未验证 提交 96f9ba5f 编写于 作者: J Jason 提交者: GitHub

Merge pull request #344 from mamingjie-China/develop_jason

update tf_op_mapper_nhwc
......@@ -91,12 +91,8 @@ class TFGraphNode(GraphNode):
@property
def name(self):
multi_out_ops = ['Split', 'SplitV', 'IteratorV2']
if self.layer_type in multi_out_ops:
if self.layer_name.count(':') > 0:
return self.layer_name.replace(':', '_p')
else:
return "{}_p0".format(self.layer_name)
if hasattr(self, 'index'):
return self.layer_name + "_p{}".format(self.index)
return self.layer_name
def get_attr(self, name):
......
......@@ -197,26 +197,33 @@ class TFOpMapperNHWC(OpMapper):
perm=perm)
def Fill(self, node):
dims = self.graph.get_node(node.layer.input[0], copy=True)
input_value = self.graph.get_node(node.layer.input[1], copy=True)
dims = self.graph.get_node(node.layer.input[0])
input_value = self.graph.get_node(node.layer.input[1])
inputs = dict()
attr = dict()
assert input_value.layer_type == "Const", "Value of fill OP should be Const"
if dims.layer_type == "Const":
attr["shape"] = dims.value.tolist()
else:
inputs["shape"] = dims.name
attr["dtype"] = string(input_value.dtype)
attr["value"] = input_value.value
input_value = input_value.value
input_dtype = string(input_value.dtype)
program.add_layer(
"fluid.layers.fill_constant",
inputs={},
inputs=inputs,
outputs=[node.name],
shape=dims,
dtype=string(input_dtype),
value=input_value)
**attr)
def DepthToSpace(self, node):
input = self.graph.get_node(node.layer.input[0], copy=True)
input = self.graph.get_node(node.layer.input[0])
block_size = node.get_attr("block_size")
data_format = node.get_attr("data_format").decode()
n, h, w, c = input.out_shapes[0]
if data_format == "NHWC":
n, h, w, c = input.out_shapes[0]
else:
n, c, h, w = input.out_shapes[0]
input_name = input.name
if data_format == "NHWC":
......@@ -251,8 +258,8 @@ class TFOpMapperNHWC(OpMapper):
shape=[0, c, h, w])
program.add_layer(
kernel="fluid.layers.pixed_shuffle",
inputs={"input": reshape_name},
kernel="fluid.layers.pixel_shuffle",
inputs={"x": reshape_name},
outputs=[node.name],
upscale_factor=block_size)
......@@ -264,7 +271,7 @@ class TFOpMapperNHWC(OpMapper):
perm=[0, 2, 3, 1])
def MaxPool(self, node):
input = self.graph.get_node(node.layer.input[0], copy=True)
input = self.graph.get_node(node.layer.input[0])
k_size = node.get_attr("ksize")
strides = node.get_attr("strides")
......@@ -308,17 +315,21 @@ class TFOpMapperNHWC(OpMapper):
dilations = node.get_attr("dilations")
data_format = node.get_attr("data_format").decode()
pad_mode = node.get_attr("padding").decode()
if data_format == "NHWC":
n, h, w, c = input.out_shapes[0]
else:
n, c, h, w = input.out_shapes[0]
if kernel.layer_type == 'Const':
kernel_value = kernel.value
kernel_weight_name = kernel.layer_name.replace('/', '_')
kernel_weight_name = kernel.name.replace('/', '_')
else:
kernel_value = self.decoder.infer_tensor(kernel)
if kernel.layer_type == 'Split':
kernel_weight_name = "{}_{}_kernel".format(node.layer_name,
kernel.layer_name)
kernel_weight_name = "{}_{}_kernel".format(node.name,
kernel.name)
else:
kernel_weight_name = kernel.layer_name.replace('/', '_')
kernel_weight_name = kernel.name.replace('/', '_')
program.parameters[kernel_weight_name] = numpy.transpose(kernel_value,
(3, 2, 0, 1))
......@@ -334,6 +345,16 @@ class TFOpMapperNHWC(OpMapper):
perm=[0, 3, 1, 2])
input_name = transpose_name
if c == -1:
attr = {"shape": [0, k_size[2], 0, 0]}
node.fluid_code.add_layer(
"reshape", inputs=input, output=input, param_attr=attr)
program.add_layer(
kernel="fluid.layers.reshape",
inputs={"x": input_name},
outputs=[input_name],
shape=[0, k_size[2], 0, 0])
program.add_layer(
kernel="fluid.layers.conv2d",
inputs={"input": input_name},
......@@ -529,6 +550,12 @@ class TFOpMapperNHWC(OpMapper):
transpose_x=transpose_a,
transpose_y=transpose_b)
def BatchMatMul(self, node):
return self.MatMul(node)
def BatchMatMulV2(self, node):
return self.MatMul(node)
def DepthwiseConv2dNative(self, node):
input = self.graph.get_node(node.layer.input[0])
kernel = self.graph.get_node(node.layer.input[1])
......@@ -578,7 +605,7 @@ class TFOpMapperNHWC(OpMapper):
perm=[0, 2, 3, 1])
def AvgPool(self, node):
input = self.graph.get_node(node.layer.input[0], copy=True)
input = self.graph.get_node(node.layer.input[0])
k_size = node.get_attr("ksize")
strides = node.get_attr("strides")
......@@ -701,7 +728,7 @@ class TFOpMapperNHWC(OpMapper):
if len(new_axes) > 0:
program.add_layer(
kernel="fluid.layers.unsqueeze",
inputs={"x": node.name},
inputs={"input": node.name},
outputs=[node.name],
axes=new_axes)
if len(shrink_axes) > 0:
......@@ -710,7 +737,7 @@ class TFOpMapperNHWC(OpMapper):
else:
program.add_layer(
kernel="fluid.layers.unsqueeze",
inputs={"x": node.name},
inputs={"input": node.name},
outputs=[node.name],
axes=new_axes)
......@@ -741,14 +768,16 @@ class TFOpMapperNHWC(OpMapper):
begin = begin.value.tolist()
attrs['offsets'] = begin
else:
shape = begin.out_shapes[0]
reshape_name = gen_name("slice", "reshape")
program.add_layer(
kernel="fluid.layers.reshape",
inputs={"x": begin.name},
outputs=[reshape_name],
shape=shape)
inputs['offsets'] = reshape_name
# shape = begin.out_shapes[0]
# reshape_name = gen_name("slice", "reshape")
# program.add_layer(
# kernel="fluid.layers.reshape",
# inputs={"x": begin.name},
# outputs=[reshape_name],
# shape=shape)
# inputs['offsets'] = reshape_name
begin = self.decoder.infer_tensor(begin).tolist()
attrs['offsets'] = begin
if size.layer_type == "Const":
size = size.value.tolist()
attrs['shape'] = size
......@@ -888,7 +917,7 @@ class TFOpMapperNHWC(OpMapper):
keep_dim=keep_dims)
def RandomUniform(self, node):
shape = self.graph.get_node(node.layer.input[0], copy=True)
shape = self.graph.get_node(node.layer.input[0])
if shape.layer_type == "Const":
shape = shape.value.tolist()
program.add_layer(
......@@ -966,3 +995,147 @@ class TFOpMapperNHWC(OpMapper):
inputs={"x": node.name},
outputs=[node.name],
perm=[0, 2, 3, 1])
def Tile(self, node):
input = self.graph.get_node(node.layer.input[0])
expand_times = self.graph.get_node(node.layer.input[1])
inputs = {"x": input.name}
attr = dict()
if expand_times.layer_type == "Const":
expand_times = expand_times.value.tolist()
attr["expand_times"] = expand_times
else:
inputs["expand_times"] = expand_times.name
program.add_layer(
kernel="fluid.layers.expand",
inputs=inputs,
outputs=[node.name],
**attr)
def Range(self, node):
start = self.graph.get_node(node.layer.input[0])
limit = self.graph.get_node(node.layer.input[1])
delta = self.graph.get_node(node.layer.input[2])
inputs = dict()
attr = dict()
if start.layer_type == "Const":
attr["start"] = start.value
else:
inputs["start"] = start.name
if limit.layer_type == "Const":
attr["end"] = limit.value
else:
inputs["end"] = limit.name
if delta.layer_type == "Const":
attr["step"] = delta.value
else:
inputs["step"] = delta.name
attr["dtype"] = string(node.dtype)
program.add_layer(
kernel="fluid.layers.range",
inputs=inputs,
outputs=[node.name],
**attr)
def SquaredDifference(self, node):
x = self.graph.get_node(node.layer.input[0])
y = self.graph.get_node(node.layer.input[1])
inputs = {"x": x.name, "y": y.name}
program.add_layer(
"fluid.layers.elementwise_sub", inputs=inputs, outputs=[node.name])
inputs = {"x": node.name, "y": node.name}
program.add_layer(
"fluid.layers.elementwise_mul", inputs=inputs, outputs=[node.name])
def OneHot(self, node):
input = self.graph.get_node(node.layer.input[0])
depth = self.graph.get_node(node.layer.input[1])
on_value = self.graph.get_node(node.layer.input[2])
off_value = self.graph.get_node(node.layer.input[3])
assert depth.layer_type == 'Const', 'Parameter depth should be Const in OneHot'
assert on_value.layer_type == 'Const', 'Parameter on_value should be Const in OneHot'
assert off_value.layer_type == 'Const', 'Parameter off_value should be Const in OneHot'
attr = {'depth': depth.value}
on_value = on_value.value
off_value = off_value.value
assert math.fabs(on_value -
1.0) < 1e-06, "on_value should be 1 in OneHot"
assert math.fabs(off_value -
0.0) < 1e-06, "off_value should be 0 in OneHot"
program.add_layer(
"fluid.one_hot",
inputs={"input": input.name},
outputs=[node.name],
depth=depth.value)
def Pow(self, node):
x = self.graph.get_node(node.layer.input[0])
factor = self.graph.get_node(node.layer.input[1])
inputs = {"x": x.name}
attr = dict()
if factor.layer_type == 'Const':
attr["factor"] = factor.value.tolist()
else:
inputs["factor"] = factor.name
program.add_layer(
"fluid.layers.pow", inputs=inputs, outputs=[node.name], **attr)
def All(self, node):
input = self.graph.get_node(node.layer.input[0])
reduce_idx = self.graph.get_node(node.layer.input[1])
assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
attr = dict()
attr["dim"] = reduce_idx.value.tolist()
attr["keep_dim"] = node.get_attr("keep_dims")
program.add_layer(
"fluid.layers.reduce_all",
inputs={"input": input.name},
outputs=[node.name],
**attr)
def GatherV2(self, node):
embeddings = self.graph.get_node(node.layer.input[0])
index = self.graph.get_node(node.layer.input[1])
axis = self.graph.get_node(node.layer.input[2])
assert axis.layer_type == 'Const', "Only support Const parameter[axis]"
axis = axis.value.tolist()
assert axis == 0, "Only support axis=0 in GatherV2 OP"
index_name = index.name
if len(index.out_shapes[0]) != 1:
reshape_name = gen_name("gather", "reshape")
index_name = reshape_name
program.add_layer(
"fluid.layers.reshape",
inputs={"x": index.name},
outputs=[reshape_name],
shape=[-1])
inputs = {'input': embeddings.name, 'index': index_name}
program.add_layer(
"fluid.layers.gather",
inputs=inputs,
outputs=[node.name],
overwrite=False)
def ExpandDims(self, node):
x = self.graph.get_node(node.layer.input[0], copy=True)
y = self.graph.get_node(node.layer.input[1], copy=True)
inputs = {"input": x.name}
attr = dict()
if y.layer_type == 'Const':
dim = y.value.tolist()
if not isinstance(dim, list):
dim = [dim]
attr['axes'] = dim
else:
inputs['axes'] = y.name
program.add_layer(
"fluid.layers.unsqueeze",
inputs=inputs,
outputs=[node.name],
**attr)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册