Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
X2Paddle
提交
7c3e9379
X
X2Paddle
项目概览
PaddlePaddle
/
X2Paddle
1 年多 前同步成功
通知
328
Star
698
Fork
167
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
26
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
X
X2Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
26
Issue
26
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
7c3e9379
编写于
4月 28, 2019
作者:
M
Macrobull
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
bugfix
上级
816ac6e2
变更
16
展开全部
隐藏空白更改
内联
并排
Showing
16 changed file
with
1605 addition
and
1127 deletion
+1605
-1127
onnx2fluid/examples/convert_data_npz.py
onnx2fluid/examples/convert_data_npz.py
+48
-0
onnx2fluid/examples/convert_data_pb.py
onnx2fluid/examples/convert_data_pb.py
+64
-0
onnx2fluid/examples/gen_some_samples.py
onnx2fluid/examples/gen_some_samples.py
+27
-33
onnx2fluid/examples/gen_unet.py
onnx2fluid/examples/gen_unet.py
+10
-11
onnx2fluid/examples/gen_yolov2.py
onnx2fluid/examples/gen_yolov2.py
+167
-190
onnx2fluid/examples/onnx_model_zoo.sh
onnx2fluid/examples/onnx_model_zoo.sh
+530
-233
onnx2fluid/onnx2fluid/__main__.py
onnx2fluid/onnx2fluid/__main__.py
+1
-1
onnx2fluid/onnx2fluid/cmdline.py
onnx2fluid/onnx2fluid/cmdline.py
+9
-11
onnx2fluid/onnx2fluid/conversion.py
onnx2fluid/onnx2fluid/conversion.py
+43
-23
onnx2fluid/onnx2fluid/framework_pb2.py
onnx2fluid/onnx2fluid/framework_pb2.py
+173
-81
onnx2fluid/onnx2fluid/onnx_utils.py
onnx2fluid/onnx2fluid/onnx_utils.py
+68
-64
onnx2fluid/onnx2fluid/symbolic.py
onnx2fluid/onnx2fluid/symbolic.py
+280
-314
onnx2fluid/onnx2fluid/torch_export_helper.py
onnx2fluid/onnx2fluid/torch_export_helper.py
+33
-34
onnx2fluid/onnx2fluid/validation.py
onnx2fluid/onnx2fluid/validation.py
+35
-38
onnx2fluid/onnx2fluid/writer.py
onnx2fluid/onnx2fluid/writer.py
+108
-87
onnx2fluid/setup.cfg
onnx2fluid/setup.cfg
+9
-7
未找到文件。
onnx2fluid/examples/convert_data_npz.py
0 → 100644
浏览文件 @
7c3e9379
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Mar 27 11:50:03 2019
@author: Macrobull
"""
import
sys
import
numpy
as
np
from
collections
import
OrderedDict
as
Dict
def
make_var_name
(
name
):
"""
make a valid variable name in Python code
"""
if
name
==
''
:
return
'_'
if
name
[
0
].
isdigit
():
return
'var_'
+
name
for
s
in
'
\\
|/:'
:
#
name
=
name
.
replace
(
s
,
'_'
)
if
name
.
startswith
(
'_'
):
name
=
'var'
+
name
return
name
fn
=
sys
.
argv
[
1
]
input_names
=
sys
.
argv
[
2
].
split
(
','
)
output_names
=
sys
.
argv
[
3
].
split
(
','
)
squeeze_data
=
len
(
sys
.
argv
)
>
4
data
=
np
.
load
(
fn
,
encoding
=
'bytes'
)
input_data
=
data
[
'inputs'
]
output_data
=
data
[
'outputs'
]
while
squeeze_data
and
input_data
.
ndim
>
4
and
input_data
.
shape
[
0
]
==
1
:
input_data
=
input_data
.
squeeze
(
0
)
while
squeeze_data
and
output_data
.
ndim
>
2
and
output_data
.
shape
[
0
]
==
1
:
output_data
=
output_data
.
squeeze
(
0
)
inputs
=
Dict
(
zip
(
map
(
make_var_name
,
input_names
),
[
input_data
]))
outputs
=
Dict
(
zip
(
map
(
make_var_name
,
output_names
),
[
output_data
]))
np
.
savez
(
fn
,
inputs
=
inputs
,
outputs
=
outputs
)
# overwrite
onnx2fluid/examples/convert_data_pb.py
0 → 100644
浏览文件 @
7c3e9379
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Mar 27 11:50:03 2019
@author: Macrobull
"""
import
os
,
sys
import
numpy
as
np
import
onnx
import
onnx.numpy_helper
as
numpy_helper
from
collections
import
OrderedDict
as
Dict
from
glob
import
glob
def
make_var_name
(
name
):
"""
make a valid variable name in Python code
"""
if
name
==
''
:
return
'_'
if
name
[
0
].
isdigit
():
return
'var_'
+
name
for
s
in
'
\\
|/:'
:
#
name
=
name
.
replace
(
s
,
'_'
)
if
name
.
startswith
(
'_'
):
name
=
'var'
+
name
return
name
data_dir
=
os
.
path
.
dirname
(
sys
.
argv
[
1
])
input_names
=
sys
.
argv
[
2
].
split
(
','
)
output_names
=
sys
.
argv
[
3
].
split
(
','
)
squeeze_data
=
len
(
sys
.
argv
)
>
4
# Load inputs
inputs
=
[]
for
fn
in
glob
(
os
.
path
.
join
(
data_dir
,
'input_*.pb'
)):
tensor
=
onnx
.
TensorProto
()
with
open
(
fn
,
'rb'
)
as
f
:
tensor
.
ParseFromString
(
f
.
read
())
tensor
=
numpy_helper
.
to_array
(
tensor
)
while
squeeze_data
and
tensor
.
ndim
>
4
and
tensor
.
shape
[
0
]
==
1
:
tensor
=
tensor
.
squeeze
(
0
)
inputs
.
append
(
tensor
)
# Load outputs
outputs
=
[]
for
fn
in
glob
(
os
.
path
.
join
(
data_dir
,
'output_*.pb'
)):
tensor
=
onnx
.
TensorProto
()
with
open
(
fn
,
'rb'
)
as
f
:
tensor
.
ParseFromString
(
f
.
read
())
tensor
=
numpy_helper
.
to_array
(
tensor
)
while
squeeze_data
and
tensor
.
ndim
>
2
and
tensor
.
shape
[
0
]
==
1
:
tensor
=
tensor
.
squeeze
(
0
)
outputs
.
append
(
tensor
)
inputs
=
Dict
(
zip
(
map
(
make_var_name
,
input_names
),
inputs
))
outputs
=
Dict
(
zip
(
map
(
make_var_name
,
output_names
),
outputs
))
np
.
savez
(
data_dir
,
inputs
=
inputs
,
outputs
=
outputs
)
onnx2fluid/examples/gen_some_samples.py
浏览文件 @
7c3e9379
...
@@ -39,7 +39,7 @@ idx = 0
...
@@ -39,7 +39,7 @@ idx = 0
#yp = model(xb)
#yp = model(xb)
#idx += 1
#idx += 1
#print('index: ', idx)
#print('index: ', idx)
#export_onnx_with_validation(model,
(xb, )
, prefix + str(idx),
#export_onnx_with_validation(model,
[xb]
, prefix + str(idx),
# ['x'], ['y'],
# ['x'], ['y'],
# verbose=True, training=False)
# verbose=True, training=False)
...
@@ -61,7 +61,7 @@ idx = 0
...
@@ -61,7 +61,7 @@ idx = 0
#yp = model(xb)
#yp = model(xb)
#idx += 1
#idx += 1
#print('index: ', idx)
#print('index: ', idx)
#export_onnx_with_validation(model,
(xb, )
, prefix + str(idx),
#export_onnx_with_validation(model,
[xb]
, prefix + str(idx),
# ['x'], ['y'],
# ['x'], ['y'],
# verbose=True, training=False)
# verbose=True, training=False)
...
@@ -85,11 +85,10 @@ xb = torch.rand((2, 3))
...
@@ -85,11 +85,10 @@ xb = torch.rand((2, 3))
yp
=
model
(
xb
)
yp
=
model
(
xb
)
idx
+=
1
idx
+=
1
print
(
'index: '
,
idx
)
print
(
'index: '
,
idx
)
export_onnx_with_validation
(
export_onnx_with_validation
(
model
,
[
xb
],
model
,
(
xb
,
),
prefix
+
str
(
idx
),
[
'x'
],
[
'y'
],
prefix
+
str
(
idx
),
[
'x'
],
[
'y'
],
verbose
=
True
,
verbose
=
True
,
training
=
False
)
training
=
False
)
######## example: compare ########
######## example: compare ########
...
@@ -113,11 +112,10 @@ xb1 = torch.rand((2, 3))
...
@@ -113,11 +112,10 @@ xb1 = torch.rand((2, 3))
ya
,
yb
,
yc
=
model
(
xb0
,
xb1
)
ya
,
yb
,
yc
=
model
(
xb0
,
xb1
)
idx
+=
1
idx
+=
1
print
(
'index: '
,
idx
)
print
(
'index: '
,
idx
)
export_onnx_with_validation
(
export_onnx_with_validation
(
model
,
[
xb0
,
xb1
],
model
,
(
xb0
,
xb1
),
prefix
+
str
(
idx
),
[
'x0'
,
'x1'
],
[
'ya'
,
'yb'
,
'yc'
],
prefix
+
str
(
idx
),
[
'x0'
,
'x1'
],
[
'ya'
,
'yb'
,
'yc'
],
verbose
=
True
,
verbose
=
True
,
training
=
False
)
training
=
False
)
######## example: affine_grid ########
######## example: affine_grid ########
...
@@ -137,11 +135,10 @@ theta = torch.rand((2, 2, 3))
...
@@ -137,11 +135,10 @@ theta = torch.rand((2, 2, 3))
grid
=
model
(
theta
)
grid
=
model
(
theta
)
idx
+=
1
idx
+=
1
print
(
'index: '
,
idx
)
print
(
'index: '
,
idx
)
export_onnx_with_validation
(
export_onnx_with_validation
(
model
,
(
theta
,
),
model
,
(
theta
,
),
prefix
+
str
(
idx
),
[
'theta'
],
[
'grid'
],
prefix
+
str
(
idx
),
[
'theta'
],
[
'grid'
],
verbose
=
True
,
verbose
=
True
,
training
=
False
)
training
=
False
)
######## example: conv2d_transpose ########
######## example: conv2d_transpose ########
...
@@ -165,11 +162,10 @@ xb = torch.rand((2, 3, 4, 5))
...
@@ -165,11 +162,10 @@ xb = torch.rand((2, 3, 4, 5))
yp
=
model
(
xb
)
yp
=
model
(
xb
)
idx
+=
1
idx
+=
1
print
(
'index: '
,
idx
)
print
(
'index: '
,
idx
)
export_onnx_with_validation
(
export_onnx_with_validation
(
model
,
[
xb
],
model
,
(
xb
,
),
prefix
+
str
(
idx
),
[
'x'
],
[
'y'
],
prefix
+
str
(
idx
),
[
'x'
],
[
'y'
],
verbose
=
True
,
verbose
=
True
,
training
=
False
)
training
=
False
)
######## example: conv2d ########
######## example: conv2d ########
...
@@ -195,11 +191,10 @@ xb = torch.rand((2, 3, 4, 5))
...
@@ -195,11 +191,10 @@ xb = torch.rand((2, 3, 4, 5))
yp
=
model
(
xb
)
yp
=
model
(
xb
)
idx
+=
1
idx
+=
1
print
(
'index: '
,
idx
)
print
(
'index: '
,
idx
)
export_onnx_with_validation
(
export_onnx_with_validation
(
model
,
[
xb
],
model
,
(
xb
,
),
prefix
+
str
(
idx
),
[
'x'
],
[
'y'
],
prefix
+
str
(
idx
),
[
'x'
],
[
'y'
],
verbose
=
True
,
verbose
=
True
,
training
=
False
)
training
=
False
)
######### example: conv1d ########
######### example: conv1d ########
#
#
...
@@ -220,7 +215,7 @@ export_onnx_with_validation(
...
@@ -220,7 +215,7 @@ export_onnx_with_validation(
#yp = model(xb)
#yp = model(xb)
#idx += 1
#idx += 1
#print('index: ', idx)
#print('index: ', idx)
#export_onnx_with_validation(model,
(xb, )
, prefix + str(idx),
#export_onnx_with_validation(model,
[xb]
, prefix + str(idx),
# ['x'], ['y'],
# ['x'], ['y'],
# verbose=True, training=False)
# verbose=True, training=False)
...
@@ -241,8 +236,7 @@ xb = torch.rand((2, 3))
...
@@ -241,8 +236,7 @@ xb = torch.rand((2, 3))
yp
=
model
(
xb
)
yp
=
model
(
xb
)
idx
+=
1
idx
+=
1
print
(
'index: '
,
idx
)
print
(
'index: '
,
idx
)
export_onnx_with_validation
(
export_onnx_with_validation
(
model
,
[
xb
],
model
,
(
xb
,
),
prefix
+
str
(
idx
),
[
'y'
],
[
'y'
],
prefix
+
str
(
idx
),
[
'y'
],
[
'y'
],
verbose
=
True
,
verbose
=
True
,
training
=
False
)
training
=
False
)
onnx2fluid/examples/gen_unet.py
浏览文件 @
7c3e9379
...
@@ -21,10 +21,10 @@ class double_conv(nn.Module):
...
@@ -21,10 +21,10 @@ class double_conv(nn.Module):
def
__init__
(
self
,
in_ch
,
out_ch
):
def
__init__
(
self
,
in_ch
,
out_ch
):
super
(
double_conv
,
self
).
__init__
()
super
(
double_conv
,
self
).
__init__
()
self
.
conv
=
nn
.
Sequential
(
self
.
conv
=
nn
.
Sequential
(
nn
.
Conv2d
(
in_ch
,
out_ch
,
3
,
padding
=
1
),
nn
.
Conv2d
(
in_ch
,
out_ch
,
3
,
padding
=
1
),
nn
.
BatchNorm2d
(
out_ch
),
nn
.
BatchNorm2d
(
out_ch
),
nn
.
ReLU
(
inplace
=
True
),
nn
.
ReLU
(
inplace
=
True
),
nn
.
Conv2d
(
out_ch
,
out_ch
,
3
,
padding
=
1
),
nn
.
Conv2d
(
out_ch
,
out_ch
,
3
,
padding
=
1
),
nn
.
BatchNorm2d
(
out_ch
),
nn
.
ReLU
(
inplace
=
True
))
nn
.
BatchNorm2d
(
out_ch
),
nn
.
ReLU
(
inplace
=
True
))
def
forward
(
self
,
x
):
def
forward
(
self
,
x
):
x
=
self
.
conv
(
x
)
x
=
self
.
conv
(
x
)
...
@@ -58,8 +58,8 @@ class up(nn.Module):
...
@@ -58,8 +58,8 @@ class up(nn.Module):
# would be a nice idea if the upsampling could be learned too,
# would be a nice idea if the upsampling could be learned too,
# but my machine do not have enough memory to handle all those weights
# but my machine do not have enough memory to handle all those weights
if
bilinear
:
if
bilinear
:
self
.
up
=
nn
.
Upsample
(
self
.
up
=
nn
.
Upsample
(
scale_factor
=
2
,
scale_factor
=
2
,
mode
=
'bilinear'
)
#, align_corners=True)
mode
=
'bilinear'
)
#, align_corners=True)
else
:
else
:
self
.
up
=
nn
.
ConvTranspose2d
(
in_ch
//
2
,
in_ch
//
2
,
2
,
stride
=
2
)
self
.
up
=
nn
.
ConvTranspose2d
(
in_ch
//
2
,
in_ch
//
2
,
2
,
stride
=
2
)
...
@@ -131,8 +131,7 @@ model = UNet(3, 80)
...
@@ -131,8 +131,7 @@ model = UNet(3, 80)
model
.
eval
()
model
.
eval
()
xb
=
torch
.
rand
((
1
,
3
,
512
,
512
))
xb
=
torch
.
rand
((
1
,
3
,
512
,
512
))
yp
=
model
(
xb
)
yp
=
model
(
xb
)
export_onnx_with_validation
(
export_onnx_with_validation
(
model
,
[
xb
],
model
,
(
xb
,
),
'sample_unet'
,
[
'image'
],
[
'pred'
],
'sample_unet'
,
[
'image'
],
[
'pred'
],
verbose
=
True
,
verbose
=
True
,
training
=
False
)
training
=
False
)
onnx2fluid/examples/gen_yolov2.py
浏览文件 @
7c3e9379
...
@@ -20,188 +20,166 @@ class Yolov2(nn.Module):
...
@@ -20,188 +20,166 @@ class Yolov2(nn.Module):
def
__init__
(
self
):
def
__init__
(
self
):
super
(
Yolov2
,
self
).
__init__
()
super
(
Yolov2
,
self
).
__init__
()
self
.
conv1
=
nn
.
Conv2d
(
self
.
conv1
=
nn
.
Conv2d
(
in_channels
=
3
,
in_channels
=
3
,
out_channels
=
32
,
out_channels
=
32
,
kernel_size
=
3
,
kernel_size
=
3
,
stride
=
1
,
stride
=
1
,
padding
=
1
,
padding
=
1
,
bias
=
False
)
bias
=
False
)
self
.
batchnorm1
=
nn
.
BatchNorm2d
(
32
)
self
.
batchnorm1
=
nn
.
BatchNorm2d
(
32
)
self
.
conv2
=
nn
.
Conv2d
(
self
.
conv2
=
nn
.
Conv2d
(
in_channels
=
32
,
in_channels
=
32
,
out_channels
=
64
,
out_channels
=
64
,
kernel_size
=
3
,
kernel_size
=
3
,
stride
=
1
,
stride
=
1
,
padding
=
1
,
padding
=
1
,
bias
=
False
)
bias
=
False
)
self
.
batchnorm2
=
nn
.
BatchNorm2d
(
64
)
self
.
batchnorm2
=
nn
.
BatchNorm2d
(
64
)
self
.
conv3
=
nn
.
Conv2d
(
self
.
conv3
=
nn
.
Conv2d
(
in_channels
=
64
,
in_channels
=
64
,
out_channels
=
128
,
out_channels
=
128
,
kernel_size
=
3
,
kernel_size
=
3
,
stride
=
1
,
stride
=
1
,
padding
=
1
,
padding
=
1
,
bias
=
False
)
bias
=
False
)
self
.
batchnorm3
=
nn
.
BatchNorm2d
(
128
)
self
.
batchnorm3
=
nn
.
BatchNorm2d
(
128
)
self
.
conv4
=
nn
.
Conv2d
(
self
.
conv4
=
nn
.
Conv2d
(
in_channels
=
128
,
in_channels
=
128
,
out_channels
=
64
,
out_channels
=
64
,
kernel_size
=
1
,
kernel_size
=
1
,
stride
=
1
,
stride
=
1
,
padding
=
0
,
padding
=
0
,
bias
=
False
)
bias
=
False
)
self
.
batchnorm4
=
nn
.
BatchNorm2d
(
64
)
self
.
batchnorm4
=
nn
.
BatchNorm2d
(
64
)
self
.
conv5
=
nn
.
Conv2d
(
self
.
conv5
=
nn
.
Conv2d
(
in_channels
=
64
,
in_channels
=
64
,
out_channels
=
128
,
out_channels
=
128
,
kernel_size
=
3
,
kernel_size
=
3
,
stride
=
1
,
stride
=
1
,
padding
=
1
,
padding
=
1
,
bias
=
False
)
bias
=
False
)
self
.
batchnorm5
=
nn
.
BatchNorm2d
(
128
)
self
.
batchnorm5
=
nn
.
BatchNorm2d
(
128
)
self
.
conv6
=
nn
.
Conv2d
(
self
.
conv6
=
nn
.
Conv2d
(
in_channels
=
128
,
in_channels
=
128
,
out_channels
=
256
,
out_channels
=
256
,
kernel_size
=
3
,
kernel_size
=
3
,
stride
=
1
,
stride
=
1
,
padding
=
1
,
padding
=
1
,
bias
=
False
)
bias
=
False
)
self
.
batchnorm6
=
nn
.
BatchNorm2d
(
256
)
self
.
batchnorm6
=
nn
.
BatchNorm2d
(
256
)
self
.
conv7
=
nn
.
Conv2d
(
self
.
conv7
=
nn
.
Conv2d
(
in_channels
=
256
,
in_channels
=
256
,
out_channels
=
128
,
out_channels
=
128
,
kernel_size
=
1
,
kernel_size
=
1
,
stride
=
1
,
stride
=
1
,
padding
=
0
,
padding
=
0
,
bias
=
False
)
bias
=
False
)
self
.
batchnorm7
=
nn
.
BatchNorm2d
(
128
)
self
.
batchnorm7
=
nn
.
BatchNorm2d
(
128
)
self
.
conv8
=
nn
.
Conv2d
(
self
.
conv8
=
nn
.
Conv2d
(
in_channels
=
128
,
in_channels
=
128
,
out_channels
=
256
,
out_channels
=
256
,
kernel_size
=
3
,
kernel_size
=
3
,
stride
=
1
,
stride
=
1
,
padding
=
1
,
padding
=
1
,
bias
=
False
)
bias
=
False
)
self
.
batchnorm8
=
nn
.
BatchNorm2d
(
256
)
self
.
batchnorm8
=
nn
.
BatchNorm2d
(
256
)
self
.
conv9
=
nn
.
Conv2d
(
self
.
conv9
=
nn
.
Conv2d
(
in_channels
=
256
,
in_channels
=
256
,
out_channels
=
512
,
out_channels
=
512
,
kernel_size
=
3
,
kernel_size
=
3
,
stride
=
1
,
stride
=
1
,
padding
=
1
,
padding
=
1
,
bias
=
False
)
bias
=
False
)
self
.
batchnorm9
=
nn
.
BatchNorm2d
(
512
)
self
.
batchnorm9
=
nn
.
BatchNorm2d
(
512
)
self
.
conv10
=
nn
.
Conv2d
(
self
.
conv10
=
nn
.
Conv2d
(
in_channels
=
512
,
in_channels
=
512
,
out_channels
=
256
,
out_channels
=
256
,
kernel_size
=
1
,
kernel_size
=
1
,
stride
=
1
,
stride
=
1
,
padding
=
0
,
padding
=
0
,
bias
=
False
)
bias
=
False
)
self
.
batchnorm10
=
nn
.
BatchNorm2d
(
256
)
self
.
batchnorm10
=
nn
.
BatchNorm2d
(
256
)
self
.
conv11
=
nn
.
Conv2d
(
self
.
conv11
=
nn
.
Conv2d
(
in_channels
=
256
,
in_channels
=
256
,
out_channels
=
512
,
out_channels
=
512
,
kernel_size
=
3
,
kernel_size
=
3
,
stride
=
1
,
stride
=
1
,
padding
=
1
,
padding
=
1
,
bias
=
False
)
bias
=
False
)
self
.
batchnorm11
=
nn
.
BatchNorm2d
(
512
)
self
.
batchnorm11
=
nn
.
BatchNorm2d
(
512
)
self
.
conv12
=
nn
.
Conv2d
(
self
.
conv12
=
nn
.
Conv2d
(
in_channels
=
512
,
in_channels
=
512
,
out_channels
=
256
,
out_channels
=
256
,
kernel_size
=
1
,
kernel_size
=
1
,
stride
=
1
,
stride
=
1
,
padding
=
0
,
padding
=
0
,
bias
=
False
)
bias
=
False
)
self
.
batchnorm12
=
nn
.
BatchNorm2d
(
256
)
self
.
batchnorm12
=
nn
.
BatchNorm2d
(
256
)
self
.
conv13
=
nn
.
Conv2d
(
self
.
conv13
=
nn
.
Conv2d
(
in_channels
=
256
,
in_channels
=
256
,
out_channels
=
512
,
out_channels
=
512
,
kernel_size
=
3
,
kernel_size
=
3
,
stride
=
1
,
stride
=
1
,
padding
=
1
,
padding
=
1
,
bias
=
False
)
bias
=
False
)
self
.
batchnorm13
=
nn
.
BatchNorm2d
(
512
)
self
.
batchnorm13
=
nn
.
BatchNorm2d
(
512
)
self
.
conv14
=
nn
.
Conv2d
(
self
.
conv14
=
nn
.
Conv2d
(
in_channels
=
512
,
in_channels
=
512
,
out_channels
=
1024
,
out_channels
=
1024
,
kernel_size
=
3
,
kernel_size
=
3
,
stride
=
1
,
stride
=
1
,
padding
=
1
,
padding
=
1
,
bias
=
False
)
bias
=
False
)
self
.
batchnorm14
=
nn
.
BatchNorm2d
(
1024
)
self
.
batchnorm14
=
nn
.
BatchNorm2d
(
1024
)
self
.
conv15
=
nn
.
Conv2d
(
self
.
conv15
=
nn
.
Conv2d
(
in_channels
=
1024
,
in_channels
=
1024
,
out_channels
=
512
,
out_channels
=
512
,
kernel_size
=
1
,
kernel_size
=
1
,
stride
=
1
,
stride
=
1
,
padding
=
0
,
padding
=
0
,
bias
=
False
)
bias
=
False
)
self
.
batchnorm15
=
nn
.
BatchNorm2d
(
512
)
self
.
batchnorm15
=
nn
.
BatchNorm2d
(
512
)
self
.
conv16
=
nn
.
Conv2d
(
self
.
conv16
=
nn
.
Conv2d
(
in_channels
=
512
,
in_channels
=
512
,
out_channels
=
1024
,
out_channels
=
1024
,
kernel_size
=
3
,
kernel_size
=
3
,
stride
=
1
,
stride
=
1
,
padding
=
1
,
padding
=
1
,
bias
=
False
)
bias
=
False
)
self
.
batchnorm16
=
nn
.
BatchNorm2d
(
1024
)
self
.
batchnorm16
=
nn
.
BatchNorm2d
(
1024
)
self
.
conv17
=
nn
.
Conv2d
(
self
.
conv17
=
nn
.
Conv2d
(
in_channels
=
1024
,
in_channels
=
1024
,
out_channels
=
512
,
out_channels
=
512
,
kernel_size
=
1
,
kernel_size
=
1
,
stride
=
1
,
stride
=
1
,
padding
=
0
,
padding
=
0
,
bias
=
False
)
bias
=
False
)
self
.
batchnorm17
=
nn
.
BatchNorm2d
(
512
)
self
.
batchnorm17
=
nn
.
BatchNorm2d
(
512
)
self
.
conv18
=
nn
.
Conv2d
(
self
.
conv18
=
nn
.
Conv2d
(
in_channels
=
512
,
in_channels
=
512
,
out_channels
=
1024
,
out_channels
=
1024
,
kernel_size
=
3
,
kernel_size
=
3
,
stride
=
1
,
stride
=
1
,
padding
=
1
,
padding
=
1
,
bias
=
False
)
bias
=
False
)
self
.
batchnorm18
=
nn
.
BatchNorm2d
(
1024
)
self
.
batchnorm18
=
nn
.
BatchNorm2d
(
1024
)
self
.
conv19
=
nn
.
Conv2d
(
self
.
conv19
=
nn
.
Conv2d
(
in_channels
=
1024
,
in_channels
=
1024
,
out_channels
=
1024
,
out_channels
=
1024
,
kernel_size
=
3
,
kernel_size
=
3
,
stride
=
1
,
stride
=
1
,
padding
=
1
,
padding
=
1
,
bias
=
False
)
bias
=
False
)
self
.
batchnorm19
=
nn
.
BatchNorm2d
(
1024
)
self
.
batchnorm19
=
nn
.
BatchNorm2d
(
1024
)
self
.
conv20
=
nn
.
Conv2d
(
self
.
conv20
=
nn
.
Conv2d
(
in_channels
=
1024
,
in_channels
=
1024
,
out_channels
=
1024
,
out_channels
=
1024
,
kernel_size
=
3
,
kernel_size
=
3
,
stride
=
1
,
stride
=
1
,
padding
=
1
,
padding
=
1
,
bias
=
False
)
bias
=
False
)
self
.
batchnorm20
=
nn
.
BatchNorm2d
(
1024
)
self
.
batchnorm20
=
nn
.
BatchNorm2d
(
1024
)
self
.
conv21
=
nn
.
Conv2d
(
self
.
conv21
=
nn
.
Conv2d
(
in_channels
=
3072
,
in_channels
=
3072
,
out_channels
=
1024
,
out_channels
=
1024
,
kernel_size
=
3
,
kernel_size
=
3
,
stride
=
1
,
stride
=
1
,
padding
=
1
,
padding
=
1
,
bias
=
False
)
bias
=
False
)
self
.
batchnorm21
=
nn
.
BatchNorm2d
(
1024
)
self
.
batchnorm21
=
nn
.
BatchNorm2d
(
1024
)
self
.
conv22
=
nn
.
Conv2d
(
self
.
conv22
=
nn
.
Conv2d
(
in_channels
=
1024
,
in_channels
=
1024
,
out_channels
=
125
,
out_channels
=
125
,
kernel_size
=
1
,
kernel_size
=
1
,
stride
=
1
,
stride
=
1
,
padding
=
0
)
padding
=
0
)
def
reorg_layer
(
self
,
x
):
def
reorg_layer
(
self
,
x
):
stride
=
2
stride
=
2
...
@@ -227,14 +205,14 @@ class Yolov2(nn.Module):
...
@@ -227,14 +205,14 @@ class Yolov2(nn.Module):
return
passthrough
return
passthrough
def
forward
(
self
,
x
):
def
forward
(
self
,
x
):
out
=
F
.
max_pool2d
(
out
=
F
.
max_pool2d
(
F
.
leaky_relu
(
self
.
batchnorm1
(
self
.
conv1
(
x
)),
F
.
leaky_relu
(
self
.
batchnorm1
(
self
.
conv1
(
x
)),
negative_slope
=
0.1
),
negative_slope
=
0.1
),
2
,
2
,
stride
=
2
)
stride
=
2
)
out
=
F
.
max_pool2d
(
out
=
F
.
max_pool2d
(
F
.
leaky_relu
(
self
.
batchnorm2
(
self
.
conv2
(
out
)),
F
.
leaky_relu
(
self
.
batchnorm2
(
self
.
conv2
(
out
)),
negative_slope
=
0.1
),
negative_slope
=
0.1
),
2
,
2
,
stride
=
2
)
stride
=
2
)
out
=
F
.
leaky_relu
(
self
.
batchnorm3
(
self
.
conv3
(
out
)),
negative_slope
=
0.1
)
out
=
F
.
leaky_relu
(
self
.
batchnorm3
(
self
.
conv3
(
out
)),
negative_slope
=
0.1
)
out
=
F
.
leaky_relu
(
self
.
batchnorm4
(
self
.
conv4
(
out
)),
negative_slope
=
0.1
)
out
=
F
.
leaky_relu
(
self
.
batchnorm4
(
self
.
conv4
(
out
)),
negative_slope
=
0.1
)
...
@@ -247,36 +225,36 @@ class Yolov2(nn.Module):
...
@@ -247,36 +225,36 @@ class Yolov2(nn.Module):
out
=
F
.
max_pool2d
(
out
,
2
,
stride
=
2
)
out
=
F
.
max_pool2d
(
out
,
2
,
stride
=
2
)
out
=
F
.
leaky_relu
(
self
.
batchnorm9
(
self
.
conv9
(
out
)),
negative_slope
=
0.1
)
out
=
F
.
leaky_relu
(
self
.
batchnorm9
(
self
.
conv9
(
out
)),
negative_slope
=
0.1
)
out
=
F
.
leaky_relu
(
out
=
F
.
leaky_relu
(
self
.
batchnorm10
(
self
.
conv10
(
out
)),
self
.
batchnorm10
(
self
.
conv10
(
out
)),
negative_slope
=
0.1
)
negative_slope
=
0.1
)
out
=
F
.
leaky_relu
(
out
=
F
.
leaky_relu
(
self
.
batchnorm11
(
self
.
conv11
(
out
)),
self
.
batchnorm11
(
self
.
conv11
(
out
)),
negative_slope
=
0.1
)
negative_slope
=
0.1
)
out
=
F
.
leaky_relu
(
out
=
F
.
leaky_relu
(
self
.
batchnorm12
(
self
.
conv12
(
out
)),
self
.
batchnorm12
(
self
.
conv12
(
out
)),
negative_slope
=
0.1
)
negative_slope
=
0.1
)
out
=
F
.
leaky_relu
(
out
=
F
.
leaky_relu
(
self
.
batchnorm13
(
self
.
conv13
(
out
)),
self
.
batchnorm13
(
self
.
conv13
(
out
)),
negative_slope
=
0.1
)
negative_slope
=
0.1
)
passthrough
=
self
.
reorg_layer
(
out
)
passthrough
=
self
.
reorg_layer
(
out
)
out
=
F
.
max_pool2d
(
out
,
2
,
stride
=
2
)
out
=
F
.
max_pool2d
(
out
,
2
,
stride
=
2
)
out
=
F
.
leaky_relu
(
out
=
F
.
leaky_relu
(
self
.
batchnorm14
(
self
.
conv14
(
out
)),
self
.
batchnorm14
(
self
.
conv14
(
out
)),
negative_slope
=
0.1
)
negative_slope
=
0.1
)
out
=
F
.
leaky_relu
(
out
=
F
.
leaky_relu
(
self
.
batchnorm15
(
self
.
conv15
(
out
)),
self
.
batchnorm15
(
self
.
conv15
(
out
)),
negative_slope
=
0.1
)
negative_slope
=
0.1
)
out
=
F
.
leaky_relu
(
out
=
F
.
leaky_relu
(
self
.
batchnorm16
(
self
.
conv16
(
out
)),
self
.
batchnorm16
(
self
.
conv16
(
out
)),
negative_slope
=
0.1
)
negative_slope
=
0.1
)
out
=
F
.
leaky_relu
(
out
=
F
.
leaky_relu
(
self
.
batchnorm17
(
self
.
conv17
(
out
)),
self
.
batchnorm17
(
self
.
conv17
(
out
)),
negative_slope
=
0.1
)
negative_slope
=
0.1
)
out
=
F
.
leaky_relu
(
out
=
F
.
leaky_relu
(
self
.
batchnorm18
(
self
.
conv18
(
out
)),
self
.
batchnorm18
(
self
.
conv18
(
out
)),
negative_slope
=
0.1
)
negative_slope
=
0.1
)
out
=
F
.
leaky_relu
(
out
=
F
.
leaky_relu
(
self
.
batchnorm19
(
self
.
conv19
(
out
)),
self
.
batchnorm19
(
self
.
conv19
(
out
)),
negative_slope
=
0.1
)
negative_slope
=
0.1
)
out
=
F
.
leaky_relu
(
out
=
F
.
leaky_relu
(
self
.
batchnorm20
(
self
.
conv20
(
out
)),
self
.
batchnorm20
(
self
.
conv20
(
out
)),
negative_slope
=
0.1
)
negative_slope
=
0.1
)
out
=
torch
.
cat
([
passthrough
,
out
],
1
)
out
=
torch
.
cat
([
passthrough
,
out
],
1
)
out
=
F
.
leaky_relu
(
out
=
F
.
leaky_relu
(
self
.
batchnorm21
(
self
.
conv21
(
out
)),
self
.
batchnorm21
(
self
.
conv21
(
out
)),
negative_slope
=
0.1
)
negative_slope
=
0.1
)
out
=
self
.
conv22
(
out
)
out
=
self
.
conv22
(
out
)
return
out
return
out
...
@@ -286,8 +264,7 @@ model = Yolov2()
...
@@ -286,8 +264,7 @@ model = Yolov2()
model
.
eval
()
model
.
eval
()
xb
=
torch
.
rand
((
1
,
3
,
224
,
224
))
xb
=
torch
.
rand
((
1
,
3
,
224
,
224
))
yp
=
model
(
xb
)
yp
=
model
(
xb
)
export_onnx_with_validation
(
export_onnx_with_validation
(
model
,
[
xb
],
model
,
(
xb
,
),
'sample_yolov2'
,
[
'image'
],
[
'pred'
],
'sample_yolov2'
,
[
'image'
],
[
'pred'
],
verbose
=
True
,
verbose
=
True
,
training
=
False
)
training
=
False
)
onnx2fluid/examples/onnx_model_zoo.sh
浏览文件 @
7c3e9379
此差异已折叠。
点击以展开。
onnx2fluid/onnx2fluid/__main__.py
浏览文件 @
7c3e9379
...
@@ -92,7 +92,7 @@ parser.add_argument(
...
@@ -92,7 +92,7 @@ parser.add_argument(
parser
.
add_argument
(
parser
.
add_argument
(
'--rtol'
,
'--rtol'
,
type
=
float
,
type
=
float
,
default
=
1e-
4
,
default
=
1e-
2
,
help
=
'assertion relative tolerance for validation'
,
help
=
'assertion relative tolerance for validation'
,
)
)
args
=
parser
.
parse_args
()
args
=
parser
.
parse_args
()
...
...
onnx2fluid/onnx2fluid/cmdline.py
浏览文件 @
7c3e9379
...
@@ -22,7 +22,6 @@ __all__ = [
...
@@ -22,7 +22,6 @@ __all__ = [
'main'
,
'main'
,
]
]
DEFAULT_ONNX_OPSET_VERSION
=
9
DEFAULT_MODEL_MODULE
=
'model'
DEFAULT_MODEL_MODULE
=
'model'
DEFAULT_MODEL_FUNC
=
'inference'
DEFAULT_MODEL_FUNC
=
'inference'
...
@@ -30,6 +29,7 @@ DEFAULT_MODEL_FUNC = 'inference'
...
@@ -30,6 +29,7 @@ DEFAULT_MODEL_FUNC = 'inference'
def
main
(
**
kwargs
):
def
main
(
**
kwargs
):
"""主程序入口"""
"""主程序入口"""
from
.conversion
import
DEFAULT_ONNX_OPSET_VERSION
from
.conversion
import
convert
from
.conversion
import
convert
logger
=
logging
.
getLogger
(
'onnx2fluid'
)
logger
=
logging
.
getLogger
(
'onnx2fluid'
)
...
@@ -44,9 +44,9 @@ def main(**kwargs):
...
@@ -44,9 +44,9 @@ def main(**kwargs):
if
save_dir
else
basepath
)
+
shutil
.
os
.
sep
if
save_dir
else
basepath
)
+
shutil
.
os
.
sep
model_basename
=
DEFAULT_MODEL_MODULE
+
'.py'
model_basename
=
DEFAULT_MODEL_MODULE
+
'.py'
model_func_name
=
DEFAULT_MODEL_FUNC
model_func_name
=
DEFAULT_MODEL_FUNC
onnx_opset_version
=
DEFAULT_ONNX_OPSET_VERSION
onnx_opset_pedantic
=
kwargs
.
pop
(
'pedantic'
,
True
)
onnx_opset_pedantic
=
kwargs
.
pop
(
'pedantic'
,
True
)
onnx_skip_version_conversion
=
kwargs
.
pop
(
'skip_version_conversion'
,
False
)
skip_version_conversion
=
kwargs
.
pop
(
'skip_version_conversion'
,
False
)
onnx_opset_version
=
None
if
skip_version_conversion
else
DEFAULT_ONNX_OPSET_VERSION
# convert
# convert
convert
(
filename
,
convert
(
filename
,
...
@@ -55,7 +55,6 @@ def main(**kwargs):
...
@@ -55,7 +55,6 @@ def main(**kwargs):
model_func_name
=
model_func_name
,
model_func_name
=
model_func_name
,
onnx_opset_version
=
onnx_opset_version
,
onnx_opset_version
=
onnx_opset_version
,
onnx_opset_pedantic
=
onnx_opset_pedantic
,
onnx_opset_pedantic
=
onnx_opset_pedantic
,
onnx_skip_version_conversion
=
onnx_skip_version_conversion
,
**
kwargs
)
**
kwargs
)
# validate
# validate
...
@@ -69,13 +68,12 @@ def main(**kwargs):
...
@@ -69,13 +68,12 @@ def main(**kwargs):
golden_data_filename
,
**
kwargs
)
golden_data_filename
,
**
kwargs
)
logger
.
info
(
'starting validation on code ...'
)
logger
.
info
(
'starting validation on code ...'
)
passed
&=
validate
(
# this re-generate desc proto with Python code when debug on
shutil
.
os
.
path
.
join
(
save_dir
,
model_basename
),
passed
&=
validate
(
shutil
.
os
.
path
.
join
(
save_dir
,
model_basename
),
golden_data_filename
,
golden_data_filename
,
model_func_name
=
model_func_name
,
model_func_name
=
model_func_name
,
save_inference_model
=
save_inference_model
=
debug
,
debug
,
# re-generate desc proto with python code when debug on
**
kwargs
)
**
kwargs
)
if
not
passed
:
if
not
passed
:
logger
.
error
(
'validation failed, exit'
)
logger
.
error
(
'validation failed, exit'
)
...
...
onnx2fluid/onnx2fluid/conversion.py
浏览文件 @
7c3e9379
...
@@ -14,20 +14,21 @@ __all__ = [
...
@@ -14,20 +14,21 @@ __all__ = [
'convert'
,
'convert'
,
]
]
DEFAULT_ONNX_OPSET_VERSION
=
9
def
convert
(
onnx_model_filename
,
def
convert
(
onnx_model_filename
,
save_dir
,
save_dir
,
model_basename
=
'model.py'
,
model_basename
=
'model.py'
,
model_func_name
=
'inference'
,
model_func_name
=
'inference'
,
embed_params
=
False
,
embed_params
=
False
,
onnx_opset_version
=
9
,
onnx_opset_version
=
None
,
onnx_opset_pedantic
=
True
,
onnx_opset_pedantic
=
True
,
onnx_skip_version_conversion
=
False
,
debug
=
False
,
debug
=
False
,
**
kwargs
):
**
kwargs
):
"""
"""
convert an ONNX model to Paddle fluid Python code and desc pb
convert an ONNX model to Paddle fluid Python code and desc pb
"""
"""
import
onnx
import
onnx
...
@@ -50,11 +51,13 @@ def convert(onnx_model_filename,
...
@@ -50,11 +51,13 @@ def convert(onnx_model_filename,
# prepare onnx model
# prepare onnx model
logger
.
info
(
'loading model: %s ...'
,
onnx_model_filename
)
logger
.
info
(
'loading model: %s ...'
,
onnx_model_filename
)
onnx_model
=
onnx
.
load
(
onnx_model_filename
)
onnx_model
=
onnx
.
load
(
onnx_model_filename
)
try
:
try
:
logger
.
info
(
'checking model ...'
)
logger
.
info
(
'checking model ...'
)
check_model
(
onnx_model
)
check_model
(
onnx_model
)
if
onnx_skip_version_conversion
:
# WORKAROUND: RuntimeError: No Adapter For OP
if
onnx_opset_version
is
None
:
# WORKAROUND: RuntimeError: No Adapter For OP
logger
.
debug
(
'assumed opset version: %d'
,
onnx_opset_version
)
logger
.
debug
(
'assumed opset version: %d'
,
DEFAULT_ONNX_OPSET_VERSION
)
logger
.
warning
(
logger
.
warning
(
'opset conversion skipped for onnx_opset_pedantic is OFF'
)
'opset conversion skipped for onnx_opset_pedantic is OFF'
)
else
:
else
:
...
@@ -68,6 +71,7 @@ def convert(onnx_model_filename,
...
@@ -68,6 +71,7 @@ def convert(onnx_model_filename,
logger
.
warning
(
'due to onnx_opset_pedantic is OFF'
)
logger
.
warning
(
'due to onnx_opset_pedantic is OFF'
)
logger
.
warning
(
'the ONNX model sanity checking error is suppressed'
)
logger
.
warning
(
'the ONNX model sanity checking error is suppressed'
)
logger
.
warning
(
'value_info inferring may be uncompleted'
)
logger
.
warning
(
'value_info inferring may be uncompleted'
)
# onnx model optimization
# onnx model optimization
logger
.
info
(
'model has %d ops'
,
len
(
onnx_model
.
graph
.
node
))
logger
.
info
(
'model has %d ops'
,
len
(
onnx_model
.
graph
.
node
))
logger
.
info
(
'optimizing model ...'
)
logger
.
info
(
'optimizing model ...'
)
...
@@ -87,10 +91,7 @@ def convert(onnx_model_filename,
...
@@ -87,10 +91,7 @@ def convert(onnx_model_filename,
debug_model_filename
,
_
=
shutil
.
os
.
path
.
splitext
(
onnx_model_filename
)
debug_model_filename
,
_
=
shutil
.
os
.
path
.
splitext
(
onnx_model_filename
)
onnx
.
save
(
model
,
debug_model_filename
+
'.optimized_and_inffered.onnx'
)
onnx
.
save
(
model
,
debug_model_filename
+
'.optimized_and_inffered.onnx'
)
# I/O instances
# onnx.save(model, '/tmp/export/optimized_and_inffered.onnx')
# I/O instances
onnx_graph
=
onnx_model
.
graph
onnx_graph
=
onnx_model
.
graph
fluid_program
=
Program
()
fluid_program
=
Program
()
fluid_writer
=
Writer
()
fluid_writer
=
Writer
()
...
@@ -114,8 +115,8 @@ def convert(onnx_model_filename,
...
@@ -114,8 +115,8 @@ def convert(onnx_model_filename,
# op set conversion
# op set conversion
# topo = 'backward' if embed_params else 'forward'
# topo = 'backward' if embed_params else 'forward'
topo
=
'forward'
topo
=
'forward'
for
name
,
domain
,
op_type
,
inputs
,
outputs
,
attrs
in
graph_ops
(
for
name
,
domain
,
op_type
,
inputs
,
outputs
,
attrs
in
graph_ops
(
onnx_graph
,
onnx_graph
,
topo
=
topo
):
topo
=
topo
):
logger
.
debug
(
'translating op %s %s::%s ...'
,
name
,
domain
,
op_type
)
logger
.
debug
(
'translating op %s %s::%s ...'
,
name
,
domain
,
op_type
)
if
domain
==
DEFAULT_OP_DOMAIN
:
if
domain
==
DEFAULT_OP_DOMAIN
:
domain
=
''
domain
=
''
...
@@ -140,6 +141,24 @@ def convert(onnx_model_filename,
...
@@ -140,6 +141,24 @@ def convert(onnx_model_filename,
logger
.
info
(
'%d ops in, %d ops out'
,
len
(
onnx_graph
.
node
),
logger
.
info
(
'%d ops in, %d ops out'
,
len
(
onnx_graph
.
node
),
len
(
fluid_program
.
op_descs
))
len
(
fluid_program
.
op_descs
))
# shape-inference
for
name
,
value_info
in
graph_value_infos
.
items
():
var_name
=
make_var_name
(
name
)
fluid_program
.
VarTypeInfo
(
var_name
,
value_info
,
remove_batch
=
False
)
# shape-infer only
bad_var_names
=
[]
for
var_name
,
var_desc
in
fluid_program
.
var_descs
.
items
():
if
not
var_desc
.
type
.
lod_tensor
.
HasField
(
'tensor'
):
bad_var_names
.
append
(
var_name
)
if
len
(
bad_var_names
)
>
0
:
logger
.
warning
(
'type info not infered for var %s ...'
,
', '
.
join
(
bad_var_names
[:
5
]))
logger
.
warning
(
'this causes little problem for PaddlePaddle, '
'but Paddle Mobile may not infer correctly'
)
logger
.
warning
(
'please consider adding option -d to invoke PaddlePaddle shape-inference'
)
# weight writer
# weight writer
for
name
,
weight
in
graph_weights
(
onnx_graph
):
for
name
,
weight
in
graph_weights
(
onnx_graph
):
graph_params
.
append
(
name
)
graph_params
.
append
(
name
)
...
@@ -173,9 +192,10 @@ def convert(onnx_model_filename,
...
@@ -173,9 +192,10 @@ def convert(onnx_model_filename,
value_info
=
graph_value_infos
[
name
]
value_info
=
graph_value_infos
[
name
]
assert
value_info
[
'external'
]
assert
value_info
[
'external'
]
external_inputs
.
append
(
name
)
external_inputs
.
append
(
name
)
fluid_writer
.
emit_inputs
(
fluid_writer
.
emit_inputs
(
fluid_program
,
fluid_program
,
external_inputs
,
graph_value_infos
,
external_inputs
,
remove_batch
=
False
)
# TODO:
graph_value_infos
,
remove_batch
=
False
)
# TODO:
input_codes
=
fluid_program
.
codes
input_codes
=
fluid_program
.
codes
fluid_program
.
codes
=
[]
fluid_program
.
codes
=
[]
logger
.
info
(
'%d inputs converted'
,
len
(
external_inputs
))
logger
.
info
(
'%d inputs converted'
,
len
(
external_inputs
))
...
@@ -206,12 +226,13 @@ def convert(onnx_model_filename,
...
@@ -206,12 +226,13 @@ def convert(onnx_model_filename,
fluid_writer
.
write_desc_file
(
fluid_writer
.
write_desc_file
(
desc_filename
,
desc_filename
,
op_descs
=
fluid_program
.
op_descs
,
op_descs
=
fluid_program
.
op_descs
,
var_descs
=
fluid_program
.
var_descs
,
var_descs
=
list
(
fluid_program
.
var_descs
.
values
())
,
)
)
logger
.
info
(
'program saved to %s'
,
desc_filename
)
logger
.
info
(
'program saved to %s'
,
desc_filename
)
logger
.
info
(
'conversion finished'
)
logger
.
info
(
'conversion finished'
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
del
convert
del
convert
...
@@ -283,10 +304,9 @@ if __name__ == '__main__':
...
@@ -283,10 +304,9 @@ if __name__ == '__main__':
pedantic
=
args
.
pedantic
pedantic
=
args
.
pedantic
skip_version_conversion
=
args
.
skip_version_conversion
skip_version_conversion
=
args
.
skip_version_conversion
convert
(
convert
(
model_filename
,
model_filename
,
save_dir
,
save_dir
,
embed_params
=
embed_params
,
embed_params
=
embed_params
,
onnx_opset_pedantic
=
pedantic
,
onnx_opset_pedantic
=
pedantic
,
onnx_skip_version_conversion
=
skip_version_conversion
,
onnx_skip_version_conversion
=
skip_version_conversion
,
debug
=
debug
)
debug
=
debug
)
onnx2fluid/onnx2fluid/framework_pb2.py
浏览文件 @
7c3e9379
...
@@ -28,30 +28,66 @@ _ATTRTYPE = _descriptor.EnumDescriptor(
...
@@ -28,30 +28,66 @@ _ATTRTYPE = _descriptor.EnumDescriptor(
filename
=
None
,
filename
=
None
,
file
=
DESCRIPTOR
,
file
=
DESCRIPTOR
,
values
=
[
values
=
[
_descriptor
.
EnumValueDescriptor
(
_descriptor
.
EnumValueDescriptor
(
name
=
'INT'
,
name
=
'INT'
,
index
=
0
,
number
=
0
,
options
=
None
,
type
=
None
),
index
=
0
,
_descriptor
.
EnumValueDescriptor
(
number
=
0
,
name
=
'FLOAT'
,
index
=
1
,
number
=
1
,
options
=
None
,
type
=
None
),
options
=
None
,
_descriptor
.
EnumValueDescriptor
(
type
=
None
),
name
=
'STRING'
,
index
=
2
,
number
=
2
,
options
=
None
,
type
=
None
),
_descriptor
.
EnumValueDescriptor
(
name
=
'FLOAT'
,
_descriptor
.
EnumValueDescriptor
(
index
=
1
,
name
=
'INTS'
,
index
=
3
,
number
=
3
,
options
=
None
,
type
=
None
),
number
=
1
,
_descriptor
.
EnumValueDescriptor
(
options
=
None
,
name
=
'FLOATS'
,
index
=
4
,
number
=
4
,
options
=
None
,
type
=
None
),
type
=
None
),
_descriptor
.
EnumValueDescriptor
(
_descriptor
.
EnumValueDescriptor
(
name
=
'STRING'
,
name
=
'STRINGS'
,
index
=
5
,
number
=
5
,
options
=
None
,
type
=
None
),
index
=
2
,
_descriptor
.
EnumValueDescriptor
(
number
=
2
,
name
=
'BOOLEAN'
,
index
=
6
,
number
=
6
,
options
=
None
,
type
=
None
),
options
=
None
,
_descriptor
.
EnumValueDescriptor
(
type
=
None
),
name
=
'BOOLEANS'
,
index
=
7
,
number
=
7
,
options
=
None
,
type
=
None
),
_descriptor
.
EnumValueDescriptor
(
name
=
'INTS'
,
_descriptor
.
EnumValueDescriptor
(
index
=
3
,
name
=
'BLOCK'
,
index
=
8
,
number
=
8
,
options
=
None
,
type
=
None
),
number
=
3
,
_descriptor
.
EnumValueDescriptor
(
options
=
None
,
name
=
'LONG'
,
index
=
9
,
number
=
9
,
options
=
None
,
type
=
None
),
type
=
None
),
_descriptor
.
EnumValueDescriptor
(
_descriptor
.
EnumValueDescriptor
(
name
=
'FLOATS'
,
name
=
'BLOCKS'
,
index
=
10
,
number
=
10
,
options
=
None
,
type
=
None
),
index
=
4
,
_descriptor
.
EnumValueDescriptor
(
number
=
4
,
name
=
'LONGS'
,
index
=
11
,
number
=
11
,
options
=
None
,
type
=
None
),
options
=
None
,
type
=
None
),
_descriptor
.
EnumValueDescriptor
(
name
=
'STRINGS'
,
index
=
5
,
number
=
5
,
options
=
None
,
type
=
None
),
_descriptor
.
EnumValueDescriptor
(
name
=
'BOOLEAN'
,
index
=
6
,
number
=
6
,
options
=
None
,
type
=
None
),
_descriptor
.
EnumValueDescriptor
(
name
=
'BOOLEANS'
,
index
=
7
,
number
=
7
,
options
=
None
,
type
=
None
),
_descriptor
.
EnumValueDescriptor
(
name
=
'BLOCK'
,
index
=
8
,
number
=
8
,
options
=
None
,
type
=
None
),
_descriptor
.
EnumValueDescriptor
(
name
=
'LONG'
,
index
=
9
,
number
=
9
,
options
=
None
,
type
=
None
),
_descriptor
.
EnumValueDescriptor
(
name
=
'BLOCKS'
,
index
=
10
,
number
=
10
,
options
=
None
,
type
=
None
),
_descriptor
.
EnumValueDescriptor
(
name
=
'LONGS'
,
index
=
11
,
number
=
11
,
options
=
None
,
type
=
None
),
],
],
containing_type
=
None
,
containing_type
=
None
,
options
=
None
,
options
=
None
,
...
@@ -80,53 +116,111 @@ _VARTYPE_TYPE = _descriptor.EnumDescriptor(
...
@@ -80,53 +116,111 @@ _VARTYPE_TYPE = _descriptor.EnumDescriptor(
filename
=
None
,
filename
=
None
,
file
=
DESCRIPTOR
,
file
=
DESCRIPTOR
,
values
=
[
values
=
[
_descriptor
.
EnumValueDescriptor
(
_descriptor
.
EnumValueDescriptor
(
name
=
'BOOL'
,
name
=
'BOOL'
,
index
=
0
,
number
=
0
,
options
=
None
,
type
=
None
),
index
=
0
,
_descriptor
.
EnumValueDescriptor
(
number
=
0
,
name
=
'INT16'
,
index
=
1
,
number
=
1
,
options
=
None
,
type
=
None
),
options
=
None
,
_descriptor
.
EnumValueDescriptor
(
type
=
None
),
name
=
'INT32'
,
index
=
2
,
number
=
2
,
options
=
None
,
type
=
None
),
_descriptor
.
EnumValueDescriptor
(
name
=
'INT16'
,
_descriptor
.
EnumValueDescriptor
(
index
=
1
,
name
=
'INT64'
,
index
=
3
,
number
=
3
,
options
=
None
,
type
=
None
),
number
=
1
,
_descriptor
.
EnumValueDescriptor
(
options
=
None
,
name
=
'FP16'
,
index
=
4
,
number
=
4
,
options
=
None
,
type
=
None
),
type
=
None
),
_descriptor
.
EnumValueDescriptor
(
_descriptor
.
EnumValueDescriptor
(
name
=
'INT32'
,
name
=
'FP32'
,
index
=
5
,
number
=
5
,
options
=
None
,
type
=
None
),
index
=
2
,
_descriptor
.
EnumValueDescriptor
(
number
=
2
,
name
=
'FP64'
,
index
=
6
,
number
=
6
,
options
=
None
,
type
=
None
),
options
=
None
,
_descriptor
.
EnumValueDescriptor
(
type
=
None
),
name
=
'SIZE_T'
,
index
=
7
,
number
=
19
,
options
=
None
,
type
=
None
),
_descriptor
.
EnumValueDescriptor
(
name
=
'INT64'
,
_descriptor
.
EnumValueDescriptor
(
index
=
3
,
name
=
'UINT8'
,
index
=
8
,
number
=
20
,
options
=
None
,
type
=
None
),
number
=
3
,
_descriptor
.
EnumValueDescriptor
(
options
=
None
,
name
=
'INT8'
,
index
=
9
,
number
=
21
,
options
=
None
,
type
=
None
),
type
=
None
),
_descriptor
.
EnumValueDescriptor
(
_descriptor
.
EnumValueDescriptor
(
name
=
'FP16'
,
name
=
'LOD_TENSOR'
,
index
=
10
,
number
=
7
,
options
=
None
,
type
=
None
),
index
=
4
,
_descriptor
.
EnumValueDescriptor
(
number
=
4
,
name
=
'SELECTED_ROWS'
,
index
=
11
,
number
=
8
,
options
=
None
,
type
=
None
),
options
=
None
,
_descriptor
.
EnumValueDescriptor
(
type
=
None
),
name
=
'FEED_MINIBATCH'
,
index
=
12
,
number
=
9
,
options
=
None
,
type
=
None
),
_descriptor
.
EnumValueDescriptor
(
name
=
'FP32'
,
_descriptor
.
EnumValueDescriptor
(
index
=
5
,
name
=
'FETCH_LIST'
,
index
=
13
,
number
=
10
,
options
=
None
,
type
=
None
),
number
=
5
,
_descriptor
.
EnumValueDescriptor
(
options
=
None
,
name
=
'STEP_SCOPES'
,
index
=
14
,
number
=
11
,
options
=
None
,
type
=
None
),
type
=
None
),
_descriptor
.
EnumValueDescriptor
(
_descriptor
.
EnumValueDescriptor
(
name
=
'FP64'
,
name
=
'LOD_RANK_TABLE'
,
index
=
15
,
number
=
12
,
options
=
None
,
index
=
6
,
type
=
None
),
number
=
6
,
_descriptor
.
EnumValueDescriptor
(
options
=
None
,
name
=
'LOD_TENSOR_ARRAY'
,
type
=
None
),
index
=
16
,
_descriptor
.
EnumValueDescriptor
(
name
=
'SIZE_T'
,
number
=
13
,
index
=
7
,
options
=
None
,
number
=
19
,
type
=
None
),
options
=
None
,
_descriptor
.
EnumValueDescriptor
(
type
=
None
),
name
=
'PLACE_LIST'
,
index
=
17
,
number
=
14
,
options
=
None
,
type
=
None
),
_descriptor
.
EnumValueDescriptor
(
name
=
'UINT8'
,
_descriptor
.
EnumValueDescriptor
(
index
=
8
,
name
=
'READER'
,
index
=
18
,
number
=
15
,
options
=
None
,
type
=
None
),
number
=
20
,
_descriptor
.
EnumValueDescriptor
(
options
=
None
,
name
=
'RAW'
,
index
=
19
,
number
=
17
,
options
=
None
,
type
=
None
),
type
=
None
),
_descriptor
.
EnumValueDescriptor
(
_descriptor
.
EnumValueDescriptor
(
name
=
'INT8'
,
name
=
'TUPLE'
,
index
=
20
,
number
=
18
,
options
=
None
,
type
=
None
),
index
=
9
,
number
=
21
,
options
=
None
,
type
=
None
),
_descriptor
.
EnumValueDescriptor
(
name
=
'LOD_TENSOR'
,
index
=
10
,
number
=
7
,
options
=
None
,
type
=
None
),
_descriptor
.
EnumValueDescriptor
(
name
=
'SELECTED_ROWS'
,
index
=
11
,
number
=
8
,
options
=
None
,
type
=
None
),
_descriptor
.
EnumValueDescriptor
(
name
=
'FEED_MINIBATCH'
,
index
=
12
,
number
=
9
,
options
=
None
,
type
=
None
),
_descriptor
.
EnumValueDescriptor
(
name
=
'FETCH_LIST'
,
index
=
13
,
number
=
10
,
options
=
None
,
type
=
None
),
_descriptor
.
EnumValueDescriptor
(
name
=
'STEP_SCOPES'
,
index
=
14
,
number
=
11
,
options
=
None
,
type
=
None
),
_descriptor
.
EnumValueDescriptor
(
name
=
'LOD_RANK_TABLE'
,
index
=
15
,
number
=
12
,
options
=
None
,
type
=
None
),
_descriptor
.
EnumValueDescriptor
(
name
=
'LOD_TENSOR_ARRAY'
,
index
=
16
,
number
=
13
,
options
=
None
,
type
=
None
),
_descriptor
.
EnumValueDescriptor
(
name
=
'PLACE_LIST'
,
index
=
17
,
number
=
14
,
options
=
None
,
type
=
None
),
_descriptor
.
EnumValueDescriptor
(
name
=
'READER'
,
index
=
18
,
number
=
15
,
options
=
None
,
type
=
None
),
_descriptor
.
EnumValueDescriptor
(
name
=
'RAW'
,
index
=
19
,
number
=
17
,
options
=
None
,
type
=
None
),
_descriptor
.
EnumValueDescriptor
(
name
=
'TUPLE'
,
index
=
20
,
number
=
18
,
options
=
None
,
type
=
None
),
],
],
containing_type
=
None
,
containing_type
=
None
,
options
=
None
,
options
=
None
,
...
@@ -1480,11 +1574,10 @@ DESCRIPTOR.enum_types_by_name['AttrType'] = _ATTRTYPE
...
@@ -1480,11 +1574,10 @@ DESCRIPTOR.enum_types_by_name['AttrType'] = _ATTRTYPE
Version
=
_reflection
.
GeneratedProtocolMessageType
(
Version
=
_reflection
.
GeneratedProtocolMessageType
(
'Version'
,
'Version'
,
(
_message
.
Message
,
),
(
_message
.
Message
,
),
dict
(
dict
(
DESCRIPTOR
=
_VERSION
,
DESCRIPTOR
=
_VERSION
,
__module__
=
'framework_pb2'
__module__
=
'framework_pb2'
# @@protoc_insertion_point(class_scope:paddle.framework.proto.Version)
# @@protoc_insertion_point(class_scope:paddle.framework.proto.Version)
))
))
_sym_db
.
RegisterMessage
(
Version
)
_sym_db
.
RegisterMessage
(
Version
)
OpDesc
=
_reflection
.
GeneratedProtocolMessageType
(
OpDesc
=
_reflection
.
GeneratedProtocolMessageType
(
...
@@ -1601,11 +1694,10 @@ _sym_db.RegisterMessage(VarType.Tuple)
...
@@ -1601,11 +1694,10 @@ _sym_db.RegisterMessage(VarType.Tuple)
VarDesc
=
_reflection
.
GeneratedProtocolMessageType
(
VarDesc
=
_reflection
.
GeneratedProtocolMessageType
(
'VarDesc'
,
'VarDesc'
,
(
_message
.
Message
,
),
(
_message
.
Message
,
),
dict
(
dict
(
DESCRIPTOR
=
_VARDESC
,
DESCRIPTOR
=
_VARDESC
,
__module__
=
'framework_pb2'
__module__
=
'framework_pb2'
# @@protoc_insertion_point(class_scope:paddle.framework.proto.VarDesc)
# @@protoc_insertion_point(class_scope:paddle.framework.proto.VarDesc)
))
))
_sym_db
.
RegisterMessage
(
VarDesc
)
_sym_db
.
RegisterMessage
(
VarDesc
)
BlockDesc
=
_reflection
.
GeneratedProtocolMessageType
(
BlockDesc
=
_reflection
.
GeneratedProtocolMessageType
(
...
...
onnx2fluid/onnx2fluid/onnx_utils.py
浏览文件 @
7c3e9379
...
@@ -44,29 +44,29 @@ DEFAULT_OP_DOMAIN = 'ai.onnx'
...
@@ -44,29 +44,29 @@ DEFAULT_OP_DOMAIN = 'ai.onnx'
def
print_pb_structure
(
message
,
loop_iterative
=
False
,
depth
=
0
):
def
print_pb_structure
(
message
,
loop_iterative
=
False
,
depth
=
0
):
"""
"""
print pb fields in its structure
print pb fields in its structure
"""
"""
if
hasattr
(
message
,
'DESCRIPTOR'
)
and
hasattr
(
message
.
DESCRIPTOR
,
'fields'
):
if
hasattr
(
message
,
'DESCRIPTOR'
)
and
hasattr
(
message
.
DESCRIPTOR
,
'fields'
):
for
field
in
message
.
DESCRIPTOR
.
fields
:
for
field
in
message
.
DESCRIPTOR
.
fields
:
print
(
'
\t
'
*
depth
+
'-'
,
field
.
name
)
print
(
'
\t
'
*
depth
+
'-'
,
field
.
name
)
print_pb_structure
(
print_pb_structure
(
getattr
(
message
,
field
.
name
),
getattr
(
message
,
field
.
name
),
loop_iterative
=
loop_iterative
,
loop_iterative
=
loop_iterative
,
depth
=
(
depth
+
1
))
depth
=
(
depth
+
1
))
if
loop_iterative
and
hasattr
(
message
,
'MergeFrom'
)
and
hasattr
(
if
loop_iterative
and
hasattr
(
message
,
'MergeFrom'
)
and
hasattr
(
message
,
'__len__'
):
message
,
'__len__'
):
for
idx
,
item
in
enumerate
(
message
):
for
idx
,
item
in
enumerate
(
message
):
print
(
'
\t
'
*
depth
+
'-'
,
idx
)
print
(
'
\t
'
*
depth
+
'-'
,
idx
)
print_pb_structure
(
print_pb_structure
(
item
,
item
,
loop_iterative
=
loop_iterative
,
depth
=
(
depth
+
1
))
loop_iterative
=
loop_iterative
,
depth
=
(
depth
+
1
))
def
build_value_refs
(
nodes
):
def
build_value_refs
(
nodes
):
"""
"""
build op reference of inputs and outputs
build op reference of inputs and outputs
"""
"""
input_refs
=
Dict
()
input_refs
=
Dict
()
output_refs
=
Dict
()
output_refs
=
Dict
()
...
@@ -80,14 +80,15 @@ def build_value_refs(nodes):
...
@@ -80,14 +80,15 @@ def build_value_refs(nodes):
def
get_attribute_value2
(
attr
):
def
get_attribute_value2
(
attr
):
"""
"""
get_attribute_value enhanced
get_attribute_value enhanced
"""
"""
if
attr
.
type
==
onnx
.
AttributeProto
.
TENSOR
:
if
attr
.
type
==
onnx
.
AttributeProto
.
TENSOR
:
dtype
=
np
.
dtype
(
TENSOR_TYPE_TO_NP_TYPE
[
attr
.
t
.
data_type
])
dtype
=
np
.
dtype
(
TENSOR_TYPE_TO_NP_TYPE
[
attr
.
t
.
data_type
])
data
=
attr
.
t
.
raw_data
data
=
attr
.
t
.
raw_data
value
=
np
.
frombuffer
(
value
=
np
.
frombuffer
(
data
,
data
,
dtype
=
dtype
,
count
=
(
len
(
data
)
//
dtype
.
itemsize
))
dtype
=
dtype
,
count
=
(
len
(
data
)
//
dtype
.
itemsize
))
elif
attr
.
type
==
onnx
.
AttributeProto
.
STRING
:
elif
attr
.
type
==
onnx
.
AttributeProto
.
STRING
:
value
=
attr
.
s
value
=
attr
.
s
value
=
value
.
decode
()
if
isinstance
(
value
,
bytes
)
else
value
value
=
value
.
decode
()
if
isinstance
(
value
,
bytes
)
else
value
...
@@ -98,24 +99,24 @@ def get_attribute_value2(attr):
...
@@ -98,24 +99,24 @@ def get_attribute_value2(attr):
def
tensor_dtype
(
tensor
):
def
tensor_dtype
(
tensor
):
"""
"""
get ONNX tensor in np.dtype
get ONNX tensor in np.dtype
"""
"""
return
TENSOR_TYPE_TO_NP_TYPE
[
tensor
.
type
.
tensor_type
.
elem_type
]
return
TENSOR_TYPE_TO_NP_TYPE
[
tensor
.
type
.
tensor_type
.
elem_type
]
def
tensor_shape
(
tensor
):
def
tensor_shape
(
tensor
):
"""
"""
get ONNX tensor shape
get ONNX tensor shape
"""
"""
return
[
dim
.
dim_value
for
dim
in
tensor
.
type
.
tensor_type
.
shape
.
dim
]
return
[
dim
.
dim_value
for
dim
in
tensor
.
type
.
tensor_type
.
shape
.
dim
]
def
node_attrs
(
node
):
def
node_attrs
(
node
):
"""
"""
convert ONNX node attributes to dict
convert ONNX node attributes to dict
"""
"""
return
{
attr
.
name
:
get_attribute_value2
(
attr
)
return
{
attr
.
name
:
get_attribute_value2
(
attr
)
for
attr
in
node
.
attribute
}
# dict
for
attr
in
node
.
attribute
}
# dict
...
@@ -123,8 +124,8 @@ def node_attrs(node):
...
@@ -123,8 +124,8 @@ def node_attrs(node):
def
node_topo
(
nodes
,
topo
=
'default'
):
def
node_topo
(
nodes
,
topo
=
'default'
):
"""
"""
build indices with given topology to an ONNX node graph
build indices with given topology to an ONNX node graph
"""
"""
if
topo
==
'default'
:
if
topo
==
'default'
:
return
list
(
range
(
len
(
nodes
)))
return
list
(
range
(
len
(
nodes
)))
...
@@ -191,8 +192,8 @@ def node_topo(nodes, topo='default'):
...
@@ -191,8 +192,8 @@ def node_topo(nodes, topo='default'):
def
node_iter
(
nodes
,
indices
=
None
):
def
node_iter
(
nodes
,
indices
=
None
):
"""
"""
generator for ONNX node graph with given indices
generator for ONNX node graph with given indices
"""
"""
if
indices
is
None
:
if
indices
is
None
:
indices
=
range
(
len
(
nodes
))
indices
=
range
(
len
(
nodes
))
...
@@ -208,6 +209,9 @@ def node_iter(nodes, indices=None):
...
@@ -208,6 +209,9 @@ def node_iter(nodes, indices=None):
if
name
==
''
:
if
name
==
''
:
name
=
'op_'
+
str
(
index
)
name
=
'op_'
+
str
(
index
)
else
:
# make_op_name
for
s
in
'
\\
|/:'
:
#
name
=
name
.
replace
(
s
,
'_'
)
if
domain
==
''
:
if
domain
==
''
:
domain
=
DEFAULT_OP_DOMAIN
domain
=
DEFAULT_OP_DOMAIN
...
@@ -216,8 +220,8 @@ def node_iter(nodes, indices=None):
...
@@ -216,8 +220,8 @@ def node_iter(nodes, indices=None):
def
graph_ops
(
graph
,
topo
=
'default'
):
def
graph_ops
(
graph
,
topo
=
'default'
):
"""
"""
generator for ONNX node graph with given topology
generator for ONNX node graph with given topology
"""
"""
if
not
isinstance
(
graph
,
onnx
.
GraphProto
):
if
not
isinstance
(
graph
,
onnx
.
GraphProto
):
logger
.
error
(
'graph is not a GraphProto instance'
)
logger
.
error
(
'graph is not a GraphProto instance'
)
...
@@ -228,8 +232,8 @@ def graph_ops(graph, topo='default'):
...
@@ -228,8 +232,8 @@ def graph_ops(graph, topo='default'):
def
graph_weights
(
graph
):
def
graph_weights
(
graph
):
"""
"""
generator for weights of an ONNX model
generator for weights of an ONNX model
"""
"""
if
not
isinstance
(
graph
,
onnx
.
GraphProto
):
if
not
isinstance
(
graph
,
onnx
.
GraphProto
):
logger
.
error
(
'graph is not a GraphProto instance'
)
logger
.
error
(
'graph is not a GraphProto instance'
)
...
@@ -243,39 +247,39 @@ def graph_weights(graph):
...
@@ -243,39 +247,39 @@ def graph_weights(graph):
def
inferred_model_value_info
(
model
):
def
inferred_model_value_info
(
model
):
"""
"""
collect value/type info for an ONNX model
collect value/type info for an ONNX model
"""
"""
model
=
infer_shapes
(
model
)
model
=
infer_shapes
(
model
)
graph
=
model
.
graph
graph
=
model
.
graph
value_info
=
Dict
()
value_info
=
Dict
()
for
item
in
graph
.
value_info
:
for
item
in
graph
.
value_info
:
value_info
[
item
.
name
]
=
dict
(
value_info
[
item
.
name
]
=
{
dtype
=
tensor_dtype
(
item
),
'dtype'
:
tensor_dtype
(
item
),
shape
=
tensor_shape
(
item
),
'shape'
:
tensor_shape
(
item
),
external
=
False
,
'external'
:
False
,
)
}
for
item
in
graph
.
input
:
for
item
in
graph
.
input
:
assert
item
.
name
not
in
value_info
assert
item
.
name
not
in
value_info
value_info
[
item
.
name
]
=
dict
(
value_info
[
item
.
name
]
=
{
dtype
=
tensor_dtype
(
item
),
'dtype'
:
tensor_dtype
(
item
),
shape
=
tensor_shape
(
item
),
'shape'
:
tensor_shape
(
item
),
external
=
True
,
'external'
:
True
,
)
}
for
item
in
graph
.
output
:
for
item
in
graph
.
output
:
# assert item.name not in value_info, 'bypass-model not supported'
# assert item.name not in value_info, 'bypass-model not supported'
value_info
[
item
.
name
]
=
dict
(
value_info
[
item
.
name
]
=
{
dtype
=
tensor_dtype
(
item
),
'dtype'
:
tensor_dtype
(
item
),
shape
=
tensor_shape
(
item
),
'shape'
:
tensor_shape
(
item
),
external
=
True
,
'external'
:
True
,
)
}
return
value_info
return
value_info
def
skip_node_forward
(
nodes
,
src_output_name
,
dst_input_name
,
input_refs
):
def
skip_node_forward
(
nodes
,
src_output_name
,
dst_input_name
,
input_refs
):
"""
"""
skip nodes between src_output_name -> dst_input_name and connect this pair
skip nodes between src_output_name -> dst_input_name and connect this pair
"""
"""
processed
=
0
processed
=
0
for
next_idx
in
input_refs
[
src_output_name
]:
for
next_idx
in
input_refs
[
src_output_name
]:
...
@@ -289,8 +293,8 @@ def skip_node_forward(nodes, src_output_name, dst_input_name, input_refs):
...
@@ -289,8 +293,8 @@ def skip_node_forward(nodes, src_output_name, dst_input_name, input_refs):
def
skip_node_backward
(
nodes
,
src_input_name
,
dst_output_name
,
output_refs
):
def
skip_node_backward
(
nodes
,
src_input_name
,
dst_output_name
,
output_refs
):
"""
"""
skip nodes between dst_output_name -> src_input_name and connect this pair
skip nodes between dst_output_name -> src_input_name and connect this pair
"""
"""
processed
=
0
processed
=
0
for
prev_idx
in
output_refs
[
src_input_name
]:
for
prev_idx
in
output_refs
[
src_input_name
]:
...
@@ -304,10 +308,10 @@ def skip_node_backward(nodes, src_input_name, dst_output_name, output_refs):
...
@@ -304,10 +308,10 @@ def skip_node_backward(nodes, src_input_name, dst_output_name, output_refs):
def
optimize_model_skip_op_for_inference
(
model
,
op_list
=
None
):
def
optimize_model_skip_op_for_inference
(
model
,
op_list
=
None
):
"""
"""
skip ops can be bypassed for inference
skip ops can be bypassed for inference
"""
"""
if
op_list
is
None
:
if
op_list
is
None
:
op_list
=
[
'Dropout'
]
op_list
=
(
'Dropout'
,
'Identity'
)
nodes
=
model
.
graph
.
node
nodes
=
model
.
graph
.
node
input_refs
,
output_refs
=
build_value_refs
(
nodes
)
input_refs
,
output_refs
=
build_value_refs
(
nodes
)
...
@@ -325,7 +329,7 @@ def optimize_model_skip_op_for_inference(model, op_list=None):
...
@@ -325,7 +329,7 @@ def optimize_model_skip_op_for_inference(model, op_list=None):
if
not
(
op_type
in
op_list
):
if
not
(
op_type
in
op_list
):
continue
continue
if
op_type
in
[
'Dropout'
]
:
if
op_type
in
(
'Dropout'
,
)
:
input_name
=
node
.
input
[
0
]
input_name
=
node
.
input
[
0
]
output_name
=
node
.
output
[
0
]
output_name
=
node
.
output
[
0
]
elif
not
(
len
(
node
.
input
)
==
1
and
len
(
node
.
output
)
==
1
):
elif
not
(
len
(
node
.
input
)
==
1
and
len
(
node
.
output
)
==
1
):
...
@@ -365,8 +369,8 @@ def optimize_model_skip_op_for_inference(model, op_list=None):
...
@@ -365,8 +369,8 @@ def optimize_model_skip_op_for_inference(model, op_list=None):
def
optimize_model_strip_initializer
(
model
,
keep_input_only
=
True
):
def
optimize_model_strip_initializer
(
model
,
keep_input_only
=
True
):
"""
"""
strip weights for inference
strip weights for inference
"""
"""
nodes
=
model
.
graph
.
node
nodes
=
model
.
graph
.
node
input_refs
,
output_refs
=
build_value_refs
(
nodes
)
input_refs
,
output_refs
=
build_value_refs
(
nodes
)
...
@@ -406,8 +410,8 @@ def optimize_model_strip_initializer(model, keep_input_only=True):
...
@@ -406,8 +410,8 @@ def optimize_model_strip_initializer(model, keep_input_only=True):
def
optimize_model_cast
(
model
):
def
optimize_model_cast
(
model
):
"""
"""
strip cascade and unecessary onnx::Cast
strip cascade and unecessary onnx::Cast-9:
"""
"""
nodes
=
model
.
graph
.
node
nodes
=
model
.
graph
.
node
input_refs
,
output_refs
=
build_value_refs
(
nodes
)
input_refs
,
output_refs
=
build_value_refs
(
nodes
)
...
@@ -463,13 +467,13 @@ def optimize_model_cast(model):
...
@@ -463,13 +467,13 @@ def optimize_model_cast(model):
def
optimize_model_slice
(
model
):
def
optimize_model_slice
(
model
):
"""
"""
strip cascade and unecessary onnx::Slice
strip cascade and unecessary onnx::Slice-1:9
"""
"""
nodes
=
model
.
graph
.
node
nodes
=
model
.
graph
.
node
input_refs
,
output_refs
=
build_value_refs
(
nodes
)
input_refs
,
output_refs
=
build_value_refs
(
nodes
)
def
_
build_slice_node_chain
(
node_idx
):
def
build_slice_node_chain
(
node_idx
):
chain
=
[]
chain
=
[]
while
True
:
while
True
:
node
=
nodes
[
node_idx
]
node
=
nodes
[
node_idx
]
...
@@ -485,7 +489,7 @@ def optimize_model_slice(model):
...
@@ -485,7 +489,7 @@ def optimize_model_slice(model):
node_idx
=
list
(
input_refs
[
output_name
])[
0
]
node_idx
=
list
(
input_refs
[
output_name
])[
0
]
# axis: (start, end)
# axis: (start, end)
def
_
merge_slice
(
slice_chain
):
def
merge_slice
(
slice_chain
):
merged_slice
=
dict
()
merged_slice
=
dict
()
for
slice_node_idx
in
slice_chain
:
for
slice_node_idx
in
slice_chain
:
node
=
nodes
[
slice_node_idx
]
node
=
nodes
[
slice_node_idx
]
...
@@ -508,14 +512,14 @@ def optimize_model_slice(model):
...
@@ -508,14 +512,14 @@ def optimize_model_slice(model):
ret_nodes
=
ret
.
graph
.
node
ret_nodes
=
ret
.
graph
.
node
nodes_to_remove
=
[]
nodes_to_remove
=
[]
for
node_idx
in
range
(
len
(
nodes
)):
for
node_idx
in
range
(
len
(
nodes
)):
slice_chain
=
_
build_slice_node_chain
(
node_idx
)
slice_chain
=
build_slice_node_chain
(
node_idx
)
if
len
(
slice_chain
)
==
0
:
if
len
(
slice_chain
)
==
0
:
continue
continue
merged_slice
=
_
merge_slice
(
slice_chain
)
merged_slice
=
merge_slice
(
slice_chain
)
if
len
(
merged_slice
)
>
0
and
len
(
slice_chain
)
==
1
:
# no need to merge
if
len
(
merged_slice
)
>
0
and
len
(
slice_chain
)
==
1
:
# no need to merge
continue
continue
attrs
=
dict
(
axes
=
[],
starts
=
[],
ends
=
[])
attrs
=
{
'axes'
:
[],
'starts'
:
[],
'ends'
:
[]}
for
axis
,
(
start
,
end
)
in
merged_slice
.
items
():
for
axis
,
(
start
,
end
)
in
merged_slice
.
items
():
attrs
[
'axes'
].
append
(
axis
)
attrs
[
'axes'
].
append
(
axis
)
attrs
[
'starts'
].
append
(
start
)
attrs
[
'starts'
].
append
(
start
)
...
...
onnx2fluid/onnx2fluid/symbolic.py
浏览文件 @
7c3e9379
此差异已折叠。
点击以展开。
onnx2fluid/onnx2fluid/torch_export_helper.py
浏览文件 @
7c3e9379
...
@@ -12,25 +12,25 @@ import torch
...
@@ -12,25 +12,25 @@ import torch
from
collections
import
OrderedDict
as
Dict
from
collections
import
OrderedDict
as
Dict
def
_
ensure_list
(
obj
):
def
ensure_list
(
obj
):
if
isinstance
(
obj
,
(
list
,
set
,
tuple
)):
if
isinstance
(
obj
,
(
list
,
tuple
,
set
)):
return
list
(
obj
)
return
list
(
obj
)
return
[
obj
]
return
[
obj
]
def
_
ensure_tuple
(
obj
):
def
ensure_tuple
(
obj
):
if
isinstance
(
obj
,
(
list
,
set
,
tuple
)):
if
isinstance
(
obj
,
(
tuple
,
list
,
set
)):
return
tuple
(
obj
)
return
tuple
(
obj
)
return
(
obj
,
)
return
(
obj
,
)
def
_
flatten_list
(
obj
,
out
=
None
):
def
flatten_list
(
obj
,
out
=
None
):
assert
isinstance
(
obj
,
list
)
assert
isinstance
(
obj
,
list
)
if
out
is
None
:
if
out
is
None
:
out
=
type
(
obj
)()
out
=
type
(
obj
)()
for
item
in
obj
:
for
item
in
obj
:
if
isinstance
(
item
,
list
):
if
isinstance
(
item
,
list
):
_
flatten_list
(
item
,
out
)
flatten_list
(
item
,
out
)
else
:
else
:
out
.
append
(
item
)
out
.
append
(
item
)
return
out
return
out
...
@@ -38,10 +38,10 @@ def _flatten_list(obj, out=None):
...
@@ -38,10 +38,10 @@ def _flatten_list(obj, out=None):
def
export_data
(
state_dict
,
prefix
=
''
):
def
export_data
(
state_dict
,
prefix
=
''
):
"""
"""
export binary data with meta text for raw C++ inference engines
export binary data with meta text for raw C++ inference engines
"""
"""
def
_str
(
obj
):
def
str_
(
obj
):
if
isinstance
(
obj
,
(
tuple
,
list
)):
if
isinstance
(
obj
,
(
tuple
,
list
)):
return
str
(
obj
)[
1
:
-
1
].
replace
(
' '
,
''
)
return
str
(
obj
)[
1
:
-
1
].
replace
(
' '
,
''
)
return
str
(
obj
)
return
str
(
obj
)
...
@@ -52,14 +52,14 @@ def export_data(state_dict, prefix=''):
...
@@ -52,14 +52,14 @@ def export_data(state_dict, prefix=''):
data
=
None
data
=
None
if
torch
and
torch
.
is_tensor
(
value
):
if
torch
and
torch
.
is_tensor
(
value
):
data
=
value
.
data
.
cpu
().
numpy
()
data
=
value
.
data
.
cpu
().
numpy
()
elif
np
and
isinstance
(
value
,
np
.
ndarray
):
elif
isinstance
(
value
,
np
.
ndarray
):
data
=
value
data
=
value
if
data
is
not
None
:
if
data
is
not
None
:
data
.
tofile
(
'{}{}.bin'
.
format
(
prefix_
,
key
))
data
.
tofile
(
'{}{}.bin'
.
format
(
prefix_
,
key
))
fp
.
write
(
'{}.dtype={}
\n
'
.
format
(
key
,
_str
(
data
.
dtype
.
name
)))
fp
.
write
(
'{}.dtype={}
\n
'
.
format
(
key
,
str_
(
data
.
dtype
.
name
)))
fp
.
write
(
'{}.shape={}
\n
'
.
format
(
key
,
_str
(
data
.
shape
)))
fp
.
write
(
'{}.shape={}
\n
'
.
format
(
key
,
str_
(
data
.
shape
)))
else
:
else
:
fp
.
write
(
'{}={}
\n
'
.
format
(
key
,
_str
(
value
)))
fp
.
write
(
'{}={}
\n
'
.
format
(
key
,
str_
(
value
)))
fp
.
close
()
fp
.
close
()
...
@@ -72,46 +72,45 @@ def export_onnx_with_validation(model,
...
@@ -72,46 +72,45 @@ def export_onnx_with_validation(model,
*
args
,
*
args
,
**
kwargs
):
**
kwargs
):
"""
"""
export PyTorch model to ONNX model and export sample inputs and outputs in a Numpy file
export PyTorch model to ONNX model and export sample inputs and outputs in a Numpy file
"""
"""
is_
list_or_tuple
=
lambda
x
:
isinstance
(
x
,
(
list
,
tuple
))
is_
tuple_or_list
=
lambda
x
:
isinstance
(
x
,
(
tuple
,
list
))
def
_
tensors_to_arrays
(
tensors
):
def
tensors_to_arrays
(
tensors
):
if
torch
.
is_tensor
(
tensors
):
if
torch
.
is_tensor
(
tensors
):
return
tensors
.
data
.
cpu
().
numpy
()
return
tensors
.
data
.
cpu
().
numpy
()
arrays
=
[]
arrays
=
[]
for
tensor
in
tensors
:
for
tensor
in
tensors
:
arrays
.
append
(
_
tensors_to_arrays
(
tensor
))
arrays
.
append
(
tensors_to_arrays
(
tensor
))
return
arrays
return
arrays
def
_
zip_dict
(
keys
,
values
):
def
zip_dict
(
keys
,
values
):
ret
=
Dict
()
ret
=
Dict
()
for
idx
,
(
key
,
value
)
in
enumerate
(
zip
(
keys
,
values
)):
for
idx
,
(
key
,
value
)
in
enumerate
(
zip
(
keys
,
values
)):
is_key_list
=
is_
list_or_tuple
(
key
)
is_key_list
=
is_
tuple_or_list
(
key
)
is_value_list
=
is_
list_or_tuple
(
value
)
is_value_list
=
is_
tuple_or_list
(
value
)
assert
is_key_list
==
is_value_list
,
'keys and values mismatch'
assert
is_key_list
==
is_value_list
,
'keys and values mismatch'
if
is_value_list
:
if
is_value_list
:
ret
[
str
(
idx
)]
=
_
zip_dict
(
key
,
value
)
ret
[
str
(
idx
)]
=
zip_dict
(
key
,
value
)
else
:
else
:
ret
[
key
]
=
value
ret
[
key
]
=
value
return
ret
return
ret
torch_inputs
=
_ensure_tuple
(
inputs
)
# WORKAROUND: for torch.onnx
torch_inputs
=
ensure_tuple
(
inputs
)
# WORKAROUND: for torch.onnx
outputs
=
torch
.
onnx
.
export
(
outputs
=
torch
.
onnx
.
export
(
model
,
model
,
torch_inputs
,
torch_inputs
,
export_basepath
+
'.onnx'
,
export_basepath
+
'.onnx'
,
input_names
=
flatten_list
(
input_names
),
input_names
=
_flatten_list
(
input_names
),
output_names
=
flatten_list
(
output_names
),
output_names
=
_flatten_list
(
output_names
),
*
args
,
*
args
,
**
kwargs
)
**
kwargs
)
if
outputs
is
None
:
# WORKAROUND: for torch.onnx
if
outputs
is
None
:
# WORKAROUND: for torch.onnx
outputs
=
model
(
*
inputs
)
outputs
=
model
(
*
inputs
)
torch_outputs
=
_
ensure_tuple
(
outputs
)
torch_outputs
=
ensure_tuple
(
outputs
)
inputs
=
_zip_dict
(
input_names
,
_
tensors_to_arrays
(
torch_inputs
))
inputs
=
zip_dict
(
input_names
,
tensors_to_arrays
(
torch_inputs
))
outputs
=
_zip_dict
(
output_names
,
_
tensors_to_arrays
(
torch_outputs
))
outputs
=
zip_dict
(
output_names
,
tensors_to_arrays
(
torch_outputs
))
if
use_npz
:
if
use_npz
:
np
.
savez
(
export_basepath
+
'.npz'
,
inputs
=
inputs
,
outputs
=
outputs
)
np
.
savez
(
export_basepath
+
'.npz'
,
inputs
=
inputs
,
outputs
=
outputs
)
else
:
else
:
...
...
onnx2fluid/onnx2fluid/validation.py
浏览文件 @
7c3e9379
...
@@ -9,23 +9,22 @@ Created on Fri Mar 22 12:17:19 2019
...
@@ -9,23 +9,22 @@ Created on Fri Mar 22 12:17:19 2019
import
importlib
,
logging
,
os
,
sys
import
importlib
,
logging
,
os
,
sys
def
_
flatten_dict
(
obj
,
out
=
None
):
def
flatten_dict
(
obj
,
out
=
None
):
assert
isinstance
(
obj
,
dict
)
assert
isinstance
(
obj
,
dict
)
if
out
is
None
:
if
out
is
None
:
out
=
type
(
obj
)()
out
=
type
(
obj
)()
for
key
,
value
in
obj
.
items
():
for
key
,
value
in
obj
.
items
():
if
isinstance
(
value
,
dict
):
if
isinstance
(
value
,
dict
):
_
flatten_dict
(
value
,
out
)
flatten_dict
(
value
,
out
)
else
:
else
:
assert
key
not
in
out
assert
key
not
in
out
out
[
key
]
=
value
out
[
key
]
=
value
return
out
return
out
def
_ensure_list
(
obj
):
def
ensure_list
(
obj
):
for
cls
in
[
list
,
set
,
tuple
]:
if
isinstance
(
obj
,
(
list
,
tuple
,
set
)):
if
isinstance
(
obj
,
cls
):
return
list
(
obj
)
return
list
(
obj
)
return
[
obj
]
return
[
obj
]
...
@@ -33,12 +32,12 @@ def validate(fluid_model_filename,
...
@@ -33,12 +32,12 @@ def validate(fluid_model_filename,
golden_data_filename
,
golden_data_filename
,
model_func_name
=
'inference'
,
model_func_name
=
'inference'
,
atol
=
1e-3
,
atol
=
1e-3
,
rtol
=
1e-
4
,
rtol
=
1e-
3
,
save_inference_model
=
False
,
save_inference_model
=
False
,
**
kwargs
):
**
kwargs
):
"""
"""
inference the converted Paddle fluid model, validate with given golden data
inference the converted Paddle fluid model, validate with given golden data
"""
"""
import
numpy
as
np
import
numpy
as
np
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
...
@@ -56,8 +55,8 @@ def validate(fluid_model_filename,
...
@@ -56,8 +55,8 @@ def validate(fluid_model_filename,
prog
,
_
,
var_outs
=
fluid
.
io
.
load_inference_model
(
fluid_model_dir
,
exe
)
prog
,
_
,
var_outs
=
fluid
.
io
.
load_inference_model
(
fluid_model_dir
,
exe
)
out_names
=
var_outs
# HINT: pass var if fetch ops already created
out_names
=
var_outs
# HINT: pass var if fetch ops already created
logger
.
info
(
'model load passed'
)
logger
.
info
(
'model load passed'
)
elif
basename
.
endswith
(
'.py'
):
# is
p
ython code
elif
basename
.
endswith
(
'.py'
):
# is
P
ython code
logger
.
debug
(
'using
python
code file %s'
,
basename
)
logger
.
debug
(
'using code file %s'
,
basename
)
module_name
,
_
=
os
.
path
.
splitext
(
basename
)
module_name
,
_
=
os
.
path
.
splitext
(
basename
)
sys_path
=
sys
.
path
.
copy
()
sys_path
=
sys
.
path
.
copy
()
sys
.
path
.
append
(
fluid_model_dir
)
sys
.
path
.
append
(
fluid_model_dir
)
...
@@ -73,14 +72,15 @@ def validate(fluid_model_filename,
...
@@ -73,14 +72,15 @@ def validate(fluid_model_filename,
func
)
func
)
var_outs
=
func
()
var_outs
=
func
()
var_outs
=
_
ensure_list
(
var_outs
)
var_outs
=
ensure_list
(
var_outs
)
out_names
=
[
var
.
name
for
var
in
var_outs
out_names
=
[
var
.
name
for
var
in
var_outs
]
# HINT: pass string to create fetch ops
]
# HINT: pass string to create fetch ops
logger
.
info
(
'import passed'
)
logger
.
info
(
'import passed'
)
prog
=
fluid
.
default_main_program
()
prog
=
fluid
.
default_main_program
()
fluid
.
io
.
load_persistables
(
fluid
.
io
.
load_persistables
(
executor
=
exe
,
executor
=
exe
,
dirname
=
fluid_model_dir
,
main_program
=
prog
)
dirname
=
fluid_model_dir
,
main_program
=
prog
)
logger
.
info
(
'weight load passed'
)
logger
.
info
(
'weight load passed'
)
else
:
else
:
raise
ValueError
(
'unsupported Paddle fluid model filename'
)
raise
ValueError
(
'unsupported Paddle fluid model filename'
)
...
@@ -95,20 +95,19 @@ def validate(fluid_model_filename,
...
@@ -95,20 +95,19 @@ def validate(fluid_model_filename,
test_data
=
np
.
load
(
golden_data_filename
,
encoding
=
'bytes'
).
tolist
()
test_data
=
np
.
load
(
golden_data_filename
,
encoding
=
'bytes'
).
tolist
()
input_data
=
test_data
[
'inputs'
]
input_data
=
test_data
[
'inputs'
]
output_data
=
test_data
[
'outputs'
]
output_data
=
test_data
[
'outputs'
]
input_data
=
_
flatten_dict
(
input_data
)
input_data
=
flatten_dict
(
input_data
)
output_data
=
_
flatten_dict
(
output_data
)
output_data
=
flatten_dict
(
output_data
)
logger
.
info
(
'found %d I/O golden data, starting test ...'
,
logger
.
info
(
'found %d I/O golden data, starting test ...'
,
len
(
input_data
)
+
len
(
output_data
))
len
(
input_data
)
+
len
(
output_data
))
# DEBUG: reload test for
p
ython code
# DEBUG: reload test for
P
ython code
if
basename
.
endswith
(
'.py'
)
and
save_inference_model
:
if
basename
.
endswith
(
'.py'
)
and
save_inference_model
:
fluid
.
io
.
save_inference_model
(
fluid
.
io
.
save_inference_model
(
fluid_model_dir
,
fluid_model_dir
,
input_data
.
keys
(),
input_data
.
keys
(),
var_outs
,
var_outs
,
exe
,
exe
,
main_program
=
prog
,
main_program
=
prog
,
export_for_deployment
=
True
)
export_for_deployment
=
True
)
logger
.
info
(
'model re-save passed'
)
logger
.
info
(
'model re-save passed'
)
fluid
.
io
.
load_inference_model
(
fluid_model_dir
,
exe
)
fluid
.
io
.
load_inference_model
(
fluid_model_dir
,
exe
)
logger
.
info
(
'model re-load passed'
)
logger
.
info
(
'model re-load passed'
)
...
@@ -122,13 +121,12 @@ def validate(fluid_model_filename,
...
@@ -122,13 +121,12 @@ def validate(fluid_model_filename,
for
(
name
,
truth
),
output
in
zip
(
output_data
.
items
(),
outputs
):
for
(
name
,
truth
),
output
in
zip
(
output_data
.
items
(),
outputs
):
logger
.
info
(
'testing output {} ...'
.
format
(
name
))
logger
.
info
(
'testing output {} ...'
.
format
(
name
))
try
:
try
:
np
.
testing
.
assert_allclose
(
np
.
testing
.
assert_allclose
(
output
,
output
,
truth
,
truth
,
rtol
=
rtol
,
rtol
=
rtol
,
atol
=
atol
,
atol
=
atol
,
equal_nan
=
False
,
equal_nan
=
False
,
verbose
=
True
)
verbose
=
True
)
except
AssertionError
as
e
:
except
AssertionError
as
e
:
passed
=
False
passed
=
False
logger
.
error
(
'failed: %s
\n
'
,
e
)
logger
.
error
(
'failed: %s
\n
'
,
e
)
...
@@ -174,7 +172,7 @@ if __name__ == '__main__':
...
@@ -174,7 +172,7 @@ if __name__ == '__main__':
parser
.
add_argument
(
parser
.
add_argument
(
'--rtol'
,
'--rtol'
,
type
=
float
,
type
=
float
,
default
=
1e-
4
,
default
=
1e-
2
,
help
=
'assertion relative tolerance for validation'
,
help
=
'assertion relative tolerance for validation'
,
)
)
args
=
parser
.
parse_args
()
args
=
parser
.
parse_args
()
...
@@ -188,9 +186,8 @@ if __name__ == '__main__':
...
@@ -188,9 +186,8 @@ if __name__ == '__main__':
golden_data_filename
=
args
.
test_data
golden_data_filename
=
args
.
test_data
atol
,
rtol
=
args
.
atol
,
args
.
rtol
atol
,
rtol
=
args
.
atol
,
args
.
rtol
validate
(
validate
(
fluid_model_filename
,
fluid_model_filename
,
golden_data_filename
,
golden_data_filename
,
atol
=
atol
,
atol
=
atol
,
rtol
=
rtol
,
rtol
=
rtol
,
save_inference_model
=
debug
)
save_inference_model
=
debug
)
onnx2fluid/onnx2fluid/writer.py
浏览文件 @
7c3e9379
...
@@ -11,6 +11,8 @@ from __future__ import division
...
@@ -11,6 +11,8 @@ from __future__ import division
import
logging
,
os
import
logging
,
os
import
numpy
as
np
import
numpy
as
np
from
collections
import
OrderedDict
as
Dict
logger
=
logging
.
getLogger
(
__name__
)
logger
=
logging
.
getLogger
(
__name__
)
from
.
import
symbolic
from
.
import
symbolic
...
@@ -30,7 +32,7 @@ __all__ = [
...
@@ -30,7 +32,7 @@ __all__ = [
]
]
def
_
irepr
(
obj
,
to
=
'_'
):
def
irepr
(
obj
,
to
=
'_'
):
"""inline repr"""
"""inline repr"""
s
=
repr
(
obj
)
s
=
repr
(
obj
)
...
@@ -41,12 +43,12 @@ def _irepr(obj, to='_'):
...
@@ -41,12 +43,12 @@ def _irepr(obj, to='_'):
return
s
return
s
def
_
flatten_list
(
obj
,
out
=
None
):
def
flatten_list
(
obj
,
out
=
None
):
if
out
is
None
:
if
out
is
None
:
out
=
type
(
obj
)()
out
=
type
(
obj
)()
for
item
in
obj
:
for
item
in
obj
:
if
isinstance
(
item
,
list
):
if
isinstance
(
item
,
list
):
_
flatten_list
(
item
,
out
)
flatten_list
(
item
,
out
)
else
:
else
:
out
.
append
(
item
)
out
.
append
(
item
)
return
out
return
out
...
@@ -54,12 +56,12 @@ def _flatten_list(obj, out=None):
...
@@ -54,12 +56,12 @@ def _flatten_list(obj, out=None):
def
make_attr_name
(
name
):
def
make_attr_name
(
name
):
"""
"""
make a valid code name for ParamAttr
make a valid code name for ParamAttr
"""
"""
if
name
==
''
:
if
name
==
''
:
raise
ValueError
(
'name should not be empty'
)
raise
ValueError
(
'name should not be empty'
)
for
s
in
'
*?
\\
/-
:'
:
#
for
s
in
'
\\
|/
:'
:
#
name
=
name
.
replace
(
s
,
'_'
)
name
=
name
.
replace
(
s
,
'_'
)
if
not
name
.
startswith
(
'_'
):
if
not
name
.
startswith
(
'_'
):
name
=
'_'
+
name
name
=
'_'
+
name
...
@@ -68,8 +70,8 @@ def make_attr_name(name):
...
@@ -68,8 +70,8 @@ def make_attr_name(name):
class
Program
(
object
):
class
Program
(
object
):
"""
"""
fluid Python code and ProgramDesc wrapper
fluid Python code and ProgramDesc wrapper
"""
"""
DTYPE_TO_FRAMEWORK_DTYPE
=
{
DTYPE_TO_FRAMEWORK_DTYPE
=
{
'bool'
:
framework_pb2
.
VarType
.
BOOL
,
'bool'
:
framework_pb2
.
VarType
.
BOOL
,
...
@@ -86,8 +88,8 @@ class Program(object):
...
@@ -86,8 +88,8 @@ class Program(object):
@
staticmethod
@
staticmethod
def
Dtype
(
dtype
):
def
Dtype
(
dtype
):
"""
"""
convert dtype to fulid framework dtype
convert dtype to fulid framework dtype
"""
"""
dtype
=
np
.
dtype
(
dtype
).
name
dtype
=
np
.
dtype
(
dtype
).
name
return
Program
.
DTYPE_TO_FRAMEWORK_DTYPE
[
dtype
]
return
Program
.
DTYPE_TO_FRAMEWORK_DTYPE
[
dtype
]
...
@@ -95,8 +97,8 @@ class Program(object):
...
@@ -95,8 +97,8 @@ class Program(object):
@
staticmethod
@
staticmethod
def
OpDescVars
(
vals
,
*
keys
):
def
OpDescVars
(
vals
,
*
keys
):
"""
"""
make (OpDesc.Var)s
make (OpDesc.Var)s
"""
"""
od_vars
=
[]
od_vars
=
[]
for
idx
,
key
in
enumerate
(
keys
):
for
idx
,
key
in
enumerate
(
keys
):
...
@@ -110,8 +112,8 @@ class Program(object):
...
@@ -110,8 +112,8 @@ class Program(object):
@
staticmethod
@
staticmethod
def
OpDescAttrs
(
attrs
):
def
OpDescAttrs
(
attrs
):
"""
"""
make (OpDesc.Attr)s
make (OpDesc.Attr)s
"""
"""
od_attrs
=
[]
od_attrs
=
[]
for
key
,
value
in
attrs
.
items
():
for
key
,
value
in
attrs
.
items
():
...
@@ -130,8 +132,8 @@ class Program(object):
...
@@ -130,8 +132,8 @@ class Program(object):
od_attr
.
type
=
framework_pb2
.
STRING
od_attr
.
type
=
framework_pb2
.
STRING
od_attr
.
s
=
value
od_attr
.
s
=
value
elif
isinstance
(
value
,
list
):
elif
isinstance
(
value
,
list
):
if
len
(
value
)
>
0
:
if
len
(
value
)
>
0
:
# TODO: test all items
if
isinstance
(
value
,
if
isinstance
(
value
[
0
]
,
bool
):
# bool.mro() = [bool, int, object]
bool
):
# bool.mro() = [bool, int, object]
od_attr
.
type
=
framework_pb2
.
BOOLEANS
od_attr
.
type
=
framework_pb2
.
BOOLEANS
od_attr
.
bools
.
extend
(
value
)
od_attr
.
bools
.
extend
(
value
)
...
@@ -164,34 +166,35 @@ class Program(object):
...
@@ -164,34 +166,35 @@ class Program(object):
self
.
code_mutable
=
True
self
.
code_mutable
=
True
self
.
codes
=
[]
self
.
codes
=
[]
self
.
op_descs
=
[]
self
.
op_descs
=
[]
self
.
var_descs
=
[]
self
.
var_descs
=
Dict
()
def
__repr__
(
self
):
def
__repr__
(
self
):
return
(
'Program(code mutable: {}) with:
\n
'
return
(
'Program(code mutable: {}) with:
\n
'
'codes: {}
\n
'
'codes: {}
\n
'
'op_descs: {}
\n
'
'op_descs: {}
\n
'
'var_descs: {}
\n
'
).
format
(
self
.
code_mutable
,
self
.
codes
,
'var_descs: {}
\n
'
).
format
(
self
.
code_mutable
,
self
.
codes
,
self
.
op_descs
,
self
.
var_descs
)
self
.
op_descs
,
list
(
self
.
var_descs
.
values
()))
def
Code
(
self
,
code
):
def
Code
(
self
,
code
):
"""
"""
add Python code
add Python code
"""
"""
if
self
.
code_mutable
:
if
self
.
code_mutable
:
self
.
codes
.
append
(
code
)
self
.
codes
.
append
(
code
)
def
OpDesc
(
self
,
def
OpDesc
(
self
,
nam
e
,
op_typ
e
,
input_val_keys
=
None
,
input_val_keys
=
None
,
output_val_keys
=
None
,
output_val_keys
=
None
,
attrs
=
None
):
attrs
=
None
):
"""
"""
add OpDesc
add OpDesc
"""
"""
desc
=
framework_pb2
.
OpDesc
()
desc
=
framework_pb2
.
OpDesc
()
desc
.
type
=
nam
e
desc
.
type
=
op_typ
e
if
input_val_keys
is
not
None
:
if
input_val_keys
is
not
None
:
desc
.
inputs
.
extend
(
self
.
OpDescVars
(
*
input_val_keys
))
desc
.
inputs
.
extend
(
self
.
OpDescVars
(
*
input_val_keys
))
if
output_val_keys
is
not
None
:
if
output_val_keys
is
not
None
:
...
@@ -202,37 +205,28 @@ class Program(object):
...
@@ -202,37 +205,28 @@ class Program(object):
return
desc
return
desc
def
VarDesc
(
self
,
def
VarDesc
(
self
,
name
,
var_
name
,
persistable
=
False
,
persistable
=
False
,
value_info
=
None
,
value_info
=
None
,
remove_batch
=
None
):
remove_batch
=
None
):
"""
"""
add VarDesc,
add VarDesc,
"""
"""
assert
var_name
not
in
self
.
var_descs
,
'var naming conflicted'
var_desc
=
framework_pb2
.
VarDesc
()
var_desc
=
framework_pb2
.
VarDesc
()
var_desc
.
name
=
name
var_desc
.
name
=
var_
name
var_desc
.
persistable
=
persistable
var_desc
.
persistable
=
persistable
var_desc
.
type
.
type
=
framework_pb2
.
VarType
.
LOD_TENSOR
var_desc
.
type
.
type
=
framework_pb2
.
VarType
.
LOD_TENSOR
self
.
var_descs
[
var_name
]
=
var_desc
if
value_info
and
'dtype'
in
value_info
:
if
value_info
:
tensor_desc
=
var_desc
.
type
.
lod_tensor
.
tensor
self
.
VarTypeInfo
(
var_name
,
value_info
,
remove_batch
=
remove_batch
)
tensor_desc
.
data_type
=
self
.
Dtype
(
value_info
[
'dtype'
])
# required
if
'shape'
in
value_info
:
tensor_desc
.
dims
.
extend
(
value_info
[
'shape'
])
if
len
(
value_info
[
'shape'
])
>
0
:
# skip scalars
if
remove_batch
is
None
:
remove_batch
=
value_info
.
get
(
'remove_batch'
,
not
persistable
)
if
remove_batch
:
tensor_desc
.
dims
[
0
]
=
-
1
self
.
var_descs
.
append
(
var_desc
)
def
Op
(
self
,
domain
,
op_type
,
*
args
,
**
kwargs
):
def
Op
(
self
,
domain
,
op_type
,
*
args
,
**
kwargs
):
"""
"""
convert an ONNX op and add it to program
convert an ONNX op and add it to program
"""
"""
if
domain
!=
''
:
# TODO: symbolic file routing by domain
if
domain
!=
''
:
# TODO: symbolic file routing by domain
raise
ValueError
(
'only default domain supported'
)
raise
ValueError
(
'only default domain supported'
)
...
@@ -248,8 +242,8 @@ class Program(object):
...
@@ -248,8 +242,8 @@ class Program(object):
def
IntermediateOp
(
self
,
domain
,
op_type
,
*
args
,
**
kwargs
):
def
IntermediateOp
(
self
,
domain
,
op_type
,
*
args
,
**
kwargs
):
"""
"""
convert an intermediate ONNX op declaring in desc program only
convert an intermediate ONNX op declaring in desc program only
"""
"""
code_mutable
=
self
.
code_mutable
code_mutable
=
self
.
code_mutable
self
.
code_mutable
=
False
self
.
code_mutable
=
False
...
@@ -261,21 +255,48 @@ class Program(object):
...
@@ -261,21 +255,48 @@ class Program(object):
else
:
else
:
self
.
code_mutable
=
code_mutable
self
.
code_mutable
=
code_mutable
def
VarTypeInfo
(
self
,
var_name
,
value_info
,
remove_batch
=
None
):
"""
set value_info for var
"""
if
var_name
not
in
self
.
var_descs
:
return
dtype
=
value_info
.
get
(
'dtype'
,
None
)
if
dtype
is
None
:
return
var_desc
=
self
.
var_descs
[
var_name
]
tensor_desc
=
var_desc
.
type
.
lod_tensor
.
tensor
tensor_desc
.
data_type
=
self
.
Dtype
(
dtype
)
# required
shape
=
value_info
.
get
(
'shape'
,
None
)
if
shape
is
not
None
:
tensor_desc
.
dims
.
extend
(
shape
)
if
len
(
shape
)
>
0
:
# skip scalars
if
remove_batch
is
None
:
remove_batch
=
value_info
.
get
(
'remove_batch'
,
False
)
#not persistable)
if
remove_batch
:
tensor_desc
.
dims
[
0
]
=
-
1
class
Writer
(
object
):
class
Writer
(
object
):
"""
"""
fluid code and desc writter
fluid code and desc writter
"""
"""
CODE_INDENT
=
' '
*
4
# CODE_INDENT = ' ' * 4
CODE_INDENT
=
'
\t
'
@
staticmethod
@
staticmethod
def
header_code
(
func_name
,
info
=
''
):
def
header_code
(
func_name
,
info
=
''
):
"""
"""
Python header codes
Python header codes
"""
"""
codes
=
list
()
codes
=
[]
codes
.
append
(
'"""'
)
codes
.
append
(
'"""'
)
codes
.
append
(
'This code is generated by onnx2fluid.'
)
codes
.
append
(
'This code is generated by onnx2fluid.'
)
codes
.
append
(
'{}'
.
format
(
info
))
codes
.
append
(
'{}'
.
format
(
info
))
...
@@ -294,28 +315,27 @@ class Writer(object):
...
@@ -294,28 +315,27 @@ class Writer(object):
def
emit_op
(
prog
,
name
,
domain
,
op_type
,
inputs
,
outputs
,
attrs
,
def
emit_op
(
prog
,
name
,
domain
,
op_type
,
inputs
,
outputs
,
attrs
,
value_infos
,
*
args
,
**
kwargs
):
value_infos
,
*
args
,
**
kwargs
):
"""
"""
emit an ONNX op into program
emit an ONNX op into program
"""
"""
prog
.
Code
(
'# {}, {}::{}: {} -> {}, {}'
.
format
(
name
,
domain
,
op_type
,
prog
.
Code
(
'# {}, {}::{}: {} -> {}, {}'
.
format
(
name
,
domain
,
op_type
,
inputs
,
outputs
,
inputs
,
outputs
,
_irepr
(
attrs
,
to
=
', '
)))
irepr
(
attrs
,
to
=
', '
)))
prog
.
Op
(
prog
.
Op
(
domain
,
domain
,
op_type
,
op_type
,
inputs
,
inputs
,
outputs
,
outputs
,
attrs
,
attrs
,
value_infos
=
value_infos
,
value_infos
=
value_infos
,
name
=
name
,
name
=
name
,
*
args
,
*
args
,
**
kwargs
)
**
kwargs
)
@
staticmethod
@
staticmethod
def
emit_param
(
prog
,
name
,
value_info
):
def
emit_param
(
prog
,
name
,
value_info
):
"""
"""
emit an ONNX weight into program
emit an ONNX weight into program
"""
"""
if
value_info
.
get
(
'embeded_as'
,
[]):
if
value_info
.
get
(
'embeded_as'
,
[]):
var_names
=
value_info
[
'embeded_as'
]
var_names
=
value_info
[
'embeded_as'
]
...
@@ -339,8 +359,8 @@ class Writer(object):
...
@@ -339,8 +359,8 @@ class Writer(object):
@
staticmethod
@
staticmethod
def
emit_inputs
(
prog
,
names
,
value_infos
,
remove_batch
=
None
):
def
emit_inputs
(
prog
,
names
,
value_infos
,
remove_batch
=
None
):
"""
"""
emit ONNX inputs into program
emit ONNX inputs into program
"""
"""
for
idx
,
name
in
enumerate
(
names
):
for
idx
,
name
in
enumerate
(
names
):
var_name
=
make_var_name
(
name
)
var_name
=
make_var_name
(
name
)
...
@@ -367,16 +387,17 @@ class Writer(object):
...
@@ -367,16 +387,17 @@ class Writer(object):
'feed'
,
'feed'
,
([
'feed'
],
'X'
),
([
'feed'
],
'X'
),
([
var_name
],
'Out'
),
([
var_name
],
'Out'
),
dict
(
col
=
idx
)
,
{
'col'
:
idx
}
,
)
)
prog
.
VarDesc
(
prog
.
VarDesc
(
var_name
,
var_name
,
value_info
=
value_info
,
remove_batch
=
remove_batch
)
value_info
=
value_info
,
remove_batch
=
remove_batch
)
@
staticmethod
@
staticmethod
def
emit_outputs
(
prog
,
names
):
#, value_infos
def
emit_outputs
(
prog
,
names
):
#, value_infos
"""
"""
emit ONNX outputs into program
emit ONNX outputs into program
"""
"""
code
=
'return '
code
=
'return '
for
idx
,
name
in
enumerate
(
names
):
for
idx
,
name
in
enumerate
(
names
):
...
@@ -387,7 +408,7 @@ class Writer(object):
...
@@ -387,7 +408,7 @@ class Writer(object):
'fetch'
,
'fetch'
,
([
var_name
],
'X'
),
([
var_name
],
'X'
),
([
'fetch'
],
'Out'
),
([
'fetch'
],
'Out'
),
dict
(
col
=
idx
)
,
{
'col'
:
idx
}
,
)
)
# var is emitted over ops
# var is emitted over ops
prog
.
Code
(
code
)
prog
.
Code
(
code
)
...
@@ -395,18 +416,18 @@ class Writer(object):
...
@@ -395,18 +416,18 @@ class Writer(object):
@
staticmethod
@
staticmethod
def
add_codes
(
codes
,
others
,
indent
):
def
add_codes
(
codes
,
others
,
indent
):
"""
"""
flatten codes in program
flatten codes in program
"""
"""
for
code
in
_
flatten_list
(
others
):
for
code
in
flatten_list
(
others
):
codes
.
append
(
Writer
.
CODE_INDENT
*
indent
+
code
)
codes
.
append
(
Writer
.
CODE_INDENT
*
indent
+
code
)
return
codes
return
codes
@
staticmethod
@
staticmethod
def
write_weight
(
weight
,
filename
):
def
write_weight
(
weight
,
filename
):
"""
"""
write single weight in fluid desc
write single weight in fluid desc
"""
"""
if
not
isinstance
(
weight
,
np
.
ndarray
):
if
not
isinstance
(
weight
,
np
.
ndarray
):
raise
TypeError
(
'weight is not an ndarray'
)
raise
TypeError
(
'weight is not an ndarray'
)
...
@@ -427,8 +448,8 @@ class Writer(object):
...
@@ -427,8 +448,8 @@ class Writer(object):
@
staticmethod
@
staticmethod
def
write_weights
(
weights
,
save_dir
):
def
write_weights
(
weights
,
save_dir
):
"""
"""
write multiple weights in each fluid desc
write multiple weights in each fluid desc
"""
"""
for
name
,
weight
in
weights
.
items
():
for
name
,
weight
in
weights
.
items
():
if
not
isinstance
(
weights
,
dict
):
if
not
isinstance
(
weights
,
dict
):
...
@@ -442,8 +463,8 @@ class Writer(object):
...
@@ -442,8 +463,8 @@ class Writer(object):
@
staticmethod
@
staticmethod
def
write_code_file
(
filename
,
header_code
,
*
body_codes
):
def
write_code_file
(
filename
,
header_code
,
*
body_codes
):
"""
"""
write Python code to file
write Python code to file
"""
"""
codes
=
[]
codes
=
[]
Writer
.
add_codes
(
codes
,
header_code
,
0
)
Writer
.
add_codes
(
codes
,
header_code
,
0
)
...
@@ -451,7 +472,7 @@ class Writer(object):
...
@@ -451,7 +472,7 @@ class Writer(object):
Writer
.
add_codes
(
codes
,
body_code
,
1
)
Writer
.
add_codes
(
codes
,
body_code
,
1
)
fp
=
open
(
filename
,
'w'
)
fp
=
open
(
filename
,
'w'
)
for
code
in
_
flatten_list
(
codes
):
for
code
in
flatten_list
(
codes
):
fp
.
write
(
code
)
fp
.
write
(
code
)
fp
.
write
(
'
\n
'
)
fp
.
write
(
'
\n
'
)
fp
.
close
()
fp
.
close
()
...
@@ -460,8 +481,8 @@ class Writer(object):
...
@@ -460,8 +481,8 @@ class Writer(object):
@
staticmethod
@
staticmethod
def
write_desc_file
(
filename
,
op_descs
,
var_descs
):
def
write_desc_file
(
filename
,
op_descs
,
var_descs
):
"""
"""
write desc program to file
write desc program to file
"""
"""
prog_desc
=
framework_pb2
.
ProgramDesc
()
prog_desc
=
framework_pb2
.
ProgramDesc
()
block_desc
=
prog_desc
.
blocks
.
add
()
block_desc
=
prog_desc
.
blocks
.
add
()
...
...
onnx2fluid/setup.cfg
浏览文件 @
7c3e9379
...
@@ -19,13 +19,13 @@ license = MIT
...
@@ -19,13 +19,13 @@ license = MIT
# 从PyPI官方给出的列表中选择符合的内容进行填写
# 从PyPI官方给出的列表中选择符合的内容进行填写
# https://pypi.org/pypi?%3Aaction=list_classifiers
# https://pypi.org/pypi?%3Aaction=list_classifiers
classifier =
classifier =
Private :: Do Not Upload
Private :: Do Not Upload
Programming Language :: Python
Programming Language :: Python
Programming Language :: Python :: 3
Programming Language :: Python :: 3
Programming Language :: Python :: 3.5
Programming Language :: Python :: 3.5
# 关键字,用于检索,方便用户搜索到你的项目
# 关键字,用于检索,方便用户搜索到你的项目
keywords =
keywords =
onnx paddlepaddle
onnx paddlepaddle
[options]
[options]
# 包名称,find:表示自动寻找,可在options.packages.find中进行详细配置
# 包名称,find:表示自动寻找,可在options.packages.find中进行详细配置
...
@@ -34,7 +34,7 @@ packages = find:
...
@@ -34,7 +34,7 @@ packages = find:
# 每行一个依赖库,只写直接依赖,通常无需考虑间接依赖
# 每行一个依赖库,只写直接依赖,通常无需考虑间接依赖
# 在这里指定的版本限制应当尽量抽象,通常只要指定最低版本和大版本号即可
# 在这里指定的版本限制应当尽量抽象,通常只要指定最低版本和大版本号即可
install_requires =
install_requires =
onnx >= 1.4
onnx >= 1.4
# 测试依赖,包含项目测试时所需要的额外的依赖库,格式与install_requires一致
# 测试依赖,包含项目测试时所需要的额外的依赖库,格式与install_requires一致
# 可以使用内置的unittest,也可以使用更简单的pytest或nose等单测框架
# 可以使用内置的unittest,也可以使用更简单的pytest或nose等单测框架
...
@@ -53,7 +53,9 @@ zip_safe = True
...
@@ -53,7 +53,9 @@ zip_safe = True
# 可以通过以下配置将指定的函数变成命令行工具,允许用户直接执行
# 可以通过以下配置将指定的函数变成命令行工具,允许用户直接执行
[options.entry_points]
[options.entry_points]
console_scripts =
console_scripts =
onnx2fluid = onnx2fluid.__main__
onnx2fluid = onnx2fluid.__main__
onnx2fluid_convert = onnx2fluid.conversion
onnx2fluid_validate = onnx2fluid.validation
# 可以通过以下配置向包中添加conf或data等非py文件,安装时会一同安装到site-packages目录下
# 可以通过以下配置向包中添加conf或data等非py文件,安装时会一同安装到site-packages目录下
# 仅支持文件,不支持目录,但可以使用通配
# 仅支持文件,不支持目录,但可以使用通配
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录