [0, 3, 1, 2]]
input = node input = node
if pad_mode == "SAME":
pad_h = get_same_padding(in_shape[2], k_size[2], strides[2])
pad_w = get_same_padding(in_shape[3], k_size[3], strides[3])
pad_h = pad_h[0] + pad_h[1]
pad_w = pad_w[0] + pad_w[1]
attr = {"paddings": [0, pad_h, 0, pad_w], "pad_value": -10000.0}
if pad_h + pad_w != 0:
node.fluid_code.add_layer("pad2d",
inputs=input,
output=node,
param_attr=attr)
input = node
attr = { attr = {
"pool_size": k_size[2:4], "pool_size": k_size[2:4],
"pool_type": string("max"), "pool_type": string("max"),
"pool_stride": strides[2:4] "pool_stride": strides[2:4],
"pool_padding": string(pad_mode)
} }
node.fluid_code.add_layer("pool2d", node.fluid_code.add_layer("pool2d",
inputs=input, inputs=input,
...@@ -368,7 +357,6 @@ class TFOpMapperNHWC(OpMapper): ...@@ -368,7 +357,6 @@ class TFOpMapperNHWC(OpMapper):
data_format = node.get_attr("data_format").decode() data_format = node.get_attr("data_format").decode()
pad_mode = node.get_attr("padding").decode() pad_mode = node.get_attr("padding").decode()
channel_first = data_format == "NCHW" channel_first = data_format == "NCHW"
padding = 0
self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose( self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose(
kernel.value, (3, 2, 0, 1)) kernel.value, (3, 2, 0, 1))
...@@ -384,18 +372,6 @@ class TFOpMapperNHWC(OpMapper): ...@@ -384,18 +372,6 @@ class TFOpMapperNHWC(OpMapper):
param_attr=attr) param_attr=attr)
input = node input = node
if pad_mode == "SAME":
pad_h = get_same_padding(in_shape[2], k_size[0], strides[2])
pad_w = get_same_padding(in_shape[3], k_size[1], strides[3])
if pad_h[0] == pad_h[1] and pad_w[0] == pad_w[1]:
padding = [pad_h[0], pad_w[0]]
else:
attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}
node.fluid_code.add_layer("pad2d",
inputs=input,
output=node,
param_attr=attr)
input = node
attr = { attr = {
"bias_attr": False, "bias_attr": False,
"param_attr": string(kernel.layer_name), "param_attr": string(kernel.layer_name),
...@@ -403,7 +379,7 @@ class TFOpMapperNHWC(OpMapper): ...@@ -403,7 +379,7 @@ class TFOpMapperNHWC(OpMapper):
"filter_size": k_size[0:2], "filter_size": k_size[0:2],
"stride": strides[2:4], "stride": strides[2:4],
"dilation": dilations[2:4], "dilation": dilations[2:4],
"padding": padding "padding": string(pad_mode)
} }
node.fluid_code.add_layer("conv2d", node.fluid_code.add_layer("conv2d",
inputs=input, inputs=input,
...@@ -490,7 +466,6 @@ class TFOpMapperNHWC(OpMapper): ...@@ -490,7 +466,6 @@ class TFOpMapperNHWC(OpMapper):
data_format = node.get_attr("data_format").decode() data_format = node.get_attr("data_format").decode()
pad_mode = node.get_attr("padding").decode() pad_mode = node.get_attr("padding").decode()
channel_first = data_format == "NCHW" channel_first = data_format == "NCHW"
padding = 0
self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose( self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose(
kernel.value, (2, 3, 0, 1)) kernel.value, (2, 3, 0, 1))
...@@ -506,19 +481,6 @@ class TFOpMapperNHWC(OpMapper): ...@@ -506,19 +481,6 @@ class TFOpMapperNHWC(OpMapper):
param_attr=attr) param_attr=attr)
input = node input = node
if pad_mode == "SAME":
pad_h = get_same_padding(in_shape[2], k_size[0], strides[2])
pad_w = get_same_padding(in_shape[3], k_size[1], strides[3])
if pad_h[0] == pad_h[1] and pad_w[0] == pad_w[1]:
padding = [pad_h[0], pad_w[0]]
else:
attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}
node.fluid_code.add_layer("pad2d",
inputs=input,
output=node,
param_attr=attr)
input = node
attr = { attr = {
"bias_attr": False, "bias_attr": False,
"param_attr": string(kernel.layer_name), "param_attr": string(kernel.layer_name),
...@@ -528,7 +490,7 @@ class TFOpMapperNHWC(OpMapper): ...@@ -528,7 +490,7 @@ class TFOpMapperNHWC(OpMapper):
"dilation": dilations[2:4], "dilation": dilations[2:4],
"groups": k_size[3] * in_shape[1], "groups": k_size[3] * in_shape[1],
"use_cudnn": False, "use_cudnn": False,
"padding": padding "padding": string(pad_mode)
} }
node.fluid_code.add_layer("conv2d", node.fluid_code.add_layer("conv2d",
inputs=input, inputs=input,
...@@ -623,14 +585,9 @@ class TFOpMapperNHWC(OpMapper): ...@@ -623,14 +585,9 @@ class TFOpMapperNHWC(OpMapper):
attr = { attr = {
"pool_size": k_size[2:4], "pool_size": k_size[2:4],
"pool_type": string("avg"), "pool_type": string("avg"),
"pool_stride": strides[2:4] "pool_stride": strides[2:4],
"pool_padding": string(pad_mode)
} }
if pad_mode == "SAME":
pad_h = get_same_padding(in_shape[2], k_size[2], strides[2])
pad_w = get_same_padding(in_shape[3], k_size[3], strides[3])
assert pad_h[0] == pad_h[1] and pad_w[0] == pad_w[
1], "Cannot map AvgPool"
attr["pool_padding"] = [pad_h[0], pad_w[0]]
node.fluid_code.add_layer("pool2d", node.fluid_code.add_layer("pool2d",
inputs=input, inputs=input,
output=node, output=node,
...@@ -990,20 +947,6 @@ class TFOpMapperNHWC(OpMapper): ...@@ -990,20 +947,6 @@ class TFOpMapperNHWC(OpMapper):
else: else:
self.data_format_propagation(node) self.data_format_propagation(node)
padding = 0
if pad_mode == "SAME":
pad_h = get_same_padding(in_shape[2], k_size[0], strides[2])
pad_w = get_same_padding(in_shape[3], k_size[1], strides[3])
if pad_h[0] == pad_h[1] and pad_w[0] == pad_w[1]:
padding = [pad_h[0], pad_w[0]]
else:
attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}
node.fluid_code.add_layer("pad2d",
inputs=input,
output=node,
param_attr=attr)
input = node
attr = { attr = {
"bias_attr": False, "bias_attr": False,
"param_attr": string(kernel.layer_name), "param_attr": string(kernel.layer_name),
...@@ -1011,29 +954,14 @@ class TFOpMapperNHWC(OpMapper): ...@@ -1011,29 +954,14 @@ class TFOpMapperNHWC(OpMapper):
"filter_size": k_size[0:2], "filter_size": k_size[0:2],
"stride": strides[2:4], "stride": strides[2:4],
"dilation": dilations[2:4], "dilation": dilations[2:4],
"padding": padding "padding": string(pad_mode),
"output_size": out_shape[1:3]
} }
node.fluid_code.add_layer("conv2d_transpose", node.fluid_code.add_layer("conv2d_transpose",
inputs=input, inputs=input,
output=node, output=node,
param_attr=attr) param_attr=attr)
if pad_mode == "SAME":
if node.tf_data_format == "NHWC":
out_shape = [out_shape[i] for i in [0, 3, 1, 2]]
for i in range(4):
if out_shape[i] < 0:
out_shape[i] = 999999
attr = {
"axes": [0, 1, 2, 3],
"starts": [0, 0, 0, 0],
"ends": out_shape
}
node.fluid_code.add_layer("slice",
inputs=node,
output=node,
param_attr=attr)
if not channel_first: if not channel_first:
attr = {"perm": [0, 2, 3, 1]} attr = {"perm": [0, 2, 3, 1]}
node.fluid_code.add_layer("transpose", node.fluid_code.add_layer("transpose",
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册