Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
X2Paddle
提交
96f9ba5f
X
X2Paddle
项目概览
PaddlePaddle
/
X2Paddle
大约 1 年 前同步成功
通知
328
Star
698
Fork
167
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
26
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
X
X2Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
26
Issue
26
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
96f9ba5f
编写于
8月 06, 2020
作者:
J
Jason
提交者:
GitHub
8月 06, 2020
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #344 from mamingjie-China/develop_jason
update tf_op_mapper_nhwc
上级
b670c23e
169b989e
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
204 addition
and
35 deletion
+204
-35
x2paddle/decoder/tf_decoder.py
x2paddle/decoder/tf_decoder.py
+2
-6
x2paddle/op_mapper/tf_op_mapper_nhwc.py
x2paddle/op_mapper/tf_op_mapper_nhwc.py
+202
-29
未找到文件。
x2paddle/decoder/tf_decoder.py
浏览文件 @
96f9ba5f
...
...
@@ -91,12 +91,8 @@ class TFGraphNode(GraphNode):
@
property
def
name
(
self
):
multi_out_ops
=
[
'Split'
,
'SplitV'
,
'IteratorV2'
]
if
self
.
layer_type
in
multi_out_ops
:
if
self
.
layer_name
.
count
(
':'
)
>
0
:
return
self
.
layer_name
.
replace
(
':'
,
'_p'
)
else
:
return
"{}_p0"
.
format
(
self
.
layer_name
)
if
hasattr
(
self
,
'index'
):
return
self
.
layer_name
+
"_p{}"
.
format
(
self
.
index
)
return
self
.
layer_name
def
get_attr
(
self
,
name
):
...
...
x2paddle/op_mapper/tf_op_mapper_nhwc.py
浏览文件 @
96f9ba5f
...
...
@@ -197,26 +197,33 @@ class TFOpMapperNHWC(OpMapper):
perm
=
perm
)
def
Fill
(
self
,
node
):
dims
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
input_value
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
],
copy
=
True
)
dims
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
input_value
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
])
inputs
=
dict
()
attr
=
dict
()
assert
input_value
.
layer_type
==
"Const"
,
"Value of fill OP should be Const"
if
dims
.
layer_type
==
"Const"
:
attr
[
"shape"
]
=
dims
.
value
.
tolist
()
else
:
inputs
[
"shape"
]
=
dims
.
name
attr
[
"dtype"
]
=
string
(
input_value
.
dtype
)
attr
[
"value"
]
=
input_value
.
value
input_value
=
input_value
.
value
input_dtype
=
string
(
input_value
.
dtype
)
program
.
add_layer
(
"fluid.layers.fill_constant"
,
inputs
=
{}
,
inputs
=
inputs
,
outputs
=
[
node
.
name
],
shape
=
dims
,
dtype
=
string
(
input_dtype
),
value
=
input_value
)
**
attr
)
def
DepthToSpace
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
]
,
copy
=
True
)
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
block_size
=
node
.
get_attr
(
"block_size"
)
data_format
=
node
.
get_attr
(
"data_format"
).
decode
()
n
,
h
,
w
,
c
=
input
.
out_shapes
[
0
]
if
data_format
==
"NHWC"
:
n
,
h
,
w
,
c
=
input
.
out_shapes
[
0
]
else
:
n
,
c
,
h
,
w
=
input
.
out_shapes
[
0
]
input_name
=
input
.
name
if
data_format
==
"NHWC"
:
...
...
@@ -251,8 +258,8 @@ class TFOpMapperNHWC(OpMapper):
shape
=
[
0
,
c
,
h
,
w
])
program
.
add_layer
(
kernel
=
"fluid.layers.pixe
d
_shuffle"
,
inputs
=
{
"
input
"
:
reshape_name
},
kernel
=
"fluid.layers.pixe
l
_shuffle"
,
inputs
=
{
"
x
"
:
reshape_name
},
outputs
=
[
node
.
name
],
upscale_factor
=
block_size
)
...
...
@@ -264,7 +271,7 @@ class TFOpMapperNHWC(OpMapper):
perm
=
[
0
,
2
,
3
,
1
])
def
MaxPool
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
]
,
copy
=
True
)
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
k_size
=
node
.
get_attr
(
"ksize"
)
strides
=
node
.
get_attr
(
"strides"
)
...
...
@@ -308,17 +315,21 @@ class TFOpMapperNHWC(OpMapper):
dilations
=
node
.
get_attr
(
"dilations"
)
data_format
=
node
.
get_attr
(
"data_format"
).
decode
()
pad_mode
=
node
.
get_attr
(
"padding"
).
decode
()
if
data_format
==
"NHWC"
:
n
,
h
,
w
,
c
=
input
.
out_shapes
[
0
]
else
:
n
,
c
,
h
,
w
=
input
.
out_shapes
[
0
]
if
kernel
.
layer_type
==
'Const'
:
kernel_value
=
kernel
.
value
kernel_weight_name
=
kernel
.
layer_
name
.
replace
(
'/'
,
'_'
)
kernel_weight_name
=
kernel
.
name
.
replace
(
'/'
,
'_'
)
else
:
kernel_value
=
self
.
decoder
.
infer_tensor
(
kernel
)
if
kernel
.
layer_type
==
'Split'
:
kernel_weight_name
=
"{}_{}_kernel"
.
format
(
node
.
layer_
name
,
kernel
.
layer_
name
)
kernel_weight_name
=
"{}_{}_kernel"
.
format
(
node
.
name
,
kernel
.
name
)
else
:
kernel_weight_name
=
kernel
.
layer_
name
.
replace
(
'/'
,
'_'
)
kernel_weight_name
=
kernel
.
name
.
replace
(
'/'
,
'_'
)
program
.
parameters
[
kernel_weight_name
]
=
numpy
.
transpose
(
kernel_value
,
(
3
,
2
,
0
,
1
))
...
...
@@ -334,6 +345,16 @@ class TFOpMapperNHWC(OpMapper):
perm
=
[
0
,
3
,
1
,
2
])
input_name
=
transpose_name
if
c
==
-
1
:
attr
=
{
"shape"
:
[
0
,
k_size
[
2
],
0
,
0
]}
node
.
fluid_code
.
add_layer
(
"reshape"
,
inputs
=
input
,
output
=
input
,
param_attr
=
attr
)
program
.
add_layer
(
kernel
=
"fluid.layers.reshape"
,
inputs
=
{
"x"
:
input_name
},
outputs
=
[
input_name
],
shape
=
[
0
,
k_size
[
2
],
0
,
0
])
program
.
add_layer
(
kernel
=
"fluid.layers.conv2d"
,
inputs
=
{
"input"
:
input_name
},
...
...
@@ -529,6 +550,12 @@ class TFOpMapperNHWC(OpMapper):
transpose_x
=
transpose_a
,
transpose_y
=
transpose_b
)
def
BatchMatMul
(
self
,
node
):
return
self
.
MatMul
(
node
)
def
BatchMatMulV2
(
self
,
node
):
return
self
.
MatMul
(
node
)
def
DepthwiseConv2dNative
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
kernel
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
])
...
...
@@ -578,7 +605,7 @@ class TFOpMapperNHWC(OpMapper):
perm
=
[
0
,
2
,
3
,
1
])
def
AvgPool
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
]
,
copy
=
True
)
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
k_size
=
node
.
get_attr
(
"ksize"
)
strides
=
node
.
get_attr
(
"strides"
)
...
...
@@ -701,7 +728,7 @@ class TFOpMapperNHWC(OpMapper):
if
len
(
new_axes
)
>
0
:
program
.
add_layer
(
kernel
=
"fluid.layers.unsqueeze"
,
inputs
=
{
"
x
"
:
node
.
name
},
inputs
=
{
"
input
"
:
node
.
name
},
outputs
=
[
node
.
name
],
axes
=
new_axes
)
if
len
(
shrink_axes
)
>
0
:
...
...
@@ -710,7 +737,7 @@ class TFOpMapperNHWC(OpMapper):
else
:
program
.
add_layer
(
kernel
=
"fluid.layers.unsqueeze"
,
inputs
=
{
"
x
"
:
node
.
name
},
inputs
=
{
"
input
"
:
node
.
name
},
outputs
=
[
node
.
name
],
axes
=
new_axes
)
...
...
@@ -741,14 +768,16 @@ class TFOpMapperNHWC(OpMapper):
begin
=
begin
.
value
.
tolist
()
attrs
[
'offsets'
]
=
begin
else
:
shape
=
begin
.
out_shapes
[
0
]
reshape_name
=
gen_name
(
"slice"
,
"reshape"
)
program
.
add_layer
(
kernel
=
"fluid.layers.reshape"
,
inputs
=
{
"x"
:
begin
.
name
},
outputs
=
[
reshape_name
],
shape
=
shape
)
inputs
[
'offsets'
]
=
reshape_name
# shape = begin.out_shapes[0]
# reshape_name = gen_name("slice", "reshape")
# program.add_layer(
# kernel="fluid.layers.reshape",
# inputs={"x": begin.name},
# outputs=[reshape_name],
# shape=shape)
# inputs['offsets'] = reshape_name
begin
=
self
.
decoder
.
infer_tensor
(
begin
).
tolist
()
attrs
[
'offsets'
]
=
begin
if
size
.
layer_type
==
"Const"
:
size
=
size
.
value
.
tolist
()
attrs
[
'shape'
]
=
size
...
...
@@ -888,7 +917,7 @@ class TFOpMapperNHWC(OpMapper):
keep_dim
=
keep_dims
)
def
RandomUniform
(
self
,
node
):
shape
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
]
,
copy
=
True
)
shape
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
if
shape
.
layer_type
==
"Const"
:
shape
=
shape
.
value
.
tolist
()
program
.
add_layer
(
...
...
@@ -966,3 +995,147 @@ class TFOpMapperNHWC(OpMapper):
inputs
=
{
"x"
:
node
.
name
},
outputs
=
[
node
.
name
],
perm
=
[
0
,
2
,
3
,
1
])
def
Tile
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
expand_times
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
])
inputs
=
{
"x"
:
input
.
name
}
attr
=
dict
()
if
expand_times
.
layer_type
==
"Const"
:
expand_times
=
expand_times
.
value
.
tolist
()
attr
[
"expand_times"
]
=
expand_times
else
:
inputs
[
"expand_times"
]
=
expand_times
.
name
program
.
add_layer
(
kernel
=
"fluid.layers.expand"
,
inputs
=
inputs
,
outputs
=
[
node
.
name
],
**
attr
)
def
Range
(
self
,
node
):
start
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
limit
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
])
delta
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
2
])
inputs
=
dict
()
attr
=
dict
()
if
start
.
layer_type
==
"Const"
:
attr
[
"start"
]
=
start
.
value
else
:
inputs
[
"start"
]
=
start
.
name
if
limit
.
layer_type
==
"Const"
:
attr
[
"end"
]
=
limit
.
value
else
:
inputs
[
"end"
]
=
limit
.
name
if
delta
.
layer_type
==
"Const"
:
attr
[
"step"
]
=
delta
.
value
else
:
inputs
[
"step"
]
=
delta
.
name
attr
[
"dtype"
]
=
string
(
node
.
dtype
)
program
.
add_layer
(
kernel
=
"fluid.layers.range"
,
inputs
=
inputs
,
outputs
=
[
node
.
name
],
**
attr
)
def
SquaredDifference
(
self
,
node
):
x
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
y
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
])
inputs
=
{
"x"
:
x
.
name
,
"y"
:
y
.
name
}
program
.
add_layer
(
"fluid.layers.elementwise_sub"
,
inputs
=
inputs
,
outputs
=
[
node
.
name
])
inputs
=
{
"x"
:
node
.
name
,
"y"
:
node
.
name
}
program
.
add_layer
(
"fluid.layers.elementwise_mul"
,
inputs
=
inputs
,
outputs
=
[
node
.
name
])
def
OneHot
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
depth
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
])
on_value
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
2
])
off_value
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
3
])
assert
depth
.
layer_type
==
'Const'
,
'Parameter depth should be Const in OneHot'
assert
on_value
.
layer_type
==
'Const'
,
'Parameter on_value should be Const in OneHot'
assert
off_value
.
layer_type
==
'Const'
,
'Parameter off_value should be Const in OneHot'
attr
=
{
'depth'
:
depth
.
value
}
on_value
=
on_value
.
value
off_value
=
off_value
.
value
assert
math
.
fabs
(
on_value
-
1.0
)
<
1e-06
,
"on_value should be 1 in OneHot"
assert
math
.
fabs
(
off_value
-
0.0
)
<
1e-06
,
"off_value should be 0 in OneHot"
program
.
add_layer
(
"fluid.one_hot"
,
inputs
=
{
"input"
:
input
.
name
},
outputs
=
[
node
.
name
],
depth
=
depth
.
value
)
def
Pow
(
self
,
node
):
x
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
factor
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
])
inputs
=
{
"x"
:
x
.
name
}
attr
=
dict
()
if
factor
.
layer_type
==
'Const'
:
attr
[
"factor"
]
=
factor
.
value
.
tolist
()
else
:
inputs
[
"factor"
]
=
factor
.
name
program
.
add_layer
(
"fluid.layers.pow"
,
inputs
=
inputs
,
outputs
=
[
node
.
name
],
**
attr
)
def
All
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
reduce_idx
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
])
assert
reduce_idx
.
layer_type
==
"Const"
,
"Only support Const parameter[reduce_idx]"
attr
=
dict
()
attr
[
"dim"
]
=
reduce_idx
.
value
.
tolist
()
attr
[
"keep_dim"
]
=
node
.
get_attr
(
"keep_dims"
)
program
.
add_layer
(
"fluid.layers.reduce_all"
,
inputs
=
{
"input"
:
input
.
name
},
outputs
=
[
node
.
name
],
**
attr
)
def
GatherV2
(
self
,
node
):
embeddings
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
index
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
])
axis
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
2
])
assert
axis
.
layer_type
==
'Const'
,
"Only support Const parameter[axis]"
axis
=
axis
.
value
.
tolist
()
assert
axis
==
0
,
"Only support axis=0 in GatherV2 OP"
index_name
=
index
.
name
if
len
(
index
.
out_shapes
[
0
])
!=
1
:
reshape_name
=
gen_name
(
"gather"
,
"reshape"
)
index_name
=
reshape_name
program
.
add_layer
(
"fluid.layers.reshape"
,
inputs
=
{
"x"
:
index
.
name
},
outputs
=
[
reshape_name
],
shape
=
[
-
1
])
inputs
=
{
'input'
:
embeddings
.
name
,
'index'
:
index_name
}
program
.
add_layer
(
"fluid.layers.gather"
,
inputs
=
inputs
,
outputs
=
[
node
.
name
],
overwrite
=
False
)
def
ExpandDims
(
self
,
node
):
x
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
y
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
],
copy
=
True
)
inputs
=
{
"input"
:
x
.
name
}
attr
=
dict
()
if
y
.
layer_type
==
'Const'
:
dim
=
y
.
value
.
tolist
()
if
not
isinstance
(
dim
,
list
):
dim
=
[
dim
]
attr
[
'axes'
]
=
dim
else
:
inputs
[
'axes'
]
=
y
.
name
program
.
add_layer
(
"fluid.layers.unsqueeze"
,
inputs
=
inputs
,
outputs
=
[
node
.
name
],
**
attr
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录